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Abstract
Many biologically active proteins are intrinsically disordered. A reasonable understanding of the
disorder status of these proteins may be beneficial for better understanding of their structures and
functions. The disorder contents of disordered proteins vary dramatically, with two extremes being
fully ordered and fully disordered proteins. Often, it is necessary to perform a binary classification
and classify a whole protein as ordered or disordered. Here, an improved error estimation technique
was applied to develop the cumulative distribution function (CDF) algorithms for several established
disorder predictors. A consensus binary predictor, based on the artificial neural networks, NN-CDF,
was developed by using output of the individual CDFs. The consensus method outperforms the
individual predictors by 4~5% in the averaged accuracy.
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1. Introduction
A number of proteins lacking rigid 3D structures under physiological conditions in vitro yet
fulfilling key biological functions is rapidly increasing [1–10]. These proteins are known as
intrinsically disordered proteins (IDPs) among other names. They are highly abundant in nature
[11–13], typically involved in signaling, recognition and regulation [7,8,14–18], and are
strongly associated with human diseases [19]. IDPs typically possess highly dynamic structures
in solution with high mobility at different timescales, and therefore such proteins almost never
form crystals. Hence, the existence of these proteins represents a substantial challenge to the
structural genomics initiative [20].
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IDPs and IDRs differ from structured globular proteins and domains with regard to many
attributes, including amino acid composition, sequence complexity, hydrophobicity, charge,
flexibility, and type and rate of amino acid substitutions over evolutionary time [4,21–23].
Based on these differences between IDPs and ordered proteins, numerous disorder predictors
have been developed (reviewed in [24–26]). Nearly all of the predictive tools developed so far
provide disorder prediction on the per-residue basis; i.e., they give the likely disorder status of
each amino acid residue. Often, in the analysis of a given dataset, it is useful to carry out a
binary classification of whole proteins, indicating whether a protein is likely to fold or likely
to remain unstructured. Such a classification is not a simple task, as the extent to which a
sequence is ordered or disordered and the nature of disorder vary widely among proteins. In
fact, the structural variability of IDPs is extremely high and native coils, native pre-molten
globules, and native molten globules were described in literature [4,9,10,14,16,18,27]. The
protein can be completely unstructured or contain some elements of tertiary and/or secondary
structure. In multi-domain proteins, domains might be connected by highly flexible linkers,
and one or several domains might be completely disordered. Some proteins might have long
disordered loops or tails. Because of this great variability, there is no strict boundary between
ordered and intrinsically disordered proteins.

Two distinct binary classification methods have been reported previously [3,11,13]. One of
these approaches uses charge-hydropathy plots (CH-plots), where ordered and disordered
proteins are plotted in CH-space, and a linear boundary separates them [3]. The other method
is based on predictor of natural disordered regions (PONDR®) VLXT [21,28], which predicts
the order-disorder score for every residue in a protein. Cumulative distribution function (CDF)
distinguishes ordered and disordered proteins based on the distribution of prediction scores
[11,13]. CDF curve gives the fraction of the outputs that are less than or equal to a given value.
According to the CDF analysis, fully disordered proteins have very low percentage of residues
with low predicted disorder scores, as the majority of their residues possess high predicted
disorder scores. On the contrary, the majority of residues in ordered proteins are predicted to
have low disorder scores. Hence, theoretically, all the fully disordered proteins should stay at
the lower right corner of the CDF plot, whereas all the fully ordered proteins should be located
at the upper left corner of this plot [11,13].

Due to the significant improvement in the prediction accuracy observed for several per-residue
predictors, it was of interest to determine whether the CDF analysis based on these predictors
would give improved binary classifications. An additional question was whether new methods
can be used to optimize the CDF boundary line to achieve higher prediction accuracy. In this
paper, the CDF method was developed for two other members of the PONDR® family of
disorder predictors, VSL2 [29,30] and VL3 [31], for a simplified predictor based on the TOP-
IDP scale [32], as well as for IUPred [33,34] and FoldIndex [35]. We also proposed a new
method for optimizing the order-disorder boundary line in the CDF plots. Finally, a consensus
method was elaborated by using a neural network based on CDF values from the outputs of
the PONDR® VXLT, PONDR® VSL2, PONDR® VL3, TOP-IDP, IUPred, and FoldIndex,
and this method appears to be more accurate than any of the methods based on individual
predictors.

