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Abstract
Accurate neuropsychological assessment of older individuals from heterogeneous backgrounds is a
major challenge. Education, ethnicity, language, and age are associated with scale level differences
in test scores, but item level bias might contribute to these differences. We evaluated several strategies
for dealing with item and scale level demographic influences on a measure of executive abilities
defined by working memory and fluency tasks. We determined the impact of differential item
functioning (DIF). We compared composite scoring strategies on the basis of their relationships with
volumetric MRI measures of brain structure. Participants were 791 Hispanic, White, and African
American older adults. DIF had a salient impact on test scores for 9% of the sample. MRI data were
available on a subset of 153 participants. Validity in comparison with structural MRI was higher
after scale level adjustment for education, ethnicity/language, and gender, but item level adjustment
did not have a major impact on validity. Age adjustment at the scale level had a negative impact on
relationships with MRI, most likely because age adjustment removes variance related to age-
associated diseases.
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INTRODUCTION
Accurate assessment of cognitive ability in individuals from heterogeneous backgrounds is
one of the most difficult tasks in neuropsychology. Ethnic diversity is associated with
differences in education, language, health and other factors that may influence test
performance. Demographic effects can occur at two distinct levels. Demographic variables can
directly effect the cognitive ability measured by the test, and they can be a source of
measurement bias. In psychometric theory, observed test scores represent the examinee’s
ability and measurement error. Bias occurs when ability is systematically under- or over-
estimated in one group in comparison with another. When this occurs, measurement error will
be systematically different across groups and accuracy of assessment will be compromised.

Tools to account for demographic heterogeneity have been developed using item response
theory (IRT). IRT was introduced broadly to psychometrics in 1968 (Lord & Novick, 1968).
IRT has revolutionized educational psychology (Hambleton et al., 1991), and has made inroads
in other areas (Embretson & Reise, 2000). In IRT, measurement bias is addressed in studies
of differential item functioning (DIF). DIF occurs in a test item when individuals from two
groups with the same ability have different probabilities of success on that item (Camilli &
Shepard, 1994). DIF has received limited attention in neuropsychological assessment, and has
been studied primarily in screening tests of global cognition (Crane et al., 2006a; Crane et al.,
2006b; Crane et al., 2004; Jones & Gallo, 2001; Jones & Gallo, 2002; Kucukdeveci et al.,
2005; Marshall et al., 1997; Teresi et al., 1995; Teresi et al., 2000).

Figure 1 illustrates a number of issues involving demographic effects on test scores and
measurement bias. The unobserved cognitive ability is shown in the oval at the top. The
observed Composite Score is in the rectangle in the lower half, and observed test item responses
1 through (n+m) are depicted in boxes in the middle. The Composite Score estimates Ability
and is created by summing the item responses in some way. Demographic variables can have
direct effects on Ability, depicted by the solid arrow, which in turn influences item responses
and consequently the Composite Score. When Demographic effects on item responses are
entirely due to effects on Ability, an unadjusted Composite Score based on these items provides
an unbiased estimate of Ability. However, when Demographic variables have influences on
some item response independent of Ability (dotted arrows to items in+1 through in+m), these
items have DIF and introduce bias to the estimate of Ability. In Figure 1, an unadjusted
Composite Score derived from items i1 through in would provide an unbiased estimate of
Ability, since any effects of Demographics are entirely mediated by their impact on Ability.
Adding items in+1 through in+m without adjustment introduces bias, since the effects of
Demographics are mediated in part independent of Ability. The impact of that bias is complexly
determined. A primary goal of this study was to identify measurement bias in items assessing
executive function, and to empirically evaluate its impact on practical assessment questions.

IRT approaches that account for DIF remove the demographic influence on items that is
independent of ability, or equivalently, that is irrelevant to measuring ability. Only items with
DIF (items in+1 through in+m in Figure 1) are affected by this adjustment, and demographic
effects mediated by ability are not removed. In Figure 1, in this strategy, items i1 through in
would have no adjustment, while items in+1 through in+m would be adjusted for DIF related to
Demographics, depicted by the rightmost two dashed lines leading from Demographics to the
arrows from items in+1 through in+m to the Composite Score. This strategy will not eliminate
measurement error, but will result in measurement error being unrelated to demographics.

Strategies to account for demographic diversity at the item level also have emerged from
classical psychometric theory. These strategies include item-level adjustments of scores or,
equivalently, adjusting item norms for demographic characteristics. Returning to Figure 1, such
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strategies adjust all items contributing to a composite score, whether or not those items have
DIF. This is depicted by the dashed arrows emanating from the Demographics box and ending
on all of the lines from Items to the Composite Score, whether or not those items had DIF.
Adjusting in this manner removes demographic variance in individual items that is due to DIF,
but in contrast to IRT based DIF adjustment, also removes direct demographic effects mediated
by ability. Thus there may still be a systematic relationship between measurement error and
demographics. This is an important theoretical and practical distinction between classical and
modern psychometric approaches to accounting for demographic heterogeneity.

