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Abstract
Genetic variation influences gene expression, and this can be efficiently mapped to specific
genomic regions and variants. We used gene expression profiling of EBV-transformed
lymphoblastoid cell lines of all 270 individuals of the HapMap consortium to elucidate the
detailed features of genetic variation underlying gene expression variation. We find gene
expression levels to be heritable and differentiation between populations in agreement with earlier
small-scale studies. A detailed association analysis of over 2.2 million common SNPs per
population (5% frequency HapMap) with gene expression identified at least 1348 genes with
association signals in cis and at least 180 in trans. Replication in at least one independent
population was achieved for 37% of cis- signals and 15% of trans- signals, respectively. Our
results strongly support an abundance of cis- regulatory variation in the human genome. Detection
of trans- effects is limited but suggests that regulatory variation may be the key primary effect
contributing to phenotypic variation in humans. Finally, we explore a variety of methodologies
that improve the current state of analysis of gene expression variation.

Understanding the molecular basis of human phenotypic variation is a key goal of human
genetics, encompassing disease susceptibility, variable response to drugs and ultimately
treatment and public health. Over the past decades studies have described and analyzed the
genetic basis of human phenotypic variation ranging from whole organism phenotypes such
as height 1, to molecular level phenotypes such as lipid levels 2,3. Previous studies have
also investigated the effects of nucleotide variation in specific genes or genomic regions on
complex and monogenic diseases. Recently, there has been an explosion of genome-wide
studies examining the genetic basis of complex diseases by exploring the effects of genetic
variation such as single nucleotide polymorphisms (SNPs) 4-7 and copy number variants
(CNVs) 8-10 some of which are clearly in non-coding regions of the genome 4-7,11.
Technological advances have now made genome-wide association studies a reasonable and
affordable approach to the study of complex phenotypes 12.
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While association methodologies can identify genomic regions harbouring the genetic
variant(s) underlying disease and other phenotypes, on their own they provide very little
insight into which is the functional variant and / or mechanism. There is a need for
methodologies that allow both the interpretation of functional consequences of variants and
the description of functionally important variants 13,14. Gene expression (i.e. transcription)
level is a quantitative phenotype that is directly linked to DNA variation and can be affected
by polymorphisms in cis regulatory regions 15-19 or exonic variants altering transcript
stability or splicing 20. In addition, gene expression (or mRNA levels) can be measured
accurately and consistently in tissues and cell lines in humans. Many studies have described
the genetic basis of transcriptional variation and have convincingly demonstrated that it is a
heritable trait 16,17,21. The highly-dense, recently-released phase II HapMap 22,23 now
allows for the first time a fine-scale analysis of the genomic location and properties of the
variants associated with gene expression. Furthermore, we can advance current knowledge
by investigating the genetic basis of gene expression variation within and between
populations as well as its implications and relationship to genome function.

In this study we used transcriptional profiling of the 270 individuals of the four HapMap
populations and their genotypes of nearly 4 million SNPs described by the HapMap
Consortium 22,23 to elucidate some of the key features of the genetics of gene expression.
We provide new biological insights in terms of variable gene expression and the fine-scale
genomic properties of cis- and trans-acting regulatory variants. We also present new
methodological implementations that uncover shared functional genetic effects between
populations, as well as describing the degree and characteristics of population differentiation
with respect to genetic effects. Our analysis describes extensive replication of signals in
multiple populations and provides the first comprehensive exploration of biological signals
underlying regulatory associations

Results
Data generation and biological properties of the data

We quantified gene expression in the 270 individuals genotyped in the International
HapMap Project with Illumina's human whole-genome expression (WG-6 version 1) arrays
which contain 47,294 probes in 4 technical replicates as described in 19. The population
samples include 30 Caucasian trios of Northern and Western European origin (CEU), 45
unrelated Chinese individuals from Beijing University (CHB), 45 unrelated Japanese
individuals from Tokyo (JPT), and 30 Yoruba trios from Ibadan, Nigeria (YRI). Expression
signal values were log2 transformed and normalized using quantile normalization across the
four replicates of an individual followed by median normalization across all 270 individuals
to allow comparison of expression values across populations 24,25.