2. Materials and methods
2.1. Dataset construction

Four groups of datasets were used in this study. The first group included the ‘original datasets’
from Ref. [13]: (i) an ordered dataset of 105 wholly ordered proteins and (ii) a disordered
dataset of 54 fully disordered proteins. These two datasets were used to take advantage of their
high quality, and to provide an unambiguous comparison of the new methods developed in this
paper with the previously developed method [13]. The second group was new fully ordered
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and fully disordered datasets. The new set of fully ordered proteins had 554 chains that were
derived from the PDB database as of July 20, 2008 to include sequences of non-homologous
single chain non-membrane proteins, which had no ligands, no disulfide bonds, and no missing
residues, and which were characterized by unit cells with primitive space groups. The new
dataset of fully disordered protein had 84 chains that were extracted from DisProt (release 4.5
of July 17, 2008) [36] to include non-homologous proteins without structured regions. Each
of these new datasets was randomly and equally split into training and testing sets. The third
group was the datasets of sequences for Escherichia coli K12, Archaeoglobus fulgidus, and
Methanobacterium thermoautotrophicum generated from the UniProt database after removing
all the fragments. The last group was a dataset that included 64 partially disordered proteins
with less than 25% of sequence identity which were also extracted from PDB and had missing
electron density for at least 30 residues, as in Ref. [13].

2.2 Individual disorder predictors and CDF
PONDR® VLXT [21,28] is composed of three neural networks, two for the termini of the
sequence and one for internal region. The final output is an average over above three outs. The
inputs of the neural networks are residue composition-related quantities. PONDR® VL3 [31]
employs majority-voting over a bunch of neural networks which also take composition,
complexity, and entropy as the inputs. PONDR® VSL2 [29,30] is built up on support vector
machine with sequence composition, evolution information, and predicted secondary structure
as the inputs. TOP-IDP [32] is a new amino acid scale developed to discriminate ordered and
disordered residues with the highest accuracy. IUPred [33,34] applies the sequence-based pair-
wise potential energy evaluated from the globular proteins to distinguish disordered residues/
proteins from the ordered ones. FoldIndex [35] takes the relative relation of net charges and
normalized hydrophobicity scale which is originated from CH plot to partition ordered and
disordered residues.

CDF analysis summarizes the per-residue predictions by plotting predicted disorder scores
against their cumulative frequency, which allows ordered and disordered proteins to be
distinguished based on the distribution of prediction scores [11,13]. At any given point on the
CDF curve, the ordinate gives the proportion of residues with a disorder score less than or equal
to the abscissa. To develop corresponding CDF algorithms, the outputs of all the above-
mentioned predictors were unified to produce the per-residue disorder scores ranging from 0
(ordered) to 1 (disordered). In this way, CDF curves for various disorder predictors always
began at the point (0, 0) and ended at the point (1, 1) because disorder predictions were defined
only in the range [0, 1] with values less than 0.5 indicating a propensity for order and values
greater than or equal to 0.5 indicating a propensity for disorder. As a result, fully ordered
proteins yield convex curves because a high proportion of the prediction outputs are below 0.5,
while fully disordered proteins typically yield concave curves because a high proportion of the
prediction outputs are above 0.5. In practice, the range of prediction score (from 0 to 1) was
divided into 20 bins [11,13]. It is expected therefore that there should be an approximately
diagonal boundary line that could be used to separate the ordered and disordered proteins with
an acceptable accuracy.

The original datasets were divided into training sets and testing sets. The boundary line for
each CDF was optimized in the training set, and tested in the testing set. Bootstrap sampling
of 1000 times was also applied to validate the confidence region of the accuracy.

