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Abstract
Nonlinear dynamics has been introduced to the analysis of biological data and increasingly
recognized to be functionally relevant. The purpose of this study was to examine chaotic properties
of human scalp EEG signals associated with voluntary motor tasks using the largest Lyapunov
exponent (L1). 64-channel scalp EEG data were recorded from eight healthy subjects in two tasks:
(1) Intermittent handgrip contractions at 20, 40, 60, and 80% of maximal voluntary contraction
(MVC) with 20 trials at each level. No significant fatigue were induced; (2) intermittent handgrip
MVCs (100 trials) that resulted in significant fatigue. The L1 values of all EEG channels were
calculated in each trial first then averaged across the 20 trials at each force level (Task 1) or over
each of the 5-trial blocks (Task 2) before the group means were obtained. A multivariate statistical
model was used to examine the effect of force and fatigue on L1. L1 values were greater with higher
force (Task 1), and decreased significantly with fatigue (Task 2). The L1 of the EEG signals changes
systematically and correlates significantly with muscle force and fatigue. The results suggest that
nonlinear chaotic index L1 may serve as a quantitative measure for motor control-related cortical
signal adaptations.
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1. INTRODUCTION
The tools of nonlinear analysis have been greatly improved recently in the study of the time
series signals from nonlinear biological and physical systems, such as the signals pertaining
to electroencephalography (EEG), magnetoencephalography (MEG) and electrocardiography
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(ECG) (Freeman, 2003; Kotini and Anninos, 2002; Perkiomaki et al., 2005). Many studies are
known that the nonlinear time series analysis have been applied to EEG signals of animals
(Gonzalez et al., 1999; Sarnthein et al., 1998) or humans, such as recording from normal awake
subjects (Palus, 1996; Stam et al., 1999), during sleep (Pereda et al., 1998; Roschke and
Aldenhoff, 1992), or from patients with diseases like epilepsy, Parkinson's Disease,
Alzheimer's Disease and schizophrenics (Jeong et al., 1998a; Lai et al., 2004; Sabesan et al.,
2003; Stam et al., 1996; Stam et al., 1994).

Nonlinearity is present in many dynamical systems in nature. For a neuronal network such as
the brain, it is known that there are billions of neurons, each interacting with a large number
of other neurons via synapses. The common, yet complex daily processes such as motivating,
movement, thinking, and remembering are based on neurons exhibiting complex interactions.
The hypothesis of an entirely stochastic brain cannot be true because we know our brain has
the ability to perform the aforementioned sophisticated tasks (Andrzejak et al., 2001). It was
demonstrated that neuronal systems such as periodically stimulated molluscan neurons
(Holden et al., 1982), squid giant axons (Aihara and Matsumoto, 1986) or the olfactory bulb
of rabbits (Freeman, 1987), exhibit a variety of nonlinear behavior. EEG, as one of the measures
of brain activity taking place at higher hierarchic levels of the central nervous system, appears
to be an appropriate area for nonlinear time series analysis techniques (Kantz and Schreiber,
1997).

In the field of motor control, how the brain signals change when the muscle fatigues during a
motor task such as a prolonged handgrip is a relatively unknown question with significant
clinical relevance. Recent findings have shown that fatigue induced by repetitive maximal
voluntary contractions (MVCs) results in progressive declines in muscle force and
electromyographic (EMG) signals. Earlier research has suggested that muscular mechanisms
are responsible for the loss of force (Bigland-Ritchie, 1981). More recent findings, however,
point to the possibility that the central nervous system also becomes fatigued and may fail to
fully activate the performing muscles (Gandevia, 2001; Liu et al., 2005c). A few studies have
applied linear analysis to EEG signals, such as movement-related cortical potential (MRCP)
measurements (Bates, 1951; Siemionow et al., 2000) and power spectra or coherence analyses
(Liu et al., 2005c; Rosenberg et al., 1989) during motor tasks of varying muscle force or fatigue
levels. However, these types of analysis could not explore the full information from the EEG
signal due to the complexity and nonlinearity of such signal. Therefore, it is expected that a
nonlinear time series analysis may provide us with new tools to study brain function with EEG
signals. A previous study (Liu et al., 2005a) showed that fractal dimensions (FDs) of scalp
EEG signals increased linearly with handgrip force, suggesting that under normal conditions
the FD measure relates proportionally to brain signals that control muscle force. In this study,
we attempted to use another important nonlinear quantity, the largest Lyapunov exponent (L1),
to quantify scalp EEG signals at different fatigue states and handgrip force levels. Basically,
the largest Lyapunov exponent L1 estimates the mean exponential divergence or convergence
of nearby trajectories in phase space, expressing the well-known sensitive dependence to initial
conditions in nonlinear phenomenon (Kantz and Schreiber, 1997; Wolf et al., 1985). Hence,
the L1 may serve as a good estimate of the chaoticity of a dynamical system.