We estimated the median and variance of each of the 47,294 probe types for each
population, and analyzed the distribution of variance and median values of normalized
values by Gene Ontology (GO) categories 26 after summarizing them in GO-slim categories
27. Specific GO-slim categories such as “chaperone regulatory activity” showed an excess
of high variance of gene expression, while genes with extracellular function showed low
levels of variation. “Chaperone regulatory activity” genes and “translational regulatory
activity” genes had highest median expression levels across all populations. The latter
category was mainly driven by very high levels of expression of ribosomal proteins.

We estimated heritability of expression phenotypes independently in the CEU and YRI trios
by performing midparent-offspring regressions. Of the 47,294 analyzed probes,4,829 and
6,482 (10% and 13%, respectively) demonstrate heritability greater than 0.2 in CEU and
YRI, respectively, with an overlap of 958 genes, while 154 CEU genes and 217 YRI had
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heritability higher than 0.5 with an overlap of just 9 genes. This suggests that even with only
30 trios per population we can detect a substantial number of heritable expression
phenotypes, through the low heritability estimates indicate substantial additional non-genetic
sources of variation in gene expression.

We tested for population differences in gene expression levels as recent studies have shown
it to be considerable 16,28. To avoid potential age and batch effects occurring at the
establishment of the cell lines, we used the trios to establish critical values of differentiation.
This approach (see Supplementary Methods) results in a difference in median log2 values of
0.2 (16% difference in median expression levels). Using this threshold, we tested all pairs of
populations, after pooling CHB and JPT into one population (ASN) and calculated the
number of genes exceeding this threshold. In total, 5,359 genes exceeded the threshold in
one or more of the three population pairs (Figure S1), with most of them different in only a
single population pair as expected. If the number of genes expressed in lymphoblastoid cell
lines (LCLs) is about 50% of the total (about 12,000 genes) then we estimate that the
fraction of genes with significant gene expression differences between any two populations
is between 17% and 29%. However, one needs to be cautious with such a result since we
observed that the CEU population was the most divergent, while we expected it to cluster
closer to ASN. This is likely due to the much older age of the CEU cell lines relative to the
most recently established YRI and ASN cell lines.

For subsequent analyses, we defined a reduced set of 14,456 probes (13,643 distinct genes)
selected on criteria of variance and population differentiation (see Supplementary Methods).
This is smaller than our previously described set of 14925 probes (14072 genes) 19, because
we removed probes with either multiple mapping positions (370) or with SNPs within them
that generated false associations (99). All association analyses were performed with the
14,456 probe set corresponding to 13,643 genes.

Comparison of expression measurements between genome-wide and custom expression
arrays

To maximize the power to detect genetic effects, it is important to establish that expression
measurements are robust to experimental variables. We previously described expression data
for 60 CEU cell lines (all of the CEU HapMap parents) generated with Illumina's low-
density (~700 genes) custom arrays 18. A total of 539 probes on this custom array have
identical sequence as probes on the genome-wide array, which allows direct comparison of
expression signals across experiments. For probes where there was variable signal intensity
across individuals, there is highly significant correlation between signals from the two
experiments (Figure S2). Note that the RNA used in each experiment for a given individual
was extracted from a different cell line batch. The RNA labelling, hybridization and
normalization were also done independently. The high degree of correlation illustrates that
the transcript level measurements are stable despite differential growth and treatment of cell
lines and samples.