Ability in the psychometric sense is the net result of all factors that influence capacity to respond
successfully to test items. Differences in ability result from multiple influences. In
neuropsychology, we are primarily interested in the effects of brain injuries and diseases on
ability. Demographic influences independent of brain variables might lead to erroneous
conclusions about the presence and severity of brain injury. For example, a low test score in a
highly educated person might be a strong indicator of a dementing illness like Alzheimer’s
disease, but the same score might be expected in a person with a normal brain who has very
limited education. This issue has fueled debate about whether test scores should be adjusted
for demographic variables at the scale level. Fundamentally, this is an issue of establishing an
estimate of expected performance in the absence of brain injury. The obtained test score can
then be compared to this estimate to make an inference about whether disease or brain injury
has resulted in cognitive impairment.

Several studies have shown that using unadjusted norms results in false-positive errors among
functionally and cognitively normal ethnic minorities and people with few years of education
(Fillenbaum et al., 1990; Gasquoine, 1999; Manly et al., 1998; Ramirez et al., 2001; Stern et
al., 1992). Demographic adjustment of test scores or group specific norms help to reduce false-
positive results in minority and low education groups, and generally make diagnostic sensitivity
and specificity more homogenous across diverse groups (Mungas et al., 1996). The advisability
of scale level demographic adjustment is not universally accepted (Belle et al., 1996; Brandt,
2007; Kraemer et al., 1998; Reitan & Wolfson, 2004, 2005; Sliwinski et al., 1997). The most
compelling argument against it is decreased validity for detecting effects of brain disease and
injury (Kraemer et al., 1998). This would be the case if a demographic variable is related to
brain variables and exerts effects on ability primarily as a result of this relationship.

Returning to Figure 1, MRI measures of brain structure are used as indicators of brain integrity.
In this model, MRI has direct effects on Ability. Demographics can have an indirect impact
on Ability as a result of effects mediated by MRI (arrows from Demographics to MRI to
Ability), but can also effect Ability through pathways unrelated to MRI (direct arrows from
Demographics to Ability). Adjustment to eliminate demographic effects independent of MRI
might improve validity for detecting brain injury, but removing Demographics effects that are
mediated by MRI could decrease validity in this context.

We examined item and scale level effects of demographic heterogeneity on a composite
measure of executive function in this study. Executive function refers to cognitive operations
that involve control and coordination of other cognitive activities (Stuss & Levine, 2002), and
is generally thought to reflect frontal lobe and frontal system function. The composite measure
in this study was based on fluency and working memory tasks. These are not conceptualized
as pure frontal measures and likely are influenced by cortical changes in non-frontal regions,
but there is broad agreement that fluency and working memory are important executive
function subdomains. We followed a similar approach in previous work (Mungas et al.,
2005a; Mungas et al., 2003) using different executive tasks in a different sample and found
differential effects of brain regions and systems on an executive composite and a
psychometrically matched measure of episodic memory (Mungas et al., 2005a).
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This study is part of ongoing development of the Spanish and English Neuropsychological
Assessment Scales (SENAS). Previous work has developed and validated measures of non-
executive domains (Mungas et al., 2004; Mungas et al., 2005b; Mungas et al., 2000; Mungas
et al., 2005c). Measures of fluency and working memory have been added, and validation with
respect to independently obtained clinical diagnosis has previously been reported (Mungas et
al., 2005c).

Our primary goal was to compare item- and scale-level strategies for handling demographic
heterogeneity in a measure of executive function. Demographic variables of interest included
age, ethnicity/language, education, and gender. We examined the extent to which DIF distorted
test-based estimates of ability. We then examined the extent to which item level and scale level
adjustment for demographic variables influenced the relationships of various composite scores
with an external criterion, in this case structural MRI measures of total brain matter and white
matter hyperintensity (WMH). We chose these MRI measures because they are relevant to
executive function (Gunning-Dixon & Raz, 2000; Kramer et al., 2002; Meguro et al., 2003)
and directly measure brain structure in a manner that is blind to demographic characteristics
of the person being assessed.

METHOD
Participants

Participants were 815 persons recruited by the UC Davis Alzheimer’s Disease Center under
protocols designed to increase representation of ethnic minorities and maximize heterogeneity
of cognitive functioning. There were 271 whites, 544 ethnic minorities (312 Hispanics, 208
black or African Americans, 15 Asians, 1 Native American, and 9 other or missing); 240
Hispanics were tested in Spanish, and all other participants were tested in English. A
community screening program designed to identify and recruit individuals with cognitive
functioning ranging from normal to demented identified 704 individuals (185 whites, 519
minorities). The remaining 111 (86 whites, 25 minorities) were initially seen at a university
memory/dementia clinic and referred for research. We excluded the 25 participants who were
not Hispanic, white, or black or African Americans from the present analyses.

All community recruits were 60 years of age or older. Clinical patients under 60 were included
if they were being evaluated for cognitive impairment associated with diseases of aging.
Inclusion criteria included ability to speak English or Spanish. Participants signed informed
consent under protocols approved by institutional review boards at UC Davis, the Veterans
Administration Northern California Health Care System, and San Joaquin General Hospital in
Stockton, California.

