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Introduction
There is growing appreciation for functional interrelationships between nuclear structure and
gene expression. Equally important, it is well documented that modifications in nuclear
architecture are a hallmark of tumor cells, and there is growing evidence for a functionally
compartmentalized assembly and organization of regulatory machinery for combinatorial
control of gene expression in nuclear microenvironments (Figure 1). Further understanding of
mechanisms modulating the regulation and regulatory parameters of nuclear architecture can
provide necessary insight into: 1) proliferation and tissue-specific gene expression, and 2)
aberrant gene expression that is linked to the onset and progression of cancer. Such
understanding can serve as a platform for novel approaches to cancer diagnosis and therapy.
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We are characterizing cell and tissue microenvironments that contribute to transformation and
tumor progression. Our approach is to functionally define intranuclear microenvironments that
require structural and functional fidelity for biological control and exhibit striking aberrations
with the onset and progression of tumorigenesis.

Focused on obligatory relationships of nuclear structure with gene expression we are
experimentally addressing components of nuclear organization that are causally linked to
modified transcriptional control in transformed and tumor cells. In this chapter we will provide
an overview of our strategies to explore the working hypothesis that parameters of nuclear
structure support cell growth and phenotypic properties of normal and tumor cells by
facilitating the organization of chromosomes, chromatin, genes, transcripts and regulatory
complexes within the dynamic three-dimensional context of nuclear architecture.

Nuclear architecture and subnuclear organization of regulatory functions
The nucleus is highly compartmentalized and contains a multiplicity of specialized functional
domains involved in gene expression, DNA replication and DNA repair (reviewed in (Zaidi
et al., 2004)) (Figure 1). A specific repertoire of proteins and nucleic acids is associated with
each domain (e.g., nucleoli/rDNA, splicing speckles/RNA, cajal bodies/U7snRNP/histone
genes, Barr body/X chromosome). The nuclear matrix (Berezney and Coffey, 1975) is a
principal component of nuclear architecture that has been functionally associated with DNA
replication (Vaughn et al., 1990, Jackson and Cook, 1986); gene localization (Robinson et al.,
1982); imposition of physical constraints of chromatin structure which support formation of
loop domains (Nelkin et al., 1980, Ciejek et al., 1983, Mirkovitch et al., 1984, Cockerill and
Garrard, 1986); concentration and targeting of transcription factors (Merriman et al., 1995,
van Wijnen et al., 1993, Bidwell et al., 1993, Dworetzky et al., 1992, Dickinson et al., 1992);
RNA processing and transport of gene transcripts (van Eekelen and van Venrooij, 1981, Xing
et al., 1993, Jackson et al., 1981, Herman et al., 1978, Blencowe et al., 1994, Mortillaro et
al., 1996, Grande et al., 1996); post-translational modifications of chromosomal proteins
(Hendzel et al., 1994); as well as imprinting and modifications of chromatin organization
(Brown et al., 1992) and chromatin remodeling (Reyes et al., 1997). Our studies have been
focused on the nuclear matrix as a specialized component of nuclear architecture that facilitates
localization of genes and cognate gene regulatory factors at specific subnuclear sites (Zaidi et
al., 2004).

The classical view of the nuclear matrix, which is based on seminal ultra-structural studies
using electron microscopy (Berezney and Coffey, 1975, Nickerson et al., 1989), indicates that
the nuclear matrix is a heterogeneous internal fibrogranular network surrounded by the nuclear
lamina-pore complex. The dynamic properties of the nuclear matrix are illustrated by the rapid
disassembly and assembly of the nucleus during mitosis. Furthermore, data from our group
and others that were obtained by in situ immunofluorescence microscopy and biochemical
approaches have shown that the nuclear matrix during interphase is a dynamic structure that
reversibly associates with gene regulatory factors under different physiological circumstances
(reviewed in (Zaidi et al., 2004; Stein et al., 2003; Zaidi et al., 2005; Lian et al., 2004)). While
it is recognized that the nuclear matrix is an organized composite of nuclear regulatory
machineries with modifications in composition and organization that reflect cell function, the
extent to which the nuclear matrix is architecturally or activity driven is unresolved.

