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Extracellular matrix (ECM) plays a key role for the 
proper function of the different organs of the human 
body, including heart and vessels. Changes in the ECM 
have been implicated in the pathogenesis of several 
cardiovascular conditions including atherosclerosis, 
aneurysms, post-angioplasty restenosis and heart fail-
ure1-3.

Μatrix Μetalloproteinases (MMPs) and their inhibi-
tors (Τissue Ιnhibitors of Μetalloproteinases, TIMPs) 
have a fundamental role in the remodeling of the ECM 
in both normal and pathological conditions. In addition, 
MMPs have an important role in cardiovascular diseases, 
including atherosclerosis4, dilated cardiomyopathy5 and 
myocardial repair following infarction6.

In the present work we reviewed the existing litera-
ture data on the relationship between MMPs and their 
inhibitors with cardiovascular disease. 

MMP structure and function
MMPs were discovered in 1962, in an effort to es-

tablish how the metamorphosing tadpole of a frog lost 
its tail7. MMPs are found in a variaty of living organ-
isms, from the simplest bacteria up to the human8. For 
example it must be mentioned that metalloproteinase 
toxin-2 of Bacteroides fragilis shares 59% homology 
in the amino acid sequence with human interstitial 
MMPs8. 

MMPs not only take part in biological processes, such 
as ontogenesis (morphogenesis, angiogenesis, growth), 
and wound healing9,10, but also during pathological re-
modeling like tumor growth11. Endothelial cells, smooth 
muscle cells and fibroblasts can produce MMPs4. Oxida-
tive stress, which is involved in cardiovascular disease, 
can stimulate MMPs production and activation12. On the 
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contrary, nitric oxide (NO) inhibits MMPs production by 
endothelial cells and smooth muscle cells13,14.

MMPs can be divided into 6 groups: collagenases, 
stromelysins, matrilysins, gelatinases, membrane-type 
metalloproteinases and zinc- and calcium-dependent en-
dopeptidases8. They are usually secreted from the cells 
as inactive proenzymes8. A proenzyme molecule is or-
ganized into the 3 basic structural domains: N-terminal 
propeptide, catalytic domain, and the C-terminal part of 
the molecule8. N-terminal propeptide consists of approx-
imately 80–90 amino acids containing cysteine residue 
which interacts with catalytic zinc and this ensures the 
enzymatic latency of the proenzyme8.

Regulation of MMPs activity is a complex process 
including three different levels of activation: a) Regula-
tion of MMPs gene expression15. Gene expression can be 
inhibited by some factors like TGF-β, glucocorticoids 
and retinoic acid16. Genes for MMPs are expressed only 
if the tissue is remodelled under either physiological or 
pathological conditions17. Gene expression is influenced 
also by the ECM-cell and cell-cell interactions. As an 
example, we can mention glycoprotein EMMPRIN (ex-
tracellular matrix metalloprotinase inducer) that stimu-
lates MMPs production and was first identified on the 
surface of human tumor cells18. b) Regulation of MMPs 
enzyme activity by cystein «switch» mechanism19. The 
mechanism by which MMPs are activated is mentioned 
above. However, it must be emphasized that there is a 
certain reserve of inactive MMPs bound to various com-
ponents of ECM in the extracellular space. For example, 
MMP-2 binds to the ECM structures containing elastin, 
MMP-3 to basal membranes and occasionally to colla-
gen fibrils and MMP-13 to proteoglycans, collagen and 
elastin19. c) Inhibition of MMPs by TIMPs. TIMPs are 
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proteins of size 21–30 kDa. Four homologous molecules 
termed TIMP-1, -2, -3, -4 have been described20. TIMPS 
are a family of specific inhibitors of MMPs which are 
essential for the regulation of normal connective tis-
sue metabolism21. TIMP-1 is synthesized by most con-
nective tissue cell types, including mesangial cells and 
macrophages21. TIMP-1 levels are increased in diabetic 
nephropathy22 and polycystic kidney disease23. TIMP-2 
has only 42% amino acid homology with TIMP-1 but 
a similar profile of MMP inhibitory activity. Whereas 
TIMP-1 is highly inducible by cytokines and growth 
factors, TIMP-2 expression closely matches the pattern 
of expression of MMP-224. Expression of TIMP-1 and 
TIMP-2 is increased significantly in patients with glo-
merulosclerosis25. TIMP-3 shares only 37% sequence 
homology with TIMP-1 and is localized mainly to the 
ECM26. TIMP-4 is the main TIMP in the heart and has 
an important role in processes such as infarction, heart 
failure and cardiomyopathy24. Also, TIMPs exert a num-
ber of other biological effects in connective tissues, in-
cluding growth factor activity, inhibition of apoptosis 
and inhibition of angiogenesis27.