A sub sample of participants was referred for clinical evaluation and a research MRI on the
basis of SENAS scales measuring episodic memory, semantic memory, attention span, visual
spatial abilities, and verbal abstraction. A 25% random sample of those with normal cognition
were invited to participate in clinical evaluation and MRI, and all with memory or non-memory
cognitive impairment were invited to participate. Exclusion criteria for selection in this stage
included unstable major medical illness, major primary psychiatric disorder (history of
schizophrenia, bipolar disorder, or recurrent major depression), and substance abuse or
dependence in the last five years. These individuals all received a clinical diagnosis based on
a comprehensive clinical evaluation, but SENAS results were excluded from consideration in
establishing clinical diagnosis. Sampling percentages were used as weights to relate the MRI
sub sample back to the overall sample and to estimate the prevalence of specific diagnostic
categories in the whole sample. Estimated prevalence by diagnosis was: cognitively normal –
57.1%, MCI-31.0%, and demented –11.9%. The subsample who received MRI included 171
individuals (83 whites and 88 minorities). Some of these individuals had missing data for
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executive function items and were excluded from comparative analyses (see footnote to Table
2).

Neuropsychological Measures
The SENAS measures of fluency and working memory are commonly used tasks or are
adaptations appropriate for Spanish speaking and/or illiterate individuals. Fluency measures
included animals, words beginning with/f/and/l/sounds, and total items and categories from
the Supermarket Test (Mattis, 1988). Scores were recorded separately for the first and second
30 seconds. Working memory measures included Digit Span Backwards, Visual Span
Backwards, and a new List Sorting task. List Sorting has two parts. In part 1, participants are
presented with a list of fruits or animals and are asked to repeat all of the elements on the list,
but in order from smallest to largest. In part 2, the lists include both fruits and animals and the
task is to repeat fruits first, sorted from smallest to largest, and then animals in order from
smallest to largest. For both parts 1 and 2, 15 lists of increasing length are presented yielding
total scores that range from 0–15.

Terms used in neuropsychological assessment may produce some confusion, as often a “scale”
comprises a single item (e.g., Trails B), and at other times a “scale” comprises a total score
from several items (e.g., the Mattis Dementia Rating Scale). We will refer to the most granular
data as an “item” whether or not it is also considered a “scale”. Specifically, we incorporated
13 items to create candidate scores measuring executive function. The term “scale” in
subsequent discussion refers to candidate scores that summarize performance on the 13 items.

MRI Measures
Brain imaging was obtained at the UC Davis MRI research center on a 1.5T GE Signa Horizon
LX Echospeed system or the Veterans Administration at Martinez on a 1.5 T Marconi system.
Comparable imaging parameters were used at each site. Detailed methods for obtaining brain
and WMH volumes are presented in Appendix 1.

Data Analysis
Generation of candidate scores—We used four techniques to generate scores from
fluency and working memory tasks. These techniques are summarized in Table 1, where they
are categorized by their underlying psychometric theory (classical vs. item response theory)
and whether they account for demographic heterogeneity at the item level.

A commonly used technique is to determine means and standard deviations for each item in a
battery, which are then used to determine z scores for each individual on each item, which are
then averaged across all items. Unadjusted T scores are re-scaled z scores; instead of N(0,1),
T scores are N(50,10).

We used linear regression to determine mean scores appropriate for each education, gender,
and ethnicity/language category for each item. Linear regression models for each item included
any interactions significant at an alpha level of 0.05. We obtained a pooled standard deviation
from the residuals (the difference between the observed and the regression-estimated mean
score for each education, gender, and ethnicity/language category). These means and SDs were
then used to obtain demographic-adjusted z scores for each of the 13 items. We averaged these
scores and re-scaled them to generate demographic-adjusted composite T scores. For a
secondary analysis, we repeated these steps including age as a 4th demographic category.

We used the item response theory (IRT) package Parscale (Muraki & Bock, 2003) to obtain
unadjusted IRT scores. We verified that items were sufficiently unidimensional for IRT
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purposes using a confirmatory factor analysis approach (McDonald, 1999). Details of the
dimensionality and IRT assessments are shown in Appendix 2.

We used a software package we developed called difwithpar (Crane et al., 2006a) to obtain
IRT scores accounting for DIF. Detailed methods are shown in Appendix 3. These methods
determine IRT parameters for each item found to have DIF separately in appropriate
demographic subgroups, thus permitting relationships between items and the latent ability to
be somewhat different across different demographic groups. We determined the impacts of
DIF for each demographic variable (gender, age, education, and ethnicity/language group) for
individual participants by subtracting their unadjusted IRT score from their IRT score
accounting for DIF related to that covariate. If DIF made no impact this difference would be
0; if DIF had a large impact it would be large. We also determined IRT scores accounting for
DIF related to all demographic variables. We used the median standard error of measurement
from the entire sample as a benchmark to determine if DIF had a meaningful or salient impact
on individual test scores. IRT estimates ability and the standard error of measurement. We
considered differences larger than the median standard error of measurement to indicate
meaningful or salient scale-level differential functioning (Crane et al., 2007).

Comparison of candidate scores—For the sub-sample of 153 participants with complete
executive function data and MRI data, we estimated MRI and demographic effects on each
candidate score by entering the scores as dependent variables in linear regression models. We
evaluated simple effects of MRI variables on the scores with and without demographic
covariates in the model (i.e., with and without scale-level adjustment).

We initially examined demographic effects for ethnicity/language, education, and gender, but
not age. We ran three models for each composite score. Model A included demographic terms
as independent variables. Model B included the MRI variables representing normalized total
brain matter and WMH volumes. Model C included all demographic and MRI variables.

We used R2 values from these models to estimate effect sizes. Simple MRI effects were the
R2 values from the model with only the MRI variables (Model B). We determined incremental
MRI effects by subtracting the R2 from Model A (demographics alone) from the R2 from Model
C (demographics and MRI). We compared these differences using Hotelling’s method
(Hotelling, 1944). Finallly, we repeated the regression analyses including age along with the
other demographic variables in Models A and C.

