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ABSTRACT There are several classes of homogeneous
Fermi systems that are characterized by the topology of the
energy spectrum of fermionic quasiparticles: (i) gapless sys-
tems with a Fermi surface, (ii) systems with a gap in their
spectrum, (iii) gapless systems with topologically stable point
nodes (Fermi points), and (iv) gapless systems with topolog-
ically unstable lines of nodes (Fermi lines). Superf luid 3He-A
and electroweak vacuum belong to the universality class 3. The
fermionic quasiparticles (particles) in this class are chiral:
they are left-handed or right-handed. The collective bosonic
modes of systems of class 3 are the effective gauge and
gravitational fields. The great advantage of superf luid 3He-A
is that we can perform experiments by using this condensed
matter and thereby simulate many phenomena in high energy
physics, including axial anomaly, baryoproduction, and mag-
netogenesis. 3He-A textures induce a nontrivial effective met-
rics of the space, where the free quasiparticles move along
geodesics. With 3He-A one can simulate event horizons, Hawk-
ing radiation, rotating vacuum, etc. High-temperature super-
conductors are believed to belong to class 4. They have gapless
fermionic quasiparticles with a ‘‘relativistic’’ spectrum close
to gap nodes, which allows application of ideas developed for
superf luid 3He-A.

It is now well understood that the universe and its symmetry-
broken ground state, the physical vacuum, may behave like a
condensed matter system with a complicated and possibly
degenerate ground state (1–5).

If the analogy of the quantum mechanical physical vacuum
with condensed matter systems is taken seriously, the first
question that arises is: which system of condensed matter
reproduces most closely the properties of the quantum vac-
uum? Because particle physics deals with interacting Fermi
and Bose quantum fields, the system should be fermionic. This
requirement excludes superfluid 4He, which contains only
Bose fields. In Fermi systems, such as metals, superconductors,
and normal and superfluid 3He, in addition to the fermionic
degrees of freedom that come from the bare fermions, elec-
trons, and 3He-atoms, the quantum Bose fields appear as
low-energy collective modes. Therefore, these systems do
represent interacting Fermi and Bose quantum fields.

Which Fermi system is the best? To answer this question we
first must realize that the main feature that differentiates
between various Fermi systems is the topology of the quasi-
particle spectrum in the low energy (infra-red) corner. I will
consider only systems whose ground state is spatially homo-
geneous, which is one of the least disputed properties of the
physical vacuum. When the topology of the quasiparticle
spectrum is taken into account, the homogeneous Fermi
systems can be organized into very few classes (see Fig. 1).

Systems with a Fermi Surface

The most common universality class is made of fermionic
systems that have a Fermi surface (FS). Any collection of
fermions with weak repulsive interactions belongs to this class.
In the extreme limit of a noninteracting Fermi gas, with an
energy spectrum E(p) 5 p2y2m 2 m, where m is the chemical
potential, the FS bounds the volume in the momentum space
where E(p),0 and where the quasiparticle states all are
occupied at T 5 0. In this isotropic model the FS is a sphere
of radius pF 5 =2mm. It is remarkable that the FS survives
even if interactions between particles are introduced. This
stability is a topological property of the FS that is reflected in
the Feynman quantum mechanical propagator G 5 (z 2 H)21

for the particle (the one-particle Green’s function).
Let us write the propagator for a given momentum p and for

the imaginary frequency, z 5 ip0 [the imaginary frequency is
introduced to avoid the conventional singularity of the prop-
agator at z 5 E(p)]. For noninteracting particles the propa-
gator has the form G 5 (ip0 2 E(p))21. Obviously there is still
a singularity. On the hypersurface (p0 5 0,p 5 pF) in the
four-dimensional space (p0,p) the propagator is not well de-
fined. What is important is that this singularity is stable: The
phase F of the Green’s function G 5 ?G?eiF changes by 2p
around the path embracing this surface in the four-
dimensional space (see Fig. 2), and the phase winding number
is robust toward any perturbation. Thus the singularity of the
Green’s function on the two-dimensional surface in the mo-
mentum space is preserved, even when interactions between
particles are introduced.

Exactly the same topological conservation of the winding
number leads to the stability of the quantized vortex in
superfluids and superconductors, the only difference being
that, in the case of vortices, the phase winding occurs in the real
space (see Fig. 3), instead of the momentum space. The
connection between the topology in real space, and the
topology in momentum space is, in fact, even deeper (see e.g.,
refs. 6 and 7).