A quantity termed CDF distance was also applied to assess whether the protein is ordered or
disordered. The CDF distance is defined as:
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(1)

where dCDF is the averaged CDF distance of the protein from the CDF boundary line. Ks and
Ke are the starting and ending bins of the CDF boundary line. CDFi is the CDF value of i-th
bin, while CDF0

i is the value of CDF boundary at that bin.

2.3. Consensus prediction based on neural networks
By combining the CDFs based on PONDR® VLXT, PONDR® VSL2, PONDR® VL3, TopIDP,
IUPred, and FoldIndex, a neural network-based consensus method of predicting the order/
disorder status was developed. The neural network was fully connected with twenty inputs
(three from the PONDR® VLXT-based CDF, four from the PONDR® VSL2-based CDF, three
from the PONDR® VL3-based CDF, three from TopIDP-based CDF, four from IUPred-based
CDF, and three from FoldIndex-based CDF), one hidden layer with ten hidden units, and one
output. A sigmoidal curve was used as the activation function at each node. Inputs from the
CDF of each predictor were selected from the bins having the highest separating accuracies.
The above mentioned fully disordered and fully ordered datasets were randomly separated into
eight groups with each group having one eighth of both the original training and testing sets.
At each time, seven groups were used for training, while one group was taken for testing. The
training sets were further randomly split into two parts. One, with 90% of the original dataset,
was used for the training. Another 10% was used for protection against over-fitting. Weight
parameters in the neural networks were chosen by maximizing the accuracy in these 10% of
samples. The accuracy was evaluated by using testing datasets. This process was repeated for
eight times to implement the eight-fold cross-validation. The final accuracy was the average
over eight times on the testing sets.

3. Results and discussion
3.1. Finding the CDF-based boundary line between the ordered and disordered proteins

Originally, a statistical method, where the accuracy of separation is calculated by the
summation over both ordered and disordered proteins, was applied to locate the CDF boundary
line [11]. Here we describe an alternative approach. First, the average CDF values of ordered
and disordered proteins were calculated separately for 20 bins along the X-axis. Next, for each
bin, the vertical distance between the averaged ordered and disordered CDF values was divided
into 30 parts irrespectively of the distances between the two values. Then, the position of the
boundary point was varied and the prediction accuracies of both the ordered and disordered
proteins were determined for each choice of boundary point. The accuracies of ordered and
disordered proteins for all the boundary choices for all the bins gave an accuracy distribution
matrix. Based on this matrix, the location and length of the boundary line was found.

To identify a boundary line made up of one continuous segment for which the low accuracy
ends are removed and the high accuracy central region is kept, the following criteria were used:

1. At each selected boundary point, the accuracy of both ordered and disordered proteins
should be above 80% or the highest and should be as close to being equal to each
other as possible;

2. The selected boundary points should be consecutive over the CDF bins, the number
of points should be odd, and all the boundary points should have the highest accuracy
according to the first criterion.
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3.2. Evaluation of the CDF boundary accuracy
Table 1 shows that the new PONDR® VLXT-based boundary achieved averaged accuracies
of 88% and 89% for ordered and disordered datasets, respectively. The new boundary
outperforms the previous boundary [13] by 2% for disordered proteins but was 2% less accurate
for ordered proteins. However, the difference in accuracy between ordered and disordered
datasets was only 1% for the new method, compared to 3% for the previous method. This
decreased discrepancy means an improved balance between ordered and disordered protein
predictions, which is useful for reducing the overall false positive rate. Although this statement
is less prominent after the errors are taken into account, the new results are still comparable to
the previous ones. The PONDR® VLS2-based boundary reached the similar accuracy as the
PONDR® VLXT-based boundary, whereas VL3-based boundary surpasses PONDR® VLXT-
based boundary by 2% on the ordered dataset. IUPred-based boundary had the highest accuracy
of 91% in disordered dataset which is about 6% higher than that in ordered dataset. The TOP-
IDP-based CDF boundary was the least accurate one. FoldIndex-based boundary showed
slightly better results than that for TOP-IDP (see Table 1). However, in partially disordered
dataset, all the accuracies decreased significantly. For this dataset, PONDR® VSL2-based CDF
had the best accuracy of 84% followed by PONDR® VL3 CDF of 81%. FoldIndex was ranked
the third at 80%. All other CDFs accuracies were around 70% or below (Table 1).