Cis-associations of gene expression with SNPs
We selected HapMap phase II SNPs with minor allele frequency greater than 5% from each
of the four populations (CEU, CHB, JPT, and YRI; approximately 2.2 million SNPs per
population). We tested for association between SNP variation and expression variation for
each of 13,643 genes independently in each population, considering unrelated individuals
only. For each population, we employed a linear regression model. To analyze those SNPs
potentially acting in cis, we tested only those SNPs located within 1Mb upstream or
downstream of the expression probe midpoint (“candidate region approach” 18). For large
genes ( > 500 Kb), we also used the transcription start site (TSS) as the center of the 2Mb
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window, discovering only one additional association relative to those discussed below. To
determine significance of the regression p-values, we performed 10,000 permutations of the
data independently for each gene (and population) and analyzed in depth those associations
significant at the 0.001 permutation threshold (see Supplementary Methods). At this level of
significance, we expect approximately 14 genes to have at least one significant association
by chance, and we detect 299, 318, 341 and 394 for CEU, CHB, JPT and YRI, respectively,
with a false discovery rate (FDR) of 4-5% per population (Table 1 and Table S1). In total,
there is a non-redundant set of 831 genes exhibiting a significant cis- association in at least
one population, 310 genes in at least two populations, and 62 in all four. As expected, due to
the small sample size, the detected genetic effects are large, with R2 values ranging from
0.27 to close to 1. A total of 209 out of 299 CEU-significant genes and 247 out of 394 YRI-
significant genes had heritability estimates above 0.2. Of the set of 831 genes with
significant cis associations, 431 had heritability estimates above 0.2. Heritability overall
correlated reasonably well with cis-association significance (Figure S4) but the heritability
estimates have large variance and are to be taken with caution on a per gene basis. When
evaluated in the context of GO-slim terms, we detected a significant deficit of genes
involved in “cellular processes” among the set of genes with significant cis- associations.
This is not surprising since segregating genetic variation affecting such basic cell functions
would be expected to be detrimental.

When we compare the sets of genes exhibiting cis- associations identified using the phase I
HapMap 19 to those identified using the phase II HapMap data, we observe that the phase I
HapMap captured 79%-87% (depending on the population) of the genes detected with phase
II. Only in YRI is there is a substantial gain in numbers of cis- associated genes (Figure S5
and Figure 1A). This is due to the fact that in the other three populations, linkage
disequilibrium (LD) decays much more slowly, so that instead of capturing the vast majority
of common haplotype diversity, in the YRI the phase II captures additional functional
genetic variation relative to phase I HapMap.

It would be desirable to be able to use the full sample of all 210 unrelated individuals to
detect genetic effects on gene expression that are common but of smaller magnitude than
those detected within each individual population. However, one cannot simply pool the
samples without appropriate corrections, since population differentiation will generate
spurious associations. Conditional permutations allow us to reveal the relevant associations
while masking inflated associations 29,30. We repeated the association analysis after
pooling unrelated individuals of: i) all four populations, ii) a subset of three (CEU-CHB-
JPT) populations, and iii) two (CHB-JPT) populations. The rationale for the choice of
population combinations was to pool those sets of populations that are more closely-related.
To correct for inflation of the p-values, we performed conditional permutations, such that
expression values from an individual of a given population were only assigned to another
individual of the same population. This corrects for the p-value inflation since p-values from
permuted datasets are also inflated. A total of 803, 735 and 651 genes were detected as
significant for the 4-population, 3-population and 2-population pools, corresponding to 1083
distinct genes and FDR at 1-2%. The overlap between the multi-population and the single
population analysis (Figure 2A) demonstrates that this methodology captures the vast
majority of population shared associations that were detected in the single population
analysis – as expected - but also captures a large number of additional cis effects (example
in Figure 2B). Most of the effects detected in the multi-population analysis are smaller (R2 =
0.08-0.41) than those detected in single populations (Figure 2C), which is a direct function
of the increase in the analyzed sample size.

Most previous studies have used a linear regression (LR) model to associate SNP genotypes
with gene expression. We employed an alternative non-parametric method to evaluate the
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sensitivity of our results to the statistical methodology used. We used Spearman rank
correlation (SRC) to perform the same cis- analysis described above. We detected 293, 274,
326 and 363 cis- associations for CEU, CHB, JPT and YRI, corresponding to 783 distinct
genes and FDR of 4-5%. Of those, 283 genes were detected in at least 2 populations and 57
in all four. The overlap of SRC with LR was between 77% and 86% of the genes, depending
on the population (Table 1). We conclude that SRC performs at an equivalent level as LR.