The topology of the propagator in the four-dimensional
momentum space is thus essential for the Landau theory of an
interacting Fermi liquid; it confirms the assumption that in
Fermi liquids the spectrum of quasiparticles at low energy is
similar to that of particles in a Fermi gas. The interactions do
not change the topology of the fermionic spectrum, but they
produce the effective field acting on a given particle by the
other moving particles. Although this effective field cannot
destroy the FS owing to its topological stability, it can shift its
position locally. Therefore, a collective motion of the particles
is seen by an individual quasiparticle as a dynamical mode of
the FS. These bosonic oscillative modes are known as different
harmonics of the zero sound. An example is shown in Fig. 4,
Upper.
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Systems with a Fermi Point

Although the systems I have discussed above contain fermi-
onic and bosonic quantum fields, the output is not the rela-
tivistic quantum field theory we need. There is no Lorentz
invariance, and the oscillations of the Fermi surface do not
resemble the gauge field even remotely. The situation is
somewhat better for class 2, i.e., for fermionic systems with
fully gapped spectra; examples that provide useful analogies
with Dirac fermions and spontaneously broken symmetry in
quantum fields are conventional superconductors (8, 9) and
superfluid 3He-B (10, 11). The latter also serves as a model
system for simulations of many phenomena in particle physics
and cosmology (see Fig. 5), including experimental verification
(12) of the Kibble mechanism describing formation of cosmic
strings in the early universe (13).

However, I proceed to class 3, which most fully exhibits the
fundamental properties needed for a realization of the rela-
tivistic quantum fields, analogous to those in particle physics
and gravity.

Class 3 systems, whose representatives are superfluid 3He-A
and the vacuum of relativistic left-handed and right-handed
chiral fermions, is characterized by points in the momentum
space where the (quasi)particle energy is zero. In particle
physics the energy spectrum E(p) 5 cp is characteristic of the
massless neutrino (or any other chiral lepton or quark in the
standard model of electroweak interactions) with c being the
speed of light. The energy of a neutrino is zero at point p 5
0 in the three-dimensional momentum space. In condensed
matter systems such point nodes have been realized first in
superfluid 3He-A, which I discuss later. The Hamiltonian for
the neutrino, the massless spin-1y2 particle, is a 2 3 2 matrix
H 5 6csszp, which is expressed in terms of the Pauli spin

matrices ss. The sign 1 is for a right-handed particle and 2 for
a left-handed one: the spin of the particle is oriented along or
opposite to its momentum, respectively.

Let us again consider the propagator of the particle G 5 (ip0
2 H)21 on the imaginary frequency axis, z 5 ip0. One can see
that this propagator still has a singularity, which is now not on
the surface but at point (p0 5 0,p 5 0) in the four-dimensional
momentum space. It is important that this Fermi point is not
simply the shrinked FS, which is topologically unstable and can
disappear. The discussed points control the topological sta-
bility; they cannot be destroyed by external perturbations of the
system.

Such stability can be visualized if one considers the behavior
of the particle spin s(p) as a function of its momentum p in the
three-dimensional space p 5 (px,py,pz). For right-handed par-
ticles, s(p) 5 py2p, whereas for left-handed ones s(p) 5
2py2p. In both cases the spin distribution in the momentum
space looks like a hedgehog (see Fig. 2b), whose spines are
represented by spins: spines point outward for the right-
handed particle and inward for the left-handed one. In the
three-dimensional space the hedgehog is topologically stable.

 

FIG. 1. Universality classes of the fermionic ground state (vacu-
um).

 

FIG. 2. (a) Winding of the propagator phase around the FS. For
simplicity the pz coordinate is hidden so that the FS is the line (p0 5
0,p 5 pF) in the 211 momentum space. This line is a singularity, which
is similar to a vortex in a real three-dimensional space. The phase of
the propagator G 5 (ip0 2 (px