Molecular and structural determinants of subnuclear targeting of Runx(AML) transcription
factors

The overall protein composition of the nuclear matrix is tissue-specific, modified during
neoplastic transformation, and developmentally regulated (Stein et al., 1995). Furthermore,
specific proteins are differentially associated with the nuclear matrix in distinct cell types (van
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Wijnen et al., 1993) and during differentiation (Lindenmuth et al. 1997; Choi et al., 1998). We
have demonstrated that the Runx(AML) class of transcription factors, which are key regulators
of cell growth and differentiation during myeloid lineage maturation and mesenchymal tissue
development, is associated with the nuclear matrix. We have defined the molecular basis for
Runx(AML)/nuclear matrix interactions by identifying a specific (C terminal) subnuclear
targeting signal (nuclear matrix targeting signal, NMTS). We showed that the NMTS is a
unique and autonomous 30–35 amino acid protein motif that is conserved in Runx(AML)
proteins and is both necessary and sufficient for localizing Runx(AML) proteins to nuclear
matrix associated subnuclear foci. We determined the crystal structure of the NMTS, which is
composed of two loops connected by a flexible linker (Tang et al., 1999). This structural model
was used as the foundation for mutagenesis studies that targeted a putative protein/protein
interface composed of basic and aromatic residues in the two loops to define subnuclear
trafficking specificity at single amino acid resolution (Zaidi et al., 2006). We observed that a
highly conserved Y motif in the C-terminal loop is critical for subnuclear targeting of Runx
(AML) and transcriptional control (Li et al., 2005; Zaidi et al., 2006, 2001).

Runx1(AML1) related subnuclear targeting defects in Acute Myelogenous Leukemia
The NMTS is located in the C-terminus of Runx1(AML1) and this segment is deleted in the t
(8;21) related Runx1(AML1)/ETO fusion protein which results from one of the most prevalent
chromosomal aberrations in human acute myelogenous leukemia. Indeed, we have
demonstrated that Runx1(AML1)/ETO is misrouted to intranuclear locations that are distinct
from normal Runx(AML) foci (McNeil et al., 1999) through two ETO-specific targeting
signals we discovered (Barseguian et al., 2002). Expression of Runx1(AML1)/ETO also alters
the subnuclear organization of PML domains (McNeil et al., 2000), and changes in subnuclear
organization appear to be reversible in leukemia patients that are in remission (Gordon et al.,
2000). The expression of the Runx1(AML1)/ETO fusion protein may cause a pathological
phenotype because (i) the C-terminus of Runx1(AML1) is removed (loss-of-function), (ii) the
DNA binding domain of Runx1(AML1) is fused to the unrelated ETO protein (gain-of-
function), or (iii) the normal function of Runx(AML) foci is perturbed due to the subnuclear
targeting defect (dominant negative effect). We have recently shown that expression of mutant
Runx(AML) proteins with a subnuclear targeting defect (Runx(AML) std point-mutants)
causes a profound alteration of cellular phenotypes in both myeloid progenitor cells and
metastatic breast cancer cells (Javed et al., 2005, Vradii et al., 2005). Significantly, the co-
expression of a Runx1(AML1) std mutant during myeloid differentiation in the presence of
the endogenous Runx1(AML1) protein results in a maturation arrest (Vradii et al., 2005). These
data demonstrate that subnuclear targeting defects of Runx1(AML1) may have dominant
negative effects that contribute to the pathology of acute myelogenous leukemias.