RESULTS
Demographic characteristics of the 791 participants are shown in Table 2. Older participants
were more likely to have an MRI. Participants who received an MRI on average were better
educated and more likely to be white. While individuals with MRI scans were not representative
of the overall population, it is not likely that selection bias drove our results, as executive
function scores were not used to determine who was selected for MRI assessment.

DIF findings are summarized in Table 3. One item had DIF related to gender, four had DIF
related to age, six had DIF related to education, and seven had DIF related to ethnicity/language
group. Only the first 30 seconds of fluency with/l/was free of DIF for all four covariates.

DIF impact on individual scores is shown in Figure 2. Accounting for DIF related to gender
did not change any participant’s score by more than the median standard error of measurement,
accounting for DIF related to age changed one participant’s score, accounting for DIF related
to ethnicity/language changed 8 participants’ scores (1%), and accounting for DIF related to
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education changed 70 participants’ scores (9%). Accounting for all four sources of DIF
simultaneously changed 68 participants’ scores (9%).

Results of MRI regression analyses are shown in Table 4. The left three columns of results are
the amount of variance explained (R2) from models with demographics only (column A), MRI
only (column B), and the full model with both demographics and MRI variables (column C).
The shaded column labeled “Both MRI variables (C-A)” shows the difference in R2 between
the full model and the demographics only model. The remaining two columns provide the
unique contributions of WMH alone and total brain volume alone.

Focusing on column A, the demographics only models, it is not surprising that scores that
account for demographic heterogeneity have less variability explained by demographics. This
is true both for T scores, where unadjusted T scores have 25% of their variance explained by
demographic characteristics, and adjusted T scores have only 6% of their variance explained
by demographic characteristics, and for IRT scores, where unadjusted IRT scores have 28%
of their variance explained by demographic characteristics, and IRT scores accounting for DIF
have 20% of their variance explained by demographics.

The model in Figure 1 is helpful in understanding these results. Column A in Table 4 represents
the strength of association between the Demographics box and the Composite Score box in
Figure 1. When demographic variability is removed from all of the items with adjusted T scores
(dashed lines between Demographics and all of the arrows from the items to the Composite
Score), the amount of variability in the Composite Score remaining to be explained by
demographics is negligible (6% in this case). However, when only demographic heterogeneity
not mediated by Ability is removed from those items in which there is a direct relationship
between Demographics and item responses (i.e., in those items with DIF), demographics may
still explain a salient amount of the variability in scores, as shown here, where the IRT score
that accounts for DIF related to demographics still has 20% of its variability explained by
demographics. In essence, because the demographic-adjusted T score approach adjusts every
item, whether or not the item has DIF, it may over-correct for demographic effects, minimizing
the relationship between demographics and the composite score mediated by the effects of
demographics on ability.

Column B in Table 4 represents the amount of variance in candidate scores explained by MRI
variables alone, without demographic factors in the model. Here the difference between the
two IRT scores is negligible (4% for unadjusted IRT scores and 6% for IRT scores accounting
for DIF). However, the difference between the two T scores is remarkable (6% for unadjusted
T scores vs. 22% for adjusted T scores). Returning to Figure 1, for the adjusted T scores,
because essentially all variability related to Demographics has been removed from the
Composite Score, the strength of relationship with MRI is artificially accentuated.

The artifice of this accentuation is discernible when considering the values of the shaded
column in Table 4. Here we see that accounting for demographics in regression models for
unadjusted T scores, unadjusted IRT scores, and IRT scores accounting for DIF improves the
strength of relationship with MRI (by 12–13% in each case), while for the adjusted T score,
the value in column B differs from the value in the shaded column by only 1%. Thus, MRI
effects are much stronger after scale level adjustment for demographic effects – unless an
adjusted T score approach is used. Differences in incremental MRI effects (C–A) across scoring
methods were not statistically significant.

Age was not used in the regression models presented in Table 4, and was not used in the
demographic-adjusted T score (i.e., the demographic-adjusted T score included adjustments
for ethnicity/language, gender, and education, but not age). We performed additional analyses
with demographic-adjusted T scores that accounted for age differences as well as ethnicity/
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language group, gender, and education. Again, demographic effects (column A in Table 4)
were negligible, with 7% of the variance. Including age in the T scores diminished the strength
of association with MRI, with R2 of 16% as opposed to 22% when the demographic-adjusted
T score did not account for age. Differences in incremental effects of MRI were also diminished
for the demographic-adjusted T score that included age, with the difference in R2 of 15% as
opposed to 23% when the demographic-adjusted T score did not include age.

We repeated the regression analyses employed in the generation of Table 4, this time including
age as an independent variable in each analysis. In each case the incremental amount of variance
explained by the MRI variables was diminished compared to regression models that excluded
age. This result is shown graphically in Figure 3. In each case, including age (either adjusting
norms for age, as in T scores, or regression models for age, as in Figure 3) reduced the strength
of association with MRI scores.