The reasons of why some boundaries achieved the higher accuracy are explored in Figure 1,
which represents all the averaged CDF curves from each dataset and corresponding boundaries.
Figure 1A shows that for the disordered proteins, the shapes of PONDR® VSL2-CDF and
PONDR® VL3-CDF curves are almost identical. The averaged PONDR® VLXT-CDF curve
for the disordered proteins starts with noticeably higher values. This implies that the percentage
of residues predicted to be ordered by PONDR® VLXT is relatively high, suggesting that this
predictor has a tendency to over-predict order. IUPred-CDF is lower than PONDR® VLXT-
CDF at small prediction scores but higher than PONDR® VLXT-CDF at scores larger than
0.4. That is to say IUPred predicted many fully disordered residues to have scores of 0.4 or so.
For the ordered dataset, PONDR® VSL2 CDF is always at the lowest location. When the
prediction score is higher than 0.25, IUPred CDF ranks the highest followed by the
PONDR® VL3 CDF. This is expected results because IUPred was created using data obtained
from globular proteins. However, when the prediction score is less than 0.25, PONDR® VLXT
CDF is ranked the highest, whereas IUPred CDF and PONDR® VL3 CDF are similar to each
other. Figure 1B represents the averaged CDF curves and the boundaries for TOP-IDP and
FoldIndex for fully ordered and fully disordered datasets. It is clear that CDF curves for these
two predictors possess very unusual sigmoidal shapes. Therefore, these two predictors intended
to assign intermediate score to all the residues and had the poor separation over ordered and
disordered proteins. This indicates that both TOP-IDP and FoldIndex are not very suitable for
the binary classification individually.

Figure 1C represents the distribution of the distances between the ordered and disordered CDF
curves for six predictors. It is seen that the PONDR® VLXT data are skewed toward the low
disorder scores, the PONDR® VSL2 data are somehow skewed toward the high disorder scores,
the TOP-IDP and FoldIndex data are distributed in a very narrow interval, IUPred also shifts
to the low score region, whereas the PONDR® VL3 data are the most evenly distributed through
the entire interval of disorder scores. This clearly shows that the PONDR® VL3 could produce
one of the best separations. In agreement with this conclusion, the average CDF differences
between the ordered and disordered datasets were 0.33, 0.47, 0.54, 0.06, 0.49, and 0.24 in the
boundary bins for PONDR® VLXT, PONDR® VSL2, PONDR® VL3, TOP-IDP, IUPred, and
FoldIndex, respectively. By taking into consideration all these observations, it is obvious that
PONDR® VL3 has the most accurate boundary for the separation of the ordered and disordered
dataset.
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The data shown in Figure 1 were used to generate CDF boundary points, which were then fit
by the following linear equations:

(2)

(3)

(4)

(5)

(6)

(7)

were CDFVLXT, CDFVSL2, and CDFVL3, CDFTOP-IDP, CDFIUPred, and CDFFoldIndex
correspond to the CDF boundary values based on the PONDR® VLXT, PONDR® VSL2,
PONDR® VL3, TOP-IDP, IUPred, and FoldIndex predictors, respectively, whereas DO
corresponds to the disorder score. Compared to the PONDR® VLXT-based CDF boundary,
PONDR® VL3-based boundary is parallel to PONDR® VLXT boundary but is also shifted to
the lower disorder scores, all other boundaries are steeper and are shifted to the lower disorder
scores. The values of disordered score at the low-end of each boundary line are 0.6, 0.4, 0.4,
0.5, 0.3, and 0.25 for the PONDR® VLXT-, PONDR® VSL2-, PONDR® VL3-, TOP-IDP-,
IUPred-, and FoldIndex-CDFs, respectively.