Allelic effects between populations
We have reported that a large fraction of genes exhibiting cis- associations at the 0.001
permutation threshold are shared (about 37%) in at least two populations (Table 2 and 19).
This comparison refers to the across-population association of the same gene and in most
cases the same SNPs. The gold standard for association replication requires the same SNP to
be associated with the same phenotype, and the allelic effects to be in the same direction
across multiple independent populations. We compared the allelic directions of SNP-gene
associations shared in all pairs of populations. In 95-97% of the shared associations, the
direction of the allelic effect was the same across populations (Figure 3), and the discordant
3-5% is of the same order as the FDR. This further corroborates that the associations we
observed represent real genetic effects on gene expression.

We also investigated whether the extent to which those associations not shared between
populations could be attributed to differential allele frequencies across populations as
recently reported 16. For each pair of populations we split the associated SNPs (0.001
permutation threshold) into 3 categories: i) SNPs significant for the same gene in both
populations (SNP-shared associations); ii) gene associations in both populations but with
different SNPs (Gene-shared associated SNPs); iii) population-specific associations
(unshared associations). For these 3 categories of SNPs, we computed the difference in
expected heterozygosity (2pq) in the same direction (e.g. Hetpopulation1-Hetpopulation2) and
compared the distributions of the differences among the three categories. As expected,
median difference in heterozygosity was the lowest for SNP-shared associations, with gene-
shared associated SNPs exhibiting the second lowest difference (Figure S4). Our results are
consistent with the Spielman et al. 16 observation. One small caveat is that because of small
sample sizes, there could be slight fluctuations in allele frequencies simply due to sampling
variance that may affect detection of associations above a certain threshold.

Associations with respect to genome annotation and evolutionary conservation
The high SNP density of the HapMap makes it possible that some of the SNPs interrogated
are actually the causal variants (it is estimated that 30-50% of SNPs with MAF > 5% are
represented in the HapMap 22,23), which means that evaluation of the genomic annotation
where associated SNPs are found may be informative. For each of the 4 populations, we
mapped the most significant SNP for each of the genes with significant cis- associations
from the single population analysis relative to the transcription start site (TSS) of genes with
annotated 5′UTRs. We found a strong signal for the SNPs to be located very close to the
TSS (Figure 4), with no discernable trend toward 3′ or 5′. This symmetrical trend was also
evident in the recent analysis of the ENCODE consortium 31. When we considered the most
significant SNP of the 341 additional genes detected in the 4-population multi-population
analysis, the signal was even tighter around the TSS. Three of the associated SNPs
(rs10998076, rs869736, rs1010167) have been previously shown in promoter transfection
assays to have a direct effect on transcriptional activation 32 in kidney and brain cell lines.

Next we mapped the location of the most significant SNP of the 831 cis- associated genes
from the single population analysis with respect to gene promoters, coding sequences, and
conserved non-coding sequences. We observed significant excess of associated SNPs
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(relative to those tested) in promoters and coding sequences (Fisher's Exact test; P = 8.94 ×
10−24, P = 4.52 × 10−12, respectively), and under-representation in conserved non-coding
sequences (CNCs; P= 0.00358). The first two signals are quite expected and partly
confounded since most of the causal variants are found in the genic regions, so SNPs in LD
with causal variants may also map to coding sequences. Not surprisingly, we observed
enrichment of associated SNPs in regions that align in multiple mammals and as far as fish
or chicken (Fisher's exact test, P = 10−5. The apparent contradiction between enrichment in
conserved nucleotides and deficit in CNCs is probably due to the fact that the majority of the
signal for conserved nucleotide comes from exonic sequences that are close to the TSS
where the associations are mainly found. The deficit of associated SNPs in CNC sequences
is somewhat surprising because previous studies have suggested that they are selectively
constrained 31,33,34 and in some cases have been shown to play a role in gene regulation
35-37. It is possible that the skew toward large effect sizes also skews the distribution of
causal regulatory variants.