DISCUSSION
Test bias is present when individuals from different groups who have the same ability have
different expected test or item scores (Camilli & Shepard, 1994). Ability in psychometric
theory is a latent construct. It is measured by items, and item responses are combined in some
way to arrive at a score that estimates ability. If bias exists at the item level, this could lead to
a biased estimate of ability. Conversely, group differences in means and distributions of test
scores do not necessarily indicate that bias is present. DIF adjustment as employed in this study
essentially removes the effects of measurement bias. This item level adjustment allows for
evaluating valid effects of demographic variables on ability apart from measurement bias.

Different pathways may produce the same latent ability. We modeled the independent effects
of demographic and MRI variables on candidate scores, comparing item- and scale-level
approaches. IRT scores accounting for DIF are unbiased estimates of individual ability and
can be used in regression analyses to determine which variables to include in scale level
adjustments. The adjusted T score approach, in contrast, produces a biased estimate of
individual ability, and different candidate scores are required to determine whether adjustments
should be made. Here, the best adjusted T score necessitated results from the MRI analyses to
show that age should not be used. The IRT/DIF approach separates internal and external
considerations into two steps, facilitating better understanding of relationships between
variables of interest and immediate access to unbiased scores.

In this study, 9% of subjects had salient or meaningful impact from DIF. Controlling for
ethnicity/language, education, and gender substantially strengthened relationships with MRI
variables; adjusting for age weakened these relationships. These findings suggest that it is
important to understand scale level demographic effects, and to control for some but not all of
these effects to optimally measure brain-related cognitive effects, especially in
demographically heterogeneous samples.

The results shown here are to our knowledge the first report of DIF in executive function items.
Figure 2 is very helpful in documenting the impact of DIF on individual scores. Much of the
impact of DIF is related to education and to race/ethnicity. Some participants had scores that
were affected by DIF by as much as 1/3 of a standard deviation. DIF impact of this magnitude
is most likely to be problematic when using cutoff scores to determine whether an individual
is impaired. DIF could impact the validity of clinical diagnosis in this context.

This study is unique in that it examined the impact of DIF on test validity, using a culture-blind
validation criterion, structural MRI. Previous studies of cognition and MRI have shown modest
associations of volume of WMH and executive function (Gunning-Dixon & Raz, 2000; Kramer
et al., 2002; Meguro et al., 2003). Those studies included much more homogeneous samples
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of participants, and the amount of variability explained by MRI variables was greater than that
explained by MRI alone in our study (column B in Table 4). After accounting for scale-level
gender, ethnicity, and education effects – but not for age – we found a similar amount of
variability explained by MRI variables as had been found in these prior studies. When
accounting for age as well, the relationship with MRI variables was actually smaller.

Scale level adjustment for demographic variables like ethnicity and education was beneficial
because it removed a variance component from the total ability estimate unrelated to brain
structure, thereby making the brain structure effect more salient. Age adjustment had a negative
impact on test validity. The effect was consistent across all composite score strategies. The
adverse effect of age adjustment likely is because age is strongly related to disease processes
that result in cognitive impairment. Removing age-related variance effectively decreases
disease-related variance and decreases relationships of test scores with structural changes in
the brain associated with disease. Age was strongly related to MRI variables in this sample
(R2=0.40). While simple bivariate correlations of age with executive function measures were
significant (r’s in the 0.20s), age was unrelated to executive function independent of MRI
variables (incremental R2s ranged from <0.01 to 0.02). In contrast, the relationship of the other
demographic variables to test scores were equally strong after controlling for MRI variables
(not shown).

An intermediate finding was that cognitive tasks involving category fluency, phonemic
fluency, and working memory were sufficiently unidimensional to be combined into a
composite executive function measure (see Appendix 2). This finding is consistent with
findings that executive function tasks are highly correlated (Salthouse, 2005). The fluency and
working memory tasks used in this study may be influenced by multiple brain regions. From
a substantive perspective, including different tasks expands the brain regions being monitored,
and adding items increases reliability. These characteristics are likely to increase sensitivity to
broad disease-based effects on frontal systems, but at the expense of specificity to more specific
frontal lobe structures of systems. Ultimately the utility of any test is an empirical question,
and depends on the intended purpose for the test. Consequently, if the goal of
neuropsychological assessment is to identify relatively small focal lesions, a broader measure
may be problematic. If the goal is to monitor broader disease effects on frontal subcortical
systems then a broader measure has much to offer.

This study has a number of limitations. It examined a limited set of specific cognitive measures
in a specific and unusually diverse sample, and different results might be found with different
cognitive domains and different populations. Additionally, different results might be found
with different techniques for identifying items with DIF (Millsap, 2006). Furthermore, while
the MRI measures are presumably culture-free, the relative validity findings are limited to the
extent that MRI measures of WMH and total brain volume capture important features related
to executive function.