2 1 py
2 2 pF

2)y2m)21 changes by 2p around
the line in the momentum space in the same manner as the phase of
the order parameter changes by 2p around a vortex in the real space.
(b) Fermi point at p 5 0 in the three-dimensional momentum space
(px,py,pz). At this point the particle energy E 5 cp is zero. A
right-handed particle is considered with its spin parallel to the
momentum p, i.e., s(p) 5 (1y2)pyp. The spin makes a hedgehog in the
momentum space, which is topologically stable. (c) Fermi line, topo-
logically unstable manifold of zeroes, is shown in the three-
dimensional momentum space (px,py,pz). The (Bogoliubov) spin (ar-
rows) is confined into the (px,py) plane and has a singularity on the pz
axis. (d) This singularity can be removed by a continuous transfor-
mation. The spin escapes into a third dimension (pz) and becomes well
defined on the pz axis. As a result, the quasiparticle spectrum becomes
fully gapped (the relativistic fermion acquires the mass).
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There exists an integer topological invariant, which supports
the stability of the Fermi point in the same manner as the
conservation of the winding number is responsible for the
stability of a vortex line and the FS. This invariant can be
expressed in terms of the propagator (14).

The consequence is the following: The effective fields acting
on a given particle caused by interactions with other moving
particles cannot destroy the Fermi point. They lead to a shift
in its position in the momentum space and to a change of the
slopes of the energy spectrum (see Fig. 4). This response of the
class 3 systems to deformations means that the low-frequency
collective modes in such Fermi liquids are the propagating
collective oscillations of the positions of the Fermi point and
of the slopes at the Fermi point. The former is felt by the right-
or the left-handed quasiparticles as the gauge (electromagnet-
ic) field, because the main effect of the electromagnetic field
Am 5 (A0,A) is just a dynamical change in the position of zero
in the energy spectrum: (E 2 eA0)2 5 c2(p 2 eA)2.

The latter, i.e., the change of the slope, corresponds to a
change in the speed of light, which can be different for
different directions in space: cx 5 c 1 dcx, cy 5 c 1 dcy, and cz

5 c 1 dcz. In a more general consideration the energy
spectrum in the perturbed state is expressed in terms of the
matrix of slopes, E2 5 gikpipk. In the physical sense this matrix
is the metric tensor. The quasiparticles feel the inverse tensor
gik as the metric of the effective space in which they move along
the geodesic curves with the interval ds2 5 2dt2 1 gikdxidxk.
Therefore, the collective modes related to the slopes play the
part of the gravity field (see Fig. 4).

The most general form of the energy spectrum close to the
Fermi point, i.e., at low energies, is gmv(pm 2 eAm)(pn 2 eAn)
5 0, which describes a relativistic massless (actually chiral)

particle moving in the electromagnetic and gravity fields. It is
most important that this is the general form of the energy
spectrum in the vicinity of any Fermi point, even if the
underlying Fermi system is not Lorentz invariant; superfluid
3He-A is an example. The fermionic spectrum necessarily
becomes Lorentz invariant near the Fermi point, i.e., this
invariance is not fundamental but a low-energy property of any
system with a Fermi point.

Another important property that results from the above
equation is that the fermionic propagator near the Fermi point
is gauge invariant and even invariant under general coordinate
transformations (general covariance). For example, the local
phase transformation of the wave function of the fermion, C
3 Ceiea(r,t) can be compensated by a shift of the ‘‘electromag-
netic’’ field Am 3 Am 1 ma. Such invariances usually are
attributed to fundamental properties of electromagnetic (Am)
and gravitational (gmn) fields, but here they arise spontaneously
as low-energy phenomena.

What about equations for these collective bosonic modes, Am

and gmn: Are they also gauge invariant, i.e., invariant under
transformation Am 3 Am 1 ma ? Also, do they obey the
general covariance? In other words, do they correspond to
Maxwell and Einstein equations for electromagnetic and grav-
itational fields, respectively? The answer to this question
depends on the structure of the underlying Fermi system.

The effective Lagrangian for the collective modes is ob-
tained by integrating over the vacuum fluctuations of the
fermionic field in the presence of the collective bosonic fields.
This principle was used by Sakharov (15) and Zeldovich (16)
to obtain an effective gravity (15) and an effective electrody-
namics (16), both arising from fluctuations of the fermionic
vacuum.

Let us suppose that the main contribution to the effective
action comes from the vacuum fermions whose momenta p are
concentrated near the Fermi point. Because these ‘‘relativis-
tic’’ fermions, moving in ‘‘gauge’’ and ‘‘gravity’’ fields, obey

FIG. 3. Dictionary.

 

FIG. 4. Collective modes of fermionic systems.
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gauge invariance and general covariance, the result of the
integration—the effective Lagrangian for the bosonic
fields—is also Lorentz invariant and gauge invariant and even
has a covariant form. In this case the obtained effective
Lagrangian does give Maxwell equations for Am (16) and
Einstein equations for gmn (15), so that the propagating bosonic
collective modes do represent the gauge bosons and gravitons.