Trans-associations of gene expression with SNPs
The availability of whole genome expression and SNP data allows the elucidation of genetic
effects acting in trans. The number of 2.2 million SNPs per population is large (MAF >
0.05) so testing all SNPs against all genes becomes computationally and statistically
challenging (correcting for millions of tests). We took a “candidate variant approach” by
testing only putatively functional SNPs. The goal of the analysis is not to compare the
numbers of cis vs. trans effects, which is an irrelevant question in the genome-wide context
especially given differential power in detection. The goal is to assess the relative
contribution of primary molecular variants in trans. Towards this end, we selected four
categories of SNPs to analyze for trans effects: i) SNPs with functional effects on gene
expression in cis (as determined above in the single population analyses), ii) non-
synonymous SNPs (Ensembl v41 annotation); iii) SNPs influencing splicing (Ensembl v41
annotation) iv) and SNPs within microRNAs (as annotated in miRBase). These correspond
to approximately 25,000 SNPs (MAF > 0.05) per population (see Table 3 for counts in each
category).

For each population, we employed a linear regression model as described above to test for
association between SNP variation and expression variation. We confined the trans analysis
to those SNP-gene combinations where the genomic distance between probe midpoint and
SNP was greater than 1Mb (or where probe and SNP were on different chromosomes).
Significance was evaluated through 10,000 permutations as described above. We identified
43, 37, 38, 23 genes in CEU, CHB, JPT and YRI, respectively, with significant trans-
associations (0.001 permutation threshold). In total, 108 genes show significant trans-
association in at least one population (16 genes or 15% show a significant trans- association
in at least 2 populations and 5 in all four populations). We also performed analysis in pooled
populations as described above and detected 44, 52 and 39 genes for the 4-, 3- and 2-
population pools respectively. Overall there seems to be low power to detect trans effects in
these cell lines and sample sizes (Table 4), as indicated by the low number of discovered
genes and consequently the high FDR.

At the 0.001 threshold, the majority of trans associations are caused by SNPs from the first
category, i.e. those with cis-regulatory effects, showing 3- to 6-fold enrichment relative to
the total SNPs tested (Fisher's exact test p-values 10−10-10−24, depending on the population
except the YRI population, where it is not significant). Some SNPs were significantly
associated with expression of multiple genes (up to 6 genes for a single SNP). The numbers
of SNPs that are associated with more than 1 gene are: CEU = 29 SNPs, CHB = 13, JPT = 7,
YRI = 4. A total of 8 genes had a trans association on the same chromosome (distance > 1
Mb) with distances ranging from 1003413 bps (potential cis effect) to 187659746 bps. If

Stranger et al. Page 6

Nat Genet. Author manuscript; available in PMC 2009 May 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



gene expression perturbations are similar in underlying genetic effects as whole organism
perturbations and disease, then this last result suggests that the majority of the common
phenotypic variation in humans is driven by variants in regulatory elements, rather than
variants in protein-coding sequences, providing some potential answers to the long standing
question of the relative contribution of regulatory and coding causal variants to complex
phenotypes.

Discussion
We performed a comprehensive analysis of genetic effects on gene expression variation in
human lymphoblastoid cell lines, presenting evidence for cis regulatory effects of 1348
genes and their biological properties by adopting a “candidate region approach”. The limited
power of our analysis means that we detect only a subset of the existing functional
regulatory effects in these populations. In addition, as we have only interrogated a single cell
type, variation manifested only in other cell types is not represented here. These two facts
argue for an abundance of cis regulatory variants segregating in human populations, some of
which may be responsible for higher-order phenotypic variation and susceptibility to
disease.

Our analysis goes beyond the mere detection of cis regulatory effects. We have performed to
our knowledge, the most comprehensive analysis to date of the properties of the cis
association signals, and we have systematically described characteristics of the expression
data. Together these analyses provide us with confidence in the detected signals. In addition,
we have demonstrated that the detected association signals replicate very well across
populations, even though the populations are quite divergent and the sample sizes are small.
We also detect the effect of population differentiation on gene expression. In this respect, we
confirm what has been previously documented in smaller scale studies 16,28; Among-
population allele frequency differences exist and provide a framework for the study of
phenotypic differences among populations.