Accounting for DIF had demonstrable benefits in this study in terms of improving accuracy of
estimation of individual ability. DIF adjustment can be accomplished with no additional testing
time or burden. Addressing DIF in neuropsychological test development, however, requires a
substantial investment, particularly in obtaining a sufficiently large development sample to
permit DIF analyses. There is also an investment needed in analytic and computational
infrastructure to use IRT algorithms that account for DIF, though this barrier is continually
diminishing. As neuropsychological tests are used with increasingly diverse patient
populations, this level of investment may become a minimum requirement for demonstrating
psychometric properties appropriate to the population of interest. This study shows the
neuropsychological relevance of demographic influences on test performance, and highlights
the need for further studies with heterogeneous populations and broader measures of cognition.
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APPENDIX 1. DETAILED METHODS OF NEUROIMAGE DATA ANALYSIS
Analysis of brain and WMH volumes was based on a Fluid Attenuated Inversion Recovery
(FLAIR) sequence designed to enhance WMH segmentation (Jack et al., 2001). WMH
segmentation was performed in a two-step process (DeCarli et al., 1992; DeCarli et al.,
1999). In brief, non-brain elements were manually removed from the image by operator guided
tracing of the dura matter within the cranial vault including the middle cranial fossa, but
excluding the posterior fossa and cerebellum. The resulting measure of the cranial vault was
defined as the total cranial volume (TCV) to correct for differences in head size.
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The first step in image segmentation required the identification of brain matter. Image intensity
nonuniformities (DeCarli et al., 1996) were then removed from the image and the resulting
corrected image was modeled as a mixture of two Gaussian probability functions with the
segmentation threshold determined at the minimum probability between these two distributions
(DeCarli et al., 1992). Once brain matter segmentation was achieved, a single Gaussian
distribution was fitted to the image data and a segmentation threshold for WMH was a priori
determined at 3.5 SDs in pixel intensity above the mean of the fitted distribution of brain
parenchyma. Morphometric erosion of two exterior image pixels was also applied to the brain
matter image before modeling to remove the effects of partial volume CSF pixels on WMH
determination. Reliability estimates for these methods are high (DeCarli et al., 2005).

Two MRI measures were used independently in subsequent analyses. These were normalized
brain volume (brain matter/TCV) and normalized white matter hyperintensity (white matter
hyperintensity/TCV).

APPENDIX 2. DIMENSIONALITY AND IRT ANALYSES
We used confirmatory factor analyses implemented by MPlus version 3.0 (Muthen & Muthen,
1998–2004). We used McDonald’s bi-factor method (McDonald, 1999). Each item is specified
to have loadings on a single general factor as well as on a more specific sub-domain factor
defined a-priori based on theoretical considerations. This approach has recently been discussed
by Gibbons (Gibbons et al., 2007). We assigned each fluency and working memory item to
one of three sub-domains (category fluency, phonemic fluency, or working memory). A
graphical summary of this model is shown in Appendix Figure 1. The general executive
function factor is defined by all of the items, while the category fluency, phonemic fluency,
and working memory sub-domain factors are defined by a few of the items, as shown in Figure
1. McDonald suggests that if standardized loadings on the general factor all exceed 0.30, then
the scale is sufficiently unidimensional for applications requiring unidimensionality. If
loadings on sub-domains also exceed 0.30, then one could use sub-domains for some
applications and summary scores of the general factor for other applications, as appropriate
(McDonald, 1999). Because all of the items had many response categories, we treated them
all as continuous indicators. We assessed model fit using the comparative fit index (CFI), the
Tucker-Lewis index (TLI), and the root mean squared error of approximation (RMSEA). These
three summary fit indices have been recommended for evaluating model fit due to their ability
to robustly detect model misfit in datasets with a variety of violations of basic assumptions
(Hu & Bentler, 1998, 1999; MacCallum & Austin, 2000). CFI and TLI values >0.95 indicate
good model fit; RMSEA <0.08 indicates adequate fit, and RMSEA <0.06 indicates good fit
(Hu & Bentler, 1999).

The bi-factor model fit the data well, with CFI 0.98, TLI 0.96, and RMSEA 0.052. Loadings
for the bi-factor model are summarized in Appendix Table 1. Loadings for each item on the
general executive function factor ranged from 0.42 to 0.77, well in excess of the 0.30 threshold
for salience (McDonald, 1999). We thus considered executive function as assessed by these
items to be a sufficiently unidimensional construct to proceed with IRT.

We used Parscale 4.1 (Muraki & Bock, 2003) for IRT modeling. We used Samejima’s graded
response model (Samejima, 1969, 1997), which is an extension of a 2-parameter logistic (2PL)
model for dichotomous items to items with many response categories (“polytomous” items).
We used a normal prior for expectation a posteriori scoring; results were similar when we used
maximal likelihood scoring.
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Parscale uses an iterative approach to determining item and person parameters. The 2-
parameter logistic (2PL) model has 2 parameters for each item – a difficulty and a
discrimination parameter. The equation for the 2PL is as follows:

Here P(Y=1) means the probability of success on item Y, θ is the subject’s ability level, b is
item difficulty, a is item discrimination, and D is a constant that makes the logistic curve
approximate the normal ogive. The probability of success is 50% where θ=b. The logistic curve
varies around that point proportional to the discrimination parameter a. Samejima’s graded
response model is an extension of the 2PL model to multiple categories using the proportional
odds assumption. A single slope parameter is estimated for each item, but multiple difficulty
parameters are estimated as the thresholds between adjacent response categories. Details of
equations and estimation procedures can be found in Baker and Kim (Baker & Kim, 2004).
We rescaled raw Parscale output so that the mean score was 100 and the standard deviation
was 15 using a linear transformation.