Figure 2A represents the PONDR® VLXT-, PONDR® VSL2-, PONDR® VL3-, TOP-IDP-,
IUPred-, and FoldIndex-based CDF curves for partially disordered proteins. It is important to
emphasize that all the partially disordered proteins in this study were collected from PDB. As
a result, all of them have significant amount of ordered residues, suggesting that the current
set of partially disordered proteins is highly biased toward order. Based on these observations,
one can expect that the majority of partially disordered proteins in the current dataset will be
predicted by CDF analyses as ordered. In agreement with this hypothesis, all CDF curves in
Figure 2A are rather similar to CDF curves calculated for the fully ordered proteins (cf. Figure
1).

Next, to understand whether there is a difference in the prediction tendencies for partially
disordered proteins with long disordered regions and for proteins with several short disordered
regions, an original partially disordered dataset (PDD) was divided in two groups, one with
proteins having disordered regions longer than 50aa (PDD-L), and another one with proteins
having shorter disordered regions (PDD-S). Results of the analysis of these subsets by various
CDFs are represented in Figure 2B and Table 3, which clearly show that proteins in the PDD-
S set are predicted to be more ordered than proteins in the PDD-L set. This conclusion follows
from the fact that partially disordered proteins with long disordered regions are generally
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located closer to the boundary than proteins with several short disordered regions (see Table
3).

At the final stage, the outputs from the PONDR® VLXT, PONDR® VSL2, PONDR® VL3,
TOPIDP, IUPred, and FoldIndex CDFs were used to build a neural network-based consensus
method, NN-CDF, for the binary disorder classifications. The data were divided into 8 subsets
to implement 8-fold cross validation. Table 2 illustrates that compared to the individual
PONDR® VLS2, PONDR® VL3, and IUPred CDF predictions, this new consensus predictor
showed ~4% increment in the averaged prediction accuracy over both fully ordered and fully
disordered datasets. The accuracy on ordered dataset is 2% higher than PONDR® VL3 CDF
predictor which is the second best in all the methods. For disordered dataset, this method has
the same similar accuracy with IUPred CDF which is around 90%. The larger error observed
in the consensus NN may be a result of insufficient samples in the testing subsets. And for
partially disordered proteins, the accuracy of consensus NN is around 10% higher the second
best PONDR® VSL2 CDF.

3.3. Application of CDF predictors for the disorder evaluation in entire genomes
Table 4 represents the percentages of fully disordered proteins in three genomes, Escherichia
coli K12, Archaeoglobus fulgidus, and Methanobacterium thermoautotrophicum, as evaluated
by CDF predictors based on PONDR® VLXT, PONDR® VSL2, PONDR® VL3, TOP-IDP,
IUPred, FoldIndex, and NN. PONDR® VLXT-based CDF predicts 2 to3 times more disordered
sequences in all three species than PONDR® VSL2-, PONDR® VL3-, TOPIDP-, IUPred-, and
FoldIndex-based CDF methods. Even in the case when whole CDF curve is completely below
the boundary line (data in brackets of Table 4), the PONDR® VLXT CDF still has much more
disordered sequences, especially for Archaeoglobus fulgidus and Methanobacterium
thermoautotrophicum. The results for PONDR® VSL2, PONDR® VL3, TOP-IDP, and
FoldIndex are more or less similar to each other, although TOP-IDP has slightly lower
percentage of disordered proteins for Escherichia coli and higher values for Archaeoglobus
fulgidus, IUPred has higher percentage of disordered proteins on Escherichia coli and
extremely low disordered ration on Archaeoglobus fulgidus. By applying the consensus
method, the percentage of disordered protein is further decreased to 4~9%.