In the extreme limit, when the massless relativistic fermions
are overdominating in vacuum, a new invariance is revealed—
the conformal invariance. The conformal transformation gmn

3 agmn leaves the massless fermions intact, as a result the
effective action for gravity becomes the conformly invariant
Weyl action. Weyl gravity is a viable rival to Einstein gravity
in modern cosmology (17, 18).

Thus, if two requirements are fulfilled—(i) the fermionic
system has a Fermi point, and (ii) the main physics is concen-
trated near this Fermi point—the system acquires at low
energy all the properties of modern quantum field theory:
chiral fermions, quantum gauge fields, and gravity. All these of
ingredients are actually low-energy (infra-red) phenomena.

As a practical realization of class 3 Fermi systems in
condensed matter, let us consider excitations in 3He-A (see
Fig. 3). After the transition to the superfluid state the FS
disappears, a gap appears instead in the quasiparticle energy
spectrum. Distinct from conventional superconductors be-
longing to class 2, the gap has nodes at the north and south
poles of the former FS (at p 5 6pF l̂, where l̂ is the direction
of spontaneous angular momentum in 3He-A. Each node is a
topologically stable Fermi point with left-handed quasipar-
ticles near the north pole and right-handed quasiparticles near

the south pole. Another example of the Fermi point in
condensed matter has been discussed for gapless semiconduc-
tors (19).

Close to the gap nodes, i.e., at energies E ,, D0, where D0
is the maximal value of the gap in 3He-A, playing the part of
the Planck energy, the quasiparticles obey the relativistic
equation gmn(pm 2 eAm)(pn 2 eAn) 5 0. Here e 5 6 is the
‘‘electric charge’’ and simultaneously the chirality of the
quasiparticles. The effective electromagnetic field is induced
by the dynamical l̂-field and by the velocity vs of the superfluid
quantum vacuum of 3He-A: A 5 pF l̂, A0 5 pFvszl̂. This means,
e.g., that the texture of the l̂-vector is felt by quasiparticles as
the magnetic field according to equation B 5 pF¹W 3 l̂ (see Fig.
3). Moreover, in the low-energy limit, the Am field does obey
Maxwell equations. The integration over the vacuum fermions
is concentrated near the Fermi point because of logarithmic
divergence, known in particle physics as the zero charge effect.

The metric of the effective space, where the chiral quasi-
particles move along the geodesic curves, has the components:
gik 5 c'

2 (dik 2 l̂il̂k)1ci
2l̂il̂k 2 vs

ivs
k, g00 5 21, g0i 5 vs

i . The
quantities ci and c'—the velocities of ‘‘light’’ propagating
along and transverse to l̂—are expressed by the ‘‘fundamental’’
parameters of 3He-A: ci 5 pFym*, c' 5 D0ypF, where m* and
pF are the mass and Fermi momentum, respectively, of qua-
siparticles in the normal 3He. Because D0,,EF ; pF

2/2m*, the
‘‘Einstein’’ and ‘‘Weyl’’ actions for gmn are highly contaminated
by many noncovariant terms, which come from the integration
over the ‘‘nonrelativistic’’ high-energy degrees of freedom in
the region D0,E,EF.

In spite of the absence of general covariance in general,
many different properties of the physical vacuum with a Fermi
point, whose direct observation is still far from realization, can
be simulated in 3He-A. One of them is the chiral anomaly,
which allows the nucleation of the fermionic charge from the
vacuum (20, 21) (see Figs. 3 and 5). Because the chiral anomaly
is a low-energy phenomenon, the anomaly equation in 3He-A
has gauge invariant and general covariant form, and thus
exactly coincides with that derived by Adler (20) and Bell and
Jackiw (21). This equation has been verified in several 3He
experiments (22, 23). In particle physics, the only evidence of
axial anomaly is related to the decay of the neutral pion p03
2g, although the anomaly is much used in different cosmolog-
ical scenaria, explaining an excess of matter over antimatter in
the universe (see review in ref. 24).