APPENDIX 3: METHODS FOR IDENTIFYING ITEMS WITH DIFFERENTIAL
ITEM FUNCTIONING (DIF)

The specific issue of item-level bias is addressed in studies on differential item functioning
(DIF). The definition of DIF is a conditional one: when controlling for the underlying ability
measured by the test, DIF occurs when the probabilities of success on an item differ related to
group membership. Thus, for a given level of ability, for a specific item, members of Group
A have a higher probability of success than members of Group B. Two types of DIF are
identified in the literature: uniform and non-uniform DIF. In an item with uniform DIF, the
advantage Group A members over Group B members is constant across the spectrum of abilities
measured by the test. In nonuniform DIF, however, the advantage varies across the spectrum
of abilities measured by the test, and even the direction may change. Thus, in an item with non-
uniform DIF, members of Group A with high ability levels may have a higher probability of
success on the item than members of Group B with high ability levels, while members of Group
A with low ability may have a lower probability of success on the item than members of Group
B with low ability.

We have developed an approach to DIF assessment that combines ordinal logistic regression
and IRT. Details of this approach are outlined in earlier publications (Crane et al., 2006c; Crane
et al., 2004).

We use IRT executive function scores to evaluate items for DIF. We examine three ordinal
logistic regression models for each item for each demographic category (labeled here as
“group”) selected for analysis:

(model 1)

(model 2)

(model 3)
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In these models, cut is the cutpoint for each level in the proportional odds ordinal logistic
regression model (McCullagh & Nelder, 1989), and θ is the IRT estimate of executive function.

To detect non-uniform DIF, we compare the log likelihoods of models 1 and 2 using a χ2 test,
α = 0.05. To detect uniform DIF, we determine the relative difference between the parameters
associated with θ (β1 from models 2 and 3) using the formula |(β1(model 2) -β 1(model 3))/
β1(model 3)|. If the relative difference is large, group membership interferes with the expected
relationship between ability and item responses. There is little guidance from the literature
regarding how large the relative difference should be. A simulation by Maldonado and
Greenland on confounder selection strategies used a 10% change criterion in a very different
context (Maldonado & Greenland, 1993). We have previously used 10% (Crane et al., 2004)
and 5% (Crane et al., 2006c) change criteria. In this data set, when we used a 5% change
criterion, almost every item had either uniform or non-uniform DIF related to ethnicity/
language, resulting in unstable parameter estimates. We thus used a 7% criterion. For the other
three covariates, the difference in impact on individual scores when accounting for DIF using
a 5% vs. a 7% change criterion was negligible. It may be appropriate to determine the change
criterion used empirically from the data, selecting a level that still leaves a few items free of
DIF to serve as anchor items (Crane et al., 2007). Anchor items are items that have the same
parameters in all demographic groups; they serve to anchor comparisons between groups.
Anchor items for each comparison are those in Table 5 not flagged with DIF.

We have developed an approach to generate scores that account for DIF (Crane et al., 2006c).
When DIF is found, we create new datasets as summarized in Appendix Figure 2. Items without
DIF have item parameters estimated from the whole sample, while items with DIF have
demographic-specific item parameters estimated.

Spurious false-positive and false-negative results may occur if the ability score (θ) used for
DIF detection includes many items with DIF (Holland & Wainer, 1993). We therefore use an
iterative approach for each covariate. We generate IRT scores that account for DIF, and use
these as the ability score to detect DIF. If different items are identified with DIF, we repeat the
process outlined in Appendix Figure 2, modifying the assignments of items based on the most
recent round of DIF detection. If the same items are identified with DIF on successive rounds,
we are satisfied that we identified items with DIF (as opposed to spurious findings). In the
present analyses only 1–3 iterations were required for each demographic variable.

We have modified this approach for demographic categories with more than two groups (such
as age, education, and ethnicity/language). Indicator terms (dummy variables) for each group
are generated, and interaction terms are generated by multiplying θ by the indicator terms. All
indicator terms and interaction terms are included in model 1; all indicator terms are included
in model 2; and only the ability term θ is included in model 3. For the determination of non-
uniform DIF, we compared the likelihoods of models 1 and 2 to a χ2 distribution with degrees
of freedom equal to the number of groups minus 1. The determination of uniform DIF is
unchanged, except all of the indicator terms are included in model 2.

We performed DIF analyses in two ways. First, we analyzed DIF related to each covariate in
turn. Second, we analyzed DIF related to all four covariates simultaneously. We began with
unadjusted scores and analyzed items for DIF related to gender. We proceeded to analyze items
for DIF related to age using the IRT score that accounted for DIF related to gender. If an item
had DIF related to gender, it was analyzed separately in males and females for DIF related to
age. We then analyzed items for DIF related to education and ethnicity/language using
analogous steps.

In addition to item-level DIF findings, we also show the scale-level impact of accounting for
DIF. We determined the median standard error of measurement. Differences in individual
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scores larger than the median standard error of measurement are termed “salient scale-level
differential functioning.” In other work we have indexed these findings to the minimally
important difference established for a scale to detect “relevant scale-level differential
functioning” (Crane et al., 2007); no minimally important difference has been established for
the executive function scale.

We performed no adjustment for multiple comparisons in our DIF analyses. There is little cost
to declaring an item has DIF using our technique – the item is still used to help determine
scores, using demographic-specific item parameters as appropriate. A more thorough
discussion of adjusting DIF analyses for multiple comparisons can be found in (Crane et al.,
2006a). Several hundred individuals were available for DIF analyses. Sufficient overall and
subgroup sample sizes for DIF detection are not known. For further discussion of this issue
also refer to (Crane et al., 2006a).