Extracellular matrix and atherosclerosis
It is known that the arterial wall consists of collagen 

types I and III, macrophages and smooth muscle cells. 
The evolution of the atherosclerotic plaque from the fatty 
streak to advanced plaque is associated with an increase 
in its content of collagen28, in the number of smooth 
muscle cells29, and in MMP-9 levels4. Inreased levels of 
MMP-9 are found more often in patients with unstable 
angina compared with those with stable angina30. Also, 
re-stenotic human coronary plaques demonstrate lower 
MMP-9 expression29. In patients with coronary artery 
disease higher MMP-9 levels are an independent risk fac-
tor of cardiovascular morality31. Increased TIMP-1 levels 
have been reported consistently in human atherosclerotic 
plaques, mainly in relation to areas of calcification32. In-
creased circulating TIMP-1 levels have also been related 
to stable coronary33, carotid34 and peripheral artery ath-
erosclerosis34.

Following an acute coronary syndrome, numerous 
MMPs are expressed and activated in the myocardium, 
with greater alterations in levels in the ischemic regions 
and less change in the areas remote from injury36. The 
same pattern is observed in the peripheral blood over 
several weeks after an acute coronary syndrome. El-
evated levels of TIMP-1 have been reported37, whereas 
reports of circulating MMP levels during and after acute 
coronary syndromes have been inconsistent37-40. In two 
studies, increased levels of MMPs were observed in the 
coronary, but not in the peripheral, circulation of pa-
tients with acute coronary syndromes39,40. Thrombolytic 
therapy is a powerful stimulus for MMP expression and 
collagen degradation41. In addition, coronary balloon 
angioplasty results in an immediate release of MMP-9 
into the blood42.

Extracellular matrix and cardioavascular 
risk factors

Many studies have shown that all major risk factors 
for atherosclerotic disease are associated with alterations 
in circulating levels of various ECM markers43,44. 

Age and gender
Older age and male sex have been related to higher 

plasma TIMP-143, but not MMP-945. Also, hormone re-
placement therapy has been demonstrated to reduce plas-
ma MMP-9 levels in postmenopausal women46.

Dyslipidemia
Higher blood levels of some MMPs, especially 

MMP-9, have been observed with increasing total or low 
density lipoprotein cholesterol (LDL-C) levels45,47. In 
one study, the plasma TIMP-1 level was related to the 
total cholesterol/HDL-cholesterol ratio51. In experimental 
studies, oxidized LDL has been observed to increase and 
high density lipoprotein cholesterol (HDL-C) to decrease 
the production of MMP-1 and MMP-948,49. In addition, 
oxidized LDL-C can also decrease TIMP-1 production49.

Diabetes mellitus
Increased circulating levels of MMP-9 were observed 

in patients with diabetes45,50, without any reports for the 
rest MMPs. However, we showed that plasma levels of 
MMP-2 and MMP-9 did not differ between diabetic and 
nondibetic subjects51. Only TIMP-1 levels were lower in 
diabetic subjects compared with nondiabetic subjects51. 
The above finding was in accordance with a study show-
ing that TIMP-1 levels are decreased in diabetic sub-
jects45.