We have provided new methodological insights into the analysis of gene expression
variation. By employing pooling of divergent populations and conditional permutation
schemes, we increased the sensitivity of our analysis, detecting smaller regulatory effects
shared across populations. One can imagine a more sophisticated conditional permutation
scheme that would permit pooling of any set of populations for which the population
identities or relatedness metrics are known. We have also employed a non-parametric test,
namely Spearman rank correlation, and demonstrated that it has enough power to be used in
such studies. In addition, SRC has some advantages over linear regression due to the fact
that, contrary to the linear regression where outliers can have a large impact on the p-values,
SRC is not sensitive to them and therefore the nominal p-values can be used directly in
methods that estimate FDR (example given in Figure S6).

The evolutionary and annotation properties of cis regulatory associations are very relevant
since the density of the phase II HapMap allows for a fine-scale analysis of the association
signal. The vast majority of detected cis regulatory effects map very close to the TSS and are
enriched in regions of high sequence conservation. This information provides a useful
framework to search for cis regulatory variants in the human genome and suggests that most
of the large effect variants are in the genic and immediate intergenic regions. The
association data will become available at the Ensembl web site in the October 2007 as
Distributed Annotation System (DAS) tracks to enable browsing and downloading.

Finally, we have attempted to analyze effects in trans by adopting a “candidate variants
approach” assigning prior relevance to those SNPs already known to be associated with cis
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regulation, protein sequence variation (amino acid or splicing variation), or miRNA
structure, and this approach made correction by permutation feasible. There were fewer
genes exhibiting significant trans effects than exhibiting cis effects. This is a function of the
fact that trans effects are often more indirect and therefore weaker, so our sample size does
not provide us with enough power in conjunction with the much larger number of tests we
have to correct for. In general, the detection of trans effects in humans has been less
successful than in yeast 38,39. This may be because the yeast cell comprises the entire
organism, so study of the biological interactions in a yeast cell has the potential to detect all
of the interactions, while the human cell is just a small part of the organism so many of the
intercellular effects mediating trans effects cannot be discovered. Finally, we have provided
evidence that among a set of potential variants that could have effects in trans, we observe a
large enrichment in the contribution of cis regulatory variants, which may suggest that cis
regulatory variation explains much of the complex phenotypic variation in humans, at least
at the molecular level.

We have described the most comprehensive analysis to date of gene expression variation in
human populations, and provide a detailed characterization of the genetic as well as the
positional effects in the genome. This detailed analysis provides a robust and useful
framework for the future analysis of gene expression variation in large cohorts with larger
sample sizes but lower SNP densities and potentially multiple cell types. It will also greatly
facilitate the interpretation and follow up of disease association studies by allowing the
dissection of biological effects in regions that carry strong statistical signals of association.
This and future studies will lead to a detailed map of functional variation in the human
genome that will complement functional and variation studies towards the complete
understanding of phenotypic variation in human populations.

Methods
RNA preparation

Total RNA was extracted from lymphoblastoid cell lines of the 270 individuals of the
HapMap (22; Coriell, Camden, New Jersey, United States). Two, one-quarter scale Message
Amp II reactions (Ambion, Austin, Texas, United States) were performed for each RNA
extraction using 200 ng of total RNA as previously described 18. 1.5 μg of the cRNA was
hybridized to an array 19.

Gene expression quantification
To assay transcript levels in the cell lines, we used Illumina's commercial whole genome
expression array, Sentrix Human-6 Expression BeadChip version 1 (Illumina, San Diego,
California, United States) 40.

Post-experimental raw data normalization
Background-corrected values for a single bead type are subsequently summarized by
Illumina software and output to the user as a set of 47,294 intensity values for each
individual hybridization 25. To combine data from our multiple replicate hybridizations, raw
data were read using the beadarray R package 24 and then normalized on a log scale using a
quantile normalization method 41 across replicates of a single individual, followed by a
median normalization method across all 270 individuals.

Association analyses
Of the 47,294 probes for which we collected expression data, we initially selected a set of
14,925 probes to analyze as described in Stranger et al. 19. We subsequently discarded from
our analyses any probe that mapped to more than one Ensembl gene (Ensembl version 42) or
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that had an associated SNP underlying the probe sequence. This resulted in a set of 14,456
probes that were analyzed in the association analyses, corresponding to 13,643 unique
autosomal genes.