The advantage of 3He-A for such simulations is that the
theory of this superfluid is in some sense complete. At least in
principle one can derive everything from the bare 3He atoms
interacting via a known potential, which is why there is no
cut-off problem. We know (or can calculate from first princi-
ples) what happens not only in the low-energy limit, where the
fermionic spectrum is gauge invariant or covariant, but also at
higher energy, where the Lorentz and gauge invariances are
violated. This completeness allows us to investigate problems
that require knowledge of physics beyond the Planck cut-off,
e.g., the quantum effects related to the event horizon of black
holes. It is also important that there is a variety of textures in
superfluid 3He-A that allow us to simulate the event horizon
and ergoregion when the texture moves with velocity exceeding
the local speed of light (25, 26) or rotates (27) (see Figs. 3
and 5).

Systems with a Fermi Line

The high-temperature superconductors in cuprates most prob-
ably contain zeroes in their quasiparticle energy spectrum. The
angle-resolved photoemission spectroscopy experiments (28)
show that these are lines in the three-dimensional momentum
space where the quasiparticle energy is zero or, equivalently,
point zeroes in the two-dimensional CuO2 planes. The high-T
superconductors thus belong to class 4 of systems with Fermi

FIG. 5. Helium-3-centric universe. Connections of superfluid 3He
to other branches of physics. For each item one can find the analogous
phenomenon in superfluid phases of 3He. The analogies can result
from the symmetry, from topology in real space or from topology in
momentum space. In many cases they are described by the same
equations.
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lines. The dimension D of the manifold of zeroes is 1, which is
intermediate between a FS with D 5 2 and a Fermi point with
D 5 0.

As in the other two classes, all low-energy (or infra-red)
properties of cuprate superconductors are determined by
zeroes. In particular, the density of the fermionic states with
energy E is determined by the dimension of the zeroes: N(E)
5 Spd(E 2 E(p)) ; E22D. Many low-temperature properties
of these superconductors are obtained from a simple scaling,
known in 3He-A (this represents one of the connections in Fig.
5). For example, an external magnetic field B has the dimen-
sion of E2. At finite B, the density of states is nonzero even at
E 5 0 and equals N(0,B) ; B(22D)/2 (29). An experimental
indication of such scaling with D 5 1 was reported for
YBa2Cu3O7 in ref. 30.

The energy spectrum of quasiparticles near each of the four
gap nodes in Fig. 1 can be written as E 5 t1cx(px 2 eAx) 1
t3cy(py 2 eAy), where tWs are the Pauli matrices in the Bogoli-
ubov–Nambu particle-hole space. The speeds of light cx and cy

are the fundamental characteristics determined by the micro-
scopic physics of cuprates. A is the effective (not electromag-
netic) field, which indicates the position of the nodal lines in
the momentum space, which means that the system belongs to
the same class as the 211 quantum electrodynamics with
massless fermions.

The lines of zeroes generally have no topological stability.
The singular line in the momentum space from which the
spines (now the vector tW) point outward (see Fig. 2c) can be
eliminated by the escape of the tW-vector to a third dimension.
This regularization may be accomplished by an operation
similar to the folding of an umbrella (see Fig. 2d).

Existence of the nodal lines can be prescribed, however, by
the symmetry of the ground state. There are many nontrivial
classes of superconductors, whose symmetry supports the
existence of nodal lines in symmetric positions in the momen-
tum space (31). The symmetry violating perturbations, such as
impurities, an external magnetic field, etc., destroy the lines of
zeroes (7). One could expect different types of transformations
of these lines of zeroes that depend on the perturbation.
Impurities, for example, can (i) produce the gap in the
fermionic spectrum (32), thus transforming the system to class
2 (see Fig. 2d); (ii) lead to a finite density of states (33), thus
transforming the system to class 1; (iii) produce zeroes of
fractional dimension, which means that the exponent in the
density of states N(E) } E22D is nonintegral (34) and thus
corresponds to a fractional dimension D of the manifold of
zeroes; and (iv) lead to localization (35). An open question is:
Can the quantum fluctuations do the same; in particular, can
they change the effective dimension of the zeroes?

Conclusion

The fermionic systems with topologically stable Fermi points
have a remarkable property. In the low-energy corner the
system exhibits an enhanced symmetry. The Lorentz invari-
ance, general covariance, gauge invariance, and conformal
invariance all appear spontaneously in this corner and bring
with them chiral relativistic fermions, gauge fields, and gravity.
All are low-energy phenomena, which are absent at higher
energies. In particular, this analogy suggests that gravity exists
only in the infrared limit, i.e., only low-energy gravitons can be
quantized (36).