Dynamics and mechanisms of subnuclear targeting of Runx(AML) proteins in live cells
Based on the major functional defects that arise from compromised subnuclear targeting of
Runx(AML) proteins we have observed in two distinct biological models (Javed et al., 2005,
Vradii et al., 2005), it is now necessary to define the mechanism by which abrogation of
subnuclear targeting causes gene regulatory defects and pathological phenotypes. Our working
model is that Runx(AML) factors are architectural proteins that provide DNA-bound scaffolds
for the nucleation of multiple co-regulatory proteins into macromolecular complexes. Runx
(AML) proteins are known to be associated with many co-regulators, some of which have been
shown to be nuclear matrix proteins themselves (Durst and Hiebert, 2004; Westendorf,
2006). Interestingly, we have shown that Runx(AML) proteins are required for chromatin
remodeling of tissue-restricted genes (Javed et al., 1999). Data from our group and others
indicate that many Runx(AML) co-factors are components of large macromolecular complexes
capable of modifying chromatin structure (e.g., histone/lysine deacetylases [HDACs] and
acetyl transferases [HATs], as well as SWI/SNF components) (reviewed in (Durst and Hiebert,
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2004; Zaidi et al., 2005), and unpublished data). We have observed that Runx(AML)
recognition motifs are frequently clustered in target promoters, and that Runx(AML)
responsive genes are clustered in specific genomic regions. We postulate that the super-
clustering of multiple Runx(AML) proteins with macro-molecular co-factor complexes at
many loci results in the formation of the subnuclear target sites we refer to as Runx(AML)
foci.

Our live cell studies with Runx(AML)/GFP fusion proteins have shown that Runx(AML) foci
remain in a relatively steady location (> 30 minutes based on time-lapse fluorescence
microscopy). Thus, Runx(AML) foci are positionally stable (Harrington et al., 2002).
However, photo-bleaching results clearly establish that Runx(AML) foci are dynamic entities
and that Runx(AML) proteins are rapidly discharged and recruited (half-time of recovery ~5
to 10 sec). Runx(AML) proteins that are defective for subnuclear targeting, yet competent for
DNA binding, exhibit a much faster exchange rate that is comparable to that of GFP (half-time
of recovery <500 milliseconds) (Harrington et al., 2002).

The alteration in exchange rates of Runx(AML) mutant proteins in live cells is reflected by
differences in the detection of wild type and std mutant Runx(AML) in subcellular fractions
by Western blot analysis. The biochemical phenotype of all std mutants is decreased detection
(or absence) in the nuclear matrix fraction and increased detection in non-matrix fractions.
Most Runx(AML) std mutants exhibit a punctate subnuclear distribution in whole cells but are
typically not detected in the nuclear matrix as examined by immunofluorescence microscopy.
Therefore, we postulate that Runx(AML) std mutants form meta-stable complexes and that the
recruitment of these mutant complexes at subnuclear foci containing wild type Runx1(AML1)
alters the micro-environment and abrogates fidelity of gene regulation.

Mitotic control by Runx(AML) proteins and association with microtubules
We recently demonstrated that Runx(AML) proteins are associated with metaphase
chromosomes at multiple distinct foci (Zaidi et al., 2003). This key finding is a paradigm
shifting observation that indicates a regulatory function for sequence-specific transcription
factors at genomic loci in otherwise massively condensed metaphase chromosomes. Our data
provide compelling support for the hypothesis, which has been discussed by Workman and
colleagues (John and Workman, 1998), that specific genomic regions may maintain a locally
active chromatin conformation during mitosis through proteins that support the bookmarking
of genes (Young et al., 2005a, 2005b) and mediate their post-mitotic transcriptional regulation.
We have observed that Runx(AML) proteins interact with microtubules.

Runx(AML)/microtubule interactions may regulate the cytoplasmic/nuclear equilibrium of
Runx(AML) proteins, and nuclear compartmentalization is a prerequisite for subnuclear
targeting during interphase. The association with microtubules may also facilitate the
interaction of Runx(AML) proteins with the mitotic apparatus during metaphase. Our
quantitative microscopic analysis has revealed that Runx(AML) proteins partition equivalently
into progeny cells during cell division (Zaidi et al., 2003). Therefore, we postulate that the
association of Runx(AML) proteins with metaphase chromosomes and the mitotic apparatus
may secure the appropriate mitotic distribution of this regulatory protein. We are further
assessing the biological significance of the association of Runx(AML) proteins with
microtubule-related cytoarchitecture.