High glucose concentrations have been demonstrated 
to induce expression of MMP-1 and MMP-2 from en-
dothelial cells and expression of MMP-9 from macro-
phages, with no effect on TIMP-1 expression52. In one 
recent study of patients with diabetes, intensified glyce-
mic and cardiovascular risk management for one year 
decreased serum cholesterol and glycated hemoglobin 
levels, and had as a result the decreasement of TIMP-
1 levels, without any significant change in circulating 
MMP-9 and TIMP-253.

Hypertension
Hypertension has been related with increased plasma 

levels of MMP-945 and TIMP-143. In addition, increased 
levels of TIMP-1 in hypertensive persons has been re-
ported in some54,55, but not all56, studies. Increased circu-
lating MMP-9 levels have also been observed in subjects 
with systemic hypertension57 or isolated systolic hyper-
tension58.

Obesity
Plasma TIMP-143, but not MMP-945, levels were posi-

tively related to body mass index (BMI) in one popula-
tion-based study. One recent prospective study in obese 
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women showed that plasma MMP-9 levels decreased one 
year after gastric banding59.

Smoking and alcohol
Large scale studies have shown that smokers had 

increased plasma levels of MMP-9 and TIMP-143,45. In 
smaller studies, smokers have also been found to have 
higher plasma MMP-9 levels60,61.

An inverse relation between usual alcohol intake and 
plasma TIMP-1 level was observed in one study45. Plasma 
MMP-9 levels have not been related to alcohol consump-
tion43. Recent alcohol intake does not affect circulating 
levels of TIMP-1 and MMP-262.

Inflammation
Activation of neutrophils by inflammatory media-

tors causes release of MMP-8 and MMP-9 from their 
granules63. Experimental studies suggest that C-reactive 
protein (CRP) stimulates MMP-1 expression directly, 
but has no effect on TIMP-1 expression64. In small clini-
cal samples, serum CRP levels have been related to cir-
culating levels of MMP-9, but not to those of MMP-2 
or MMP-365,66. Interestingly, infecting macrophages or 
smooth muscle cells with Chlamydia pneumoniae in-
duces MMPs production67. Recently, a strong association 
between the presence of Chlamydia pneumoniae antigen 
and production of MMP-9 in coronary atherosclerotic 
plaques has been demonstrated68.

MMPs and cardiovascular disease
MMPs and atherosclerosis
MMPs influence the process of atherosclerotic lesion 

formation. One proposed mechanism of the pathogenetic 
role of MMPs includes the increased migration of vas-
cular smooth muscle cells through the internal elastic 
lamina into the intimal space, where they proliferate and 
contribute to plaque formation69. In addition, MMPs ac-
tivity may diminish plaque volume by degrading ECM 
in the intima70. In one study of TIMP-1-deficient mice 
(in which MMPs activity is increased), a reduced ath-
erosclerotic plaque size was noted71. Hearts obtained 
within 24 h post-mortem from patients who died from 
causes other than coronary artery disease (CAD) showed 
increased expression of MMP-2 and MMP-9 in plaques 
of expansively remodeled versus constrictive remodeled 
segments of atherosclerotic coronary arteries72. Finally, 
one study compared plasma concentrations of MMPs 
between 53 male patients who had one or more signifi-
cant stenosis (>50% of diameter) in the coronary arteries 
with 133 subjects free of cardiovascular diease33; plasma 
levels of MMP-9 were significantly higher in the pa-
tients with CAD, while plasma concentrations of MMP-
2 and MMP-3 were significantly lower in patients with 
CAD33.

MMPs and plaque rupture
There is a rapidly expanding body of evidence sug-

gesting that acute coronary syndromes may be influenced 
by MMPs through degradation of the fibrous cap of vul-
nerable atherosclerotic lesions73. In one report, specimens 
from patients with unstable angina showed a 70% increase 
in intracellular MMP-9, indicating active synthesis, com-
pared to specimens from patients with stable angina30. 
Similarly, plaques from patients undergoing carotid end-
arterectomy that were thought to be unstable (patients 
symptomatic within one month of surgery), showed a 
more intense stain for MMP-9 than plaques from patients 
with stable atherosclerotic disease74. Also, other studies 
reported similar findings for the other MMPs75,76.