Distinct from the string theory, which also gives rise to
gravitation, the Fermi point mechanism does not require a
high dimensionality for the space-time. The topologically
stable Fermi point is a property of the conventional 311-
dimensional space-time.

There are actually two main guesses about the symmetry at
high energies: (i) conventional wisdom prescribes a higher
symmetry at higher energies, SO(10), supersymmetry, etc.; and

(ii) a contrary conjecture is that all symmetries known in the
universe disappear at higher energies when the Planck energy
is approached. The latter can be applied even to the Lorentz
invariance (37), whose violation at high energies can be the
origin of the observed neutrino oscillations (38, 39). The
condensed matter analogy with Fermi points supports the
second guess.

At ‘‘very low’’ energies of the electroweak scale Eew ; 100
GeV, the chiral fermions acquire masses and become the Dirac
fermions of class 2. There are also two main guesses how this
happens and both can be described in terms of the Fermi
points. The first is the standard model of symmetry breaking.
From the point of view of momentum-space topology, it
corresponds to the coalescence and mutual annihilation of
Fermi points with opposite topological invariants. In the
alternative theory, the mass matrix of fermions appears in the
same way as the gauge field (see e.g., refs. 40–42). By using the
language of the Fermi points, the gauge fields, the Higgs fields,
and Yukawa interactions, all are realized as shifts of positions
of Fermi points corresponding to different quarks and leptons.
It is interesting that this way of unification of gauge and Higgs
fields, which has been called generalized covariant derivative,
is known in 3He-A, where most of effective gauge fields come
from the collective modes of the order parameter, i.e., from the
Higgs field.

However, at the moment it is not clear whether the Fermi
point is really the true way of how all the low-energy phenom-
ena arise in the physical vacuum. Before making a conclusion
one should manage to construct a scenario of how the 45 chiral
fermions of three generations (or 48 fermions, if neutrinos
have a mass) and 12-gauge bosons of the SU(3) 3 SU(2) 3
U(1) group of strong and electroweak interactions can arise as
effective Fermi and Bose fields from the Fermi points.

3He-A gives some hints that this scenario may be possible.
The Fermi point (say, at the north pole) is actually doubly
degenerate owing to the ordinary spin of the 3He atom. The
double degeneracy results in the SU(2) effective gauge field,
acting on quasiparticles near the Fermi point (14, 43), which
means that the higher symmetry groups could be a conse-
quence of the Fermi point degeneracy. For example, the 4-fold
degeneracy could result in the four left-handed 1 four right-
handed fermionic species and simultaneously in the SU(4)
gauge group.

In this example, however, the number of bosons exceeds the
number of fermions. To obtain the correct number of bosons
and fermions probably would require a composite model for
quarks and leptons. There is, however, another possibility how
to reduce the number of the effective gauge fields. Chadha and
Nielsen (37) considered the massless electrodynamics with
different metrics for the left-handed and right-handed fermi-
ons; their model thus violates the Lorentz invariance. They
found that the two metrics converge to a single one as the
energy is lowered. Thus in the low-energy corner the Lorentz
invariance becomes better and better, and at the same time the
number of independent bosonic modes decreases.

The violation of all invariances at high energy imposes
another problem to be solved. Why are the corrections caused
by noninvariance extremely small at low energies? Actually
none of the corrections have been experimentally identified so
far, which means that the integration over the fermionic
vacuum that produces the action for the gauge and gravity
fields is very effectively concentrated near the Fermi points,
where all the symmetries are present. There should be a special
mechanism, such as an enhanced quasiparticle relaxation at
higher energy, which effectively switches off the nonsymmetric
high-energy contribution. The same mechanism could be
responsible for the absence of the cosmological term in the
Einstein equations.

As I already have mentioned, with given physical parameters
3He-A is not a good model for such effective cancellation.
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Although the Maxwell action is really dominating at low
energies because of the logarithmically running coupling con-
stant, the Einstein action is polluted by the noncovariant terms,
because the contribution of the vacuum fermions far from the
Fermi point becomes dominating. To remove the polluting
terms, the integration must be spontaneously cut-off at ener-
gies much below the Planck scale, E ,, D0. This requirement
produces strong limitations on the parameters of the under-
lying condensed matter.

Nevertheless many phenomena related to the physical vac-
uum have been or could be visualized in 3He-A. There are
many other connections between superfluid 3He and the rest
of physics that should be exploited as well (see Fig. 5).
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