Stata .do files for all of the DIF analyses are available for free download. To access the programs
type “scc install difwithpar” at the Stata prompt.
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Figure 1.
Schematic representation of relationships analyzed in this paper. Ability is represented in an
oval at the top. Ability is reflected by item responses on a cognitive test (depicted in boxes as
i1 through in+m). Demographic characteristics may directly impact Ability (depicted by the
solid arrow between Demographics and Ability) and may be associated with item bias (depicted
by the dotted arrows to the items with differential item functioning, abbreviated in the Figure
as DIF, specifically items in+1 through in+m). Formulas are used to obtain composite scores
from the observed item responses, depicted in the figure by the solid arrows between the item
responses and the composite score. Traditional test theoretic composite score formulas include
summing up observed responses or summing up average scores. Traditional test theoretic
composite score formulas that account for demographic heterogeneity apply the same
adjustment to all the items (depicted in the figure as the four dashed arrows extending from
Demographicsto the solid arrows extending from all of the items to the composite score).
Modern psychometric theory formulas (known as item response theory or IRT) empirically
calibrate item difficulty across the range of cognitive ability levels, resulting in non-linear
relationships between traditional composite scores and IRT scores. IRT formulas that account
for DIF apply adjustments for demographics only to those items found with DIF (depicted in
the figure with the rightmost two dashed arrows extending from Demographicsto the solid
arrows extending from items in+1 through in+m to the composite score). Finally, we compared
these composites based on their strength of relationship with MRI measures of white matter
hyperintensity and total brain volume. These evaluations included scale-level accounting for
demographic heterogeneity, indicated in the figure by the solid arrow extending from
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Demographics to the composite score and the double headed arrows between the composite
score and MRI, and between MRI and demographics. Note that measurement error is not
depicted in the Figure.
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Figure 2.
Impact on estimated executive function scores of differential item functioning related to
gender, age, education, and race separately, and related to all four covariates simultaneously.
The x-axis maps the distribution of the difference scores obtained between individuals’
executive function scores accounting for DIF and executive function scores that ignore DIF
(i.e., If DIF made no impact on scores, then the difference in scores would be 0). All scores
were transformed such that 1 standard deviation is 15 points. For each adjustment strategy, the
distribution is illustrated with a box-and-whiskers plot (the box defines the 25th, 50th, and 75th
percentiles, while the whiskers define 1½ times the inter-quartile range; individual observations
more extreme than this are indicated with dots). The vertical lines indicate the median value
of the standard error of measurement for the population and twice the median value of the
standard error of measurement for the population; the range of the standard error of
measurement was 3.9 to 7.3 points. Differences when accounting for DIF greater than the
median standard error of measurement are referred to as “salient scale-level differential
functioning.”
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Figure 3.
Incremental variance explained by structural MRI variables in Executive Function composite
scores not adjusting for age ( ) and adjusting for age (#x025A0;). Values represent the R2 for
a full model with both MRI variables and demographics minus the R2 for a model with only
demographics [see the shaded column in Table 4 labeled “Both MRI variables (C–A)”]. Age
was included as a demographic variable in the age adjusted model and was not included in the
model without age adjustment. Adjusted T scores were adjusted for gender, ethnicity/language,
and education, but not age.
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Appendix Figure 1.
Schematic representation of the executive function bi-factor confirmatory factor analysis.
Abbreviations: Exec Fxn = executive function; Anim 1 = animal fluency, 1st 30 seconds; Anim
2 = animal fluency, 2nd 30 seconds; Spmkt 1 = supermarket items, 1st 30 seconds; Spmkt 2 =
supermarket items, 2nd 30 seconds; Spmkt cat = number of categories of supermarket items
over 60 seconds; F1 = words beginning with f produced in the 1st 30 seconds; F2 = words
beginning with f produced in the 2nd 30 seconds; L1 = words beginning with l produced in the
1st 30 seconds; L2 = words beginning with l produced in the 2nd 30 seconds; DSPB = digit
span backwards; VSPB = visual span backwards; LSTSRT 1 = list sorting 1; LSTSRT 2 = list
sorting 2.

Crane et al. Page 21

J Int Neuropsychol Soc. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Appendix Figure 2.
Handling of items by their differential item functioning (DIF) status. In this schematic there
are a total of (n+m) items included in the test; n of these items are found with DIF, while m
items do not have DIF.
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Table 1
Summary of composite scoring techniques for executive function assessment tools.

Psychometric theory

Classical test theory Item response theory

Handling of
demographic

differences in test
scores

Demographic differences ignored Unadjusted T score Unadjusted item response theory
score

Item-Level Demographic effects
accounted for

Demographic adjusted T
score

Item response theory score
accounting for differential item

functioning
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Appendix Table 1
Bi-factor model results of executive function items

Item

Standardized loading on
general executive function

factor
Standardized loading on

sub-domain factor Name of sub-domain factor

Animals 1 0.63 0.27

Category Fluency

Animals 2 0.50 0.19

Supermarket 1 0.58 0.46

Supermarket 2 0.58 0.35

Supermarket categories 0.42 0.44

F 1 0.72 0.42

Phonemic Fluency
F 2 0.57 0.49

L 1 0.77 0.39

L 2 0.60 0.32

Digit span backwards 0.67 0.45

Working Memory
Visual span backwards 0.60 0.39

List sorting 1 0.69 0.48

List sorting 2 0.55 0.42
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