Active retention of phenotype during cell division: Runx(AML) transcription factors remain
associated with gene promoters within the condensed mitotic chromosomes

During cell division there is a cessation of transcription that is coupled with chromosome
condensation. Resumption of gene expression post-mitotically requires restoration of nuclear
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organization and assembly of regulatory complexes. We have found that transcription factor
stability during mitosis and biochemical association with chromatin in mitotic cells suggest
that association of regulatory factors with metaphase chromosomes may be a biologically
relevant component of gene regulatory functions following mitosis (Young et al., 2005a). We
propose that transcription factors that include the Runx(AML) proteins have an active role in
retaining phenotype during cell division to support lineage-specific gene expression in progeny
cells. Such factor-dependent mitotic control provides an epigenetic mechanism for the retention
of gene expression patterns and lineage commitment during cell division.

From a fundamental regulatory perspective, the contributions of nuclear organization in control
of replication and transcription are evident despite the gaps in our understanding of the rules
that govern gene expression. Equally important, insight into regulatory parameters of
organization and assembly of machinery for transcription, replication and repair in nuclear
microenvironments provide a new dimension to cancer diagnosis and targeted therapy.

Functional implications of nuclear organization for biological control and
cancer

Biochemical, in situ microscopic, and in vivo genetic evidence demonstrate the requirement
for intranuclear placement of regulatory complexes, which is directly linked with cellular
response to physiological cues and is essential for combinatorial control of gene expression.
Subnuclear targeting of transcription factors and regulatory proteins provides a mechanistic
link between the temporal-spatial regulation of gene expression and architectural organization
of regulatory complexes within the nucleus. It also establishes the requirement for delivery of
regulatory proteins to the right place at the right time.

Summary
The nucleus is highly compartmentalized and contains a multiplicity of specialized functional
microenvironments involved in gene expression, DNA replication and DNA repair. We have
demonstrated that the Runx(AML) class of transcription factors, which are key regulators of
cell growth and differentiation during myeloid lineage maturation and mesenchymal tissue
development, is associated with the nuclear matrix by a specific C terminal subnuclear targeting
signal (Nuclear Matrix Targeting Signal, NMTS). We have shown that expression of mutant
Runx(AML) proteins with a subnuclear targeting defect causes a profound alteration of cellular
phenotypes in both myeloid progenitor cells and metastatic breast cancer cells. We have
established that Runx(AML) proteins are associated with metaphase chromosomes at multiple
distinct foci indicating a regulatory function for sequence-specific transcription factors at
genomic loci and a mechanism for mitotic distribution of regulatory factors. We propose that
transcription factors that include the Runx(AML) proteins have an active role in epigenetically
retaining phenotype during cell division to support lineage-specific gene expression and cell
fate determination in progeny cells. The contributions of nuclear organization in control of
replication and transcription are evident despite gaps in our understanding of the rules that
govern gene expression. Insight into regulatory parameters of organization and assembly of
machinery for transcription, replication and repair in nuclear microenvironments provide a new
dimension to cancer diagnosis and targeted therapy.
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Fig. 1. Levels of nuclear organization
The linear placement of DNA-regulatory elements in gene promoters constitutes the primary
level of nuclear organization. The distance between these regulatory sites is intricately
regulated by the packaging of DNA into nucleosomes and higher order chromatin structures
(left, upper panel). Scaffolding nuclear proteins, such as RUNX, provide structural platforms
for the assembly of multiprotein supercomplexes to facilitate the combinatorial control of gene
expression (left, bottom panel). Genes and macromolecular regulatory complexes together give
rise to dynamic nuclear microenvironments in the nucleus. RUNX bodies are nuclear
microenvironments that contain various co-regulatory proteins that are involved in gene
activation, as well as repression, chromatin remodeling and cellular signaling
(immunofluorescence images on the right, shaded yellow). RUNX was visualized using the
Alexa 488 secondary antibody in all images and the proteins were detected using Alexa 568
fluorochrome-conjugated secondary antibodies, as indicated.
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