4. Concluding remarks
We developed a new error-estimation method for the identification of boundary line in CDF
graphs containing CDF curves for both ordered and disordered proteins. This method does not
need the pre-assumption on the normal distribution of CDF values around the average in the
corresponding datasets. By using this new method, we generated CDF-based prediction tools
for PONDR® VLXT, PONDR® VSL2, PONDR® VL3, TOP-IDP, IUPred, and FoldIndex
predictors. All of them achieved reasonable prediction accuracy. We also developed the neural
network-based consensus method that used the output of all mentioned above CDF outputs.
This consensus method was 4~5% more accurate than any of the individual predictors. We
further implemented a series of experiments by removing one or two less-accurate CDF
predictors from the input of the consensus method. To our surprise, even the less-accurate
predictors were useful for the improvement of the final prediction accuracy. The influence of
various components for the performance of the final tool will be further analyzed in future. It
is also worthwhile to notice that although the consensus method achieved high accuracy on
partially disordered dataset, the identification and classification of partially disordered proteins
are not a trivial task. By definition, the partially disordered proteins should have an “evenly
increased” curve or “flat central region” on the CDF plots. The peculiarities of the CDF
predictions for partially disordered proteins need to be more carefully studied.
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The numbers of predicted wholly disordered proteins in Escherichia coli K12, Archaeoglobus
fulgidus, and Methanobacterium thermoautotrophicum by PONDR® VLXT-based CDF were
higher than previously reported [13]. Furthermore, the PONDR® VLXT-CDF predictor
identified significantly larger number of disordered sequences in all the three species,
compared to other CDF predictors. This is because the new PONDR® VLXT boundary line
was located higher than the PONDR® VLXT-based CDF boundary line calculated in the
previous study [13]. This shift was determined by the need of balancing the false positives in
both wholly ordered and fully disordered sets. Since the same method was used in other CDF
predictions, it could be expected that other boundary lines are also shifted to higher positions.
The final consensus prediction reveale that the percentages of disordered proteins in
Escherichia coli K12, Archaeoglobus fulgidus, and Methanobacterium
thermoautotrophicum are 4.2%, 7.5%, and 8.4%, respectively. These results are very similar
to previous reported ratios of 4.6%, 6.3%, and 8.0% [13]. The discrepancy among individual
predictors indicates that there is still an urgent need for the new prediction protocols and the
precise estimation of the disordered content on whole genome.
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Figure 1.
(a) Average CDF values of fully ordered (upside curves) and fully disordered (downside
curves) datasets, for PONDR® VLXT (open squares), PONDR® VSL2 (open triangles),
PONDR® VL3 (open stars), and IUPred (open circles). The filled symbols and bold lines are
the optimized boundary lines for PONDR® VLXT CDF (filled squares), PONDR® VSL2 CDF
(filled triangles), VL3 CDF (filled stars), and IUPred (black circles). (b) TOP-IDP-based (open
circles) and FoldIndex-based CDF (open squares) analysis of fully ordered (upside curves) and
disordered proteins (downside curves). The filled circles and filled squares correspond to the
optimized boundary line for TOPIDP and FoldIndex, accordingly. (c) Distribution of
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differences of averaged CDF scores for various predictors over the disorder score. Differences
are calculated between the average CDF values of fully ordered and fully disordered datasets.
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Figure 2.
(a) Distribution of averaged CDF values for a set of partially disordered proteins (partially
disordered dataset, PDD) calculated by six CDF predictors, PONDR® VLXT (solid line),
PONDR® VSL2 (long dash line), PONDR® VL3 (short dash line), TOP-IDP (dash-dot-dot
line), IUPred (dot line), and FoldIndex (dash-dot line). (b) Averaged CDF curves calculated
for PDD-L (thin lines) and PDD-S (bold lines) by CDF predictors based on PONDR® VLXT
(solid line), PONDR® VSL2 (long dash line), PONDR® VL3 (short dash line), TOP-IDP (dash-
dot-dot line), IUPred (dot line), and FoldIndex (dash-dot line).
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