Association and multiple-test correction (individual populations)
For each of the selected probes interrogating expression and for each SNP, we fit a linear
regression model as previously described 18,19. We also performed Spearman Rank
Correlation. Both of these analyses were applied to each population separately, including the
unrelated individuals only.

For the cis- association, we limited the analysis to those probes and SNPs (MAF > 5%)
where the distance from probe genomic midpoint to SNP genomic location was less than or
equal to 1Mb.

For the trans- association, we selected a subset of phase II HapMap SNPs that have a higher
probability of being functional than randomly selected SNPs of the genome. We selected
SNPs of four categories: i) All SNPs with significant cis- associations, ii) All nsSNPs (rs
numbers from Ensembl v41, genotypes extracted from HapMap v21), iii) All splice SNPs (rs
numbers from Ensembl v41, genotypes extracted from HapMap v21), and iv) microRNA
SNPs (as annotated in miRBase; genotypes from HapMap v21). Together these categories
comprised a set of approximately 29,000 SNPs with MAF > 5% in each of the four
populations.

An association to a gene expression phenotype was considered significant if the p-value
from the analysis of the observed data (nominal p-value) was lower than the threshold of the
0.001 tail of the distribution of the minimal p-values (among all comparisons for a given
gene) from 10,000 permutations of the expression phenotypes 42,43.

Association and multiple-test correction (multiple population panels)
With the aim of increasing the power of our cis- association analysis, data were combined
(normalized expression values and SNP genotypes) for unrelated individuals of multiple
populations to comprise three different multiple population analysis panels: 1) CEU-CHB-
JPT-YRI, 2) CEU-CHB-JPT, and 3) CHB-JPT. The cis- association was performed
separately for each of these panels using linear regression as described above, only
considering those SNPs located less than 1Mb away from the probe midpoint. Conditional
permutations were performed to assess significance of the nominal p-values 29,30.

Accession Numbers
The expression data reported in this paper have been previously deposited in the Gene
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo) database (Series Accession
Number GSE6536 19).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Associations of SNPs with gene expression of SPRED2 on chromosome 2. Panels contrast
the results obtained using phase I HapMap SNPs and phase II HapMap SNPs. Coordinates
are in NCBI Build 35. Blue arrows represent the location (not to scale) and direction of
transcription of the associated gene.
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Figure 2.
Comparison of detected cis associations between single and multi-population analysis. (A)
Numbers of genes with significant cis- associations as uncovered by single and multi-
population analysis and proportion overlap of associations across the two methodologies.
(B) Associations of SNPs of the phase II HapMap with gene expression of SGPP2 on
chromosome 2. Coordinates are in NCBI Build 35. Panels show results of 4-population
multi-population analysis, and individual population analysis for CEU, CHB, JPT, and YRI.
Blue arrows represent the location (not to scale) and direction of transcription of the
associated gene. In this case the SNP was not rare in any of the populations (MAF was
between 0.08 and 0.44) but the effect was small (R2 = 0.25 and slope = 0.25) so it could
only be detected when we pooled the populations increasing the sample size.
(C) Comparison of the adjusted R2 values (proportion of the variance in expression
explained by the linear relationship between genotype and phenotype) of cis significant
associations obtained from single and multi-population analysis (0.001 permutation
threshold).
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Figure 3.
Comparison of the direction of shared SNP-gene allelic effects across all pairs of
populations (0.001 permutation threshold). White panels indicate effects in the same
direction.
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Figure 4.
Statistical significance, adjusted R2 of the association (proportion of the expression variance
explained by the linear relationship between genotype and phenotype), and absolute value of
the slope of the linear regression, as a function of distance from the transcription start site, of
the most significantly associated SNP per gene in each of the 4 populations (order CEU,
CHB, JPT and YRI) and the pooled sample of all 4 populations.
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Table 3

Number and source category of SNPs used in the trans analysis

CEU CHB JPT YRI

cis- associated (rSNPs) 13221 13133 13191 13375

Non-synonymous 9904 9383 9378 10727

Splicing 1756 1585 1594 1950

miRNA 34 34 32 37

Non-redundanta 24635 23854 23907 25797

a
Note: all SNPs are > 0.05 frequency in the respective population.
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