MMPs and platelet aggregation
The rupture of atheromatous plaques allows dissec-

tion of blood into the intima and subsequently the lip-
id-rich pool77. A sequence of events ensues, including 
platelet aggregation and thrombus formation, which can 
compromise arterial patency and result in acute coronary 
syndrome77. Some MMPs, like MMP-1 and MMP-2, 
have been demonstrated to be involved in platelet ag-
gregation78,79. High concentrations of MMP-2 as well 
as MMP-9 have been shown to inhibit platelet aggrega-
tion82. Platelets have also been shown to have effects on 
MMPs secretion82. Thus, MMP-9 is synthesized by hu-
man monocytes when they are coordinately adherent to 
collagen and platelets82.

MMPs and acute coronary syndromes
Kai et al measured MMP-2 and MMP-9 levels in 50 

patients (22 with acute myocardial infarction, 11 with un-
stable angina, 17 with stable angina and 17 normal vol-
unteers)83. MMP-2 levels were increased by 2-fold in the 
unstable angina and acute myocardial infarction groups 
versus the stable angina and controls and were sustained 
over the 7 day period83. 

Another study compared plasma levels of MMP-9 
and TIMP-1 in patients with angiographically identified 
lesions in the left anterior descending artery verus normal 
subjects39. Τhe study showed that during acute coronary 
syndromes plasma levels of MMP-9 and TIMP-1 were 
increased39. Another study evaluated the levels of MMP-1 
and MMP-2 in subjects with acute myocardial infarction 
compared with healthy controls and found that only plas-
ma MMP-2 levels, but not MMP-1, were increased38.

Hirohata et al examined serum concentrations of 
MMP-1 and TIMP-1 in 13 consecutive patients after their 
first myocardial infarction who underwent successful re-
perfusion37. At the end of the study a significant increase 
of MMP-1 and TIMP-1 was observed, that peaked at 14th 
day37. Recently, Blankenberg et al reported a strong and 
independent association between plasma levels of MMP-
9 and cardiovascular risk among 1,127 subjects with es-
tablished CAD31. This association was independent of 
conventional cardiovascular risk factors, but attenuated 
after adjustment for CRP, IL-6, fibrinogen, and IL-18 
levels31. 
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MMPs and post-intervention restenosis 
of atherosclerotic lesions
Post-intervention resteuosis is a common adverse 

event after endoluminal treatment of atherosclerotic le-
sions. ECM remodeling by MMPs is involved in each 
of these processes. For example, balloon injury has been 
shown to increase MMP-2 and MMP-9 in carotid pig 
arteries84. Similar findings have been found in humans. 
Hojo et al found increased MMP-2 expression and activ-
ity in the coronary circulation following angioplasty and 
a significant positive correlation between MMP-2 levels 
post-angioplasty and the degree of angiographic reste-
nosis85. Finally, studies using a MMPs inhibitor showed 
reduction of the intimal hyperplasia and collagen accu-
mulation86,87. In addition, an experimental study showed 
that the use of doxycycline inhibits MMPs activation in 
the carotid arteries after angioplasty88. 

MMPs and aortic aneurysms 
Histologic studies of aneurysmal aortas demonstrated 

specific changes in the extracellular matrix and the aortic 
wall, including decrease in elastin content and an increase 
in collagen synthesis89. Proteolysis of elastin also results 
in the release of elastin degradation product, release of 
MMP-1 and MMP-2, and smooth muscle cell prolifera-
tion90. Many studies in humans and animals reported in-
creased total MMP-2 levels and MMP-2 activity in aneu-
rysmal aortas compared with normal and atherosclerotic 
aortas91,92. The presence of MMP-9 in aortic tissue is as-
sociated with chronic inflammation93. 

Studies both in humans and in animals have shown a 
relationship between elevated aortic tissue MMP-9 lev-
els and abdominal aortic aneurysms94,95. Petersen et al 
found that levels of MMP-9 were increased in ruptured 
aneurysms compared with intact large aneurysms96. Fur-
thermore, it has been demonstrated that overexpression 
of TIMP-1 prevents both elastin depletion and aneurysm 
formation and rupture in a rat model of abdominal aortic 
aneurysms97.

MMPs and peripheral vascular disease
After occlusion of a major artery, ischemic limbs re-

vascularize via the distinct mechanisms of arteriogenesis 
and angiogenesis98. Many animal and human studies have 
shown that MMPs, especially MMP-2 and MMP-9, have 
both been associated with angiogenesis99. In an animal 
model of critical limb ischemia, after 28 days, the limb 
was revascularized, with perfusion reaching 50% to 80% 
of the nonischemic control limb99. The revascularization 
was related with the levels of MMP-2 and MMP-999. 
In the contrary, MMP-9 knockout mice exhibit delayed 
and incomplete revascularization compared to wild-type 
mice100. The existing literature data on human are limited. 
However, a recent study demonstrated a linear correla-
tion between plasma MMP-9 levels and the severity of 
ischemia in patients with varying degrees of peripheral 
arterial occlusive disease35.

Patients with diabetes mellitus and peripheral arterial 
occlusive disease have a 5-fold increase in the rate of am-
putation caused by critical limb ischemia than do patients 
without diabetes101. An experimental model of  limb isch-
emia showed diminished revascularization in diabetic 
compared to wild type aminals, a finding associated with 
increased expression of MMP-2 and markedly increased 
expression of MMP-12102.

MMPs and cardiovascular medications
Several therapies commonly prescribed for patients 

with cardiovascular diseases may influence MMPs func-
tion. Nitroglycerin increases the expression and the ac-
tivity of MMP-2, MMP-7 and MMP-9, and decreases 
TIMP-1 levels103. Similarly, heparin has been shown to 
induce MMP-1 and MMP-2 levels104. On the contrary, 
recent evidence has shown rosiglitazone decreases levels 
of MMP-9105. Calcium channel blockers like amlodipine 
and diltiazem increase the activity of MMP-1 and MMP-
2 in cultured human vascular endothelial cells as well as 
TIMP-1 levels106. Decreased MMP-1 activity has been 
shown with angiotensin II107. Therefore, angiotensin con-
verting enzyme (ACE) inhibitors may increase the activity 
of MMP-1107. Finally, losartan has been shown to increase 
MMP-2 activity in human vascular smooth cells108.

Recent observations suggest that statins may exert 
their beneficial effects on the arterial wall in part by their 
effects on MMPs and TIMPs. Statins inhibit the secretion 
of MMPs from rabbit, human smooth muscle cells and 
macrophages109,110 and increase plaque stability111. Statins 
suppress the development of experimental aneurysms in 
both normal and hypercholesterolemic mice, indepen-
dently form the lipid-lowering treatment112. Simvastatin 
reduced serological markers of inflammation and plasma 
MMP-9 activity113. In addition, pravastatin decreased lip-
ids, lipid oxidation, inflammation, MMP-2, and cell death 
and increased TIMP-1 and collagen content in human ca-
rotid plaques, confirming its plaque-stabilizing effect in 
humans114. 

Conclusion
In conclusion, MMPs and their inhibitors have a fun-

damental role in the process of atherosclerosis. MMPs 
are associated with the classical cardiovascular risk fac-
tors and are involved in the different stages of atheroscle-
rosis. Although literature data suggest a role for MMPs 
activation in cardiovascular diseases, prospective data 
are needed to evaluate whether interventions aiming at 
modification of MMPs activity can reduce atheroscle-
rosis. Finally, commonly prescribed medications affect 
plasma concentrations of MMPs and more research in 
humans in this field is warranted. 
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