The purpose of the present study was to quantify, using L1, the chaoticity of scalp EEG signals
at different muscle force and fatigue levels in a handgrip motor task and determine the
relationship between L1 and the force and between L1 and fatigue. We hypothesized that L1
value of the EEG signals would be different at different handgrip force levels and it would also
change with muscle fatigue.
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2. RESULTS
Fig. 4 shows average force data of eight subjects as a function of trial block (time) during the
fatigue experiment. The initial blocks were associated with minimal fatigue. The fatigue effects
became more obvious in the later blocks. The results show that the force amplitude dropped
dramatically from the beginning (95.9% MVC at block 1) to the time of block 7 (55.7% MVC).
From block 7, the force reached a relatively steady stage and remained in the range of 50% −
55% MVC for the rest of trial blocks. This figure clearly shows how fatigue affects force output
of the handgrip muscles.

L1 maps based on the values of 63 electrodes on the scalp during the active period for the four
force level experiment are shown in Fig. 5. Each map shows average L1 data of 20 trials of the
8 subjects at the corresponding force level. At the 20% and 40% levels, the L1 values were
small for most of the EEG channels with no significant difference in L1 between the two force
levels. At the 60% and 80% MVC levels, the L1 values were significantly higher compared to
the two lower force levels or rest. For more detail analysis, we selected five electrodes overlying
major sensorimotor regions. The five electrodes were C3 (contralateral) C4 (ipsilateral) over
the primary sensorimotor regions; Cz, over the supplementary motor area; Fz, over the central
frontal area; and Pz, over the central parietal field. Fig. 6a shows group L1 data of the five
selected major EEG channels during the active period at the four force levels. The two-way
ANOVA analysis revealed significant increases in L1 with elevation of the force (P < 0.001).
However, the L1 values among the five EEG channels showed no significant difference (P =
0.503). Subsequent multiple comparisons showed that the L1 at 80% MVC was significantly
higher (P < 0.01) than those at the 20%, 40% and 60% MVC levels. These results are indicated
in the figure. For example, “(20 : 80)” means that the L1 value at the 20% level is significantly
different from that at the 80% level. Pearson's correlation indicated a significant association
between the L1 and handgrip force in four of the five electrodes. The L1 results for the rest
period corresponding to each force level are shown in Fig. 6b. No significant L1 changes were
found among force levels (P = 0.772) or EEG channels (P = 0.815). Paired t-tests showed that
the L1 values were significantly different between the active and rest periods (P < 0.01).

Maps of L1 values based on all the EEG channels during the active period of the fatigue
experiment in all the subjects are shown in Fig. 7. It is obvious that L1 values were higher
under minimal and moderate fatigue conditions (compare blocks 1 and 2 to other blocks) than
those under severe fatigue conditions. Furthermore, higher L1 were seen in the frontal lobe
and contralateral (left) hemisphere (referenced to the exercising arm). It is also worth noting
that the L1 became relatively stable as the force dropped to a relatively steady level (compare
Figs. 4 and 7). More detailed results of the five selected EEG channels (C3, CZ, C4, FZ and
PZ) are presented in Fig. 8. During the active period of the contraction (−0.75 to 3 s) in the
first two blocks when the fatigue was minimal and force was still high, the L1 values of all the
five channels were also high. However, the values decreased rapidly after block 2 and reached
a steady L1 level at block 5 and thereafter, similar to the force curve in Fig. 4. The two-way
ANOVA revealed significant differences in L1 among blocks (P < 0.001), but not among EEG
channels (P = 0.084). Post hoc comparisons showed no significant difference between block
1 and block 2 (P = 0.626). L1 values of block 1 to block 4 are significantly greater than those
in the following blocks (P < 0.005 for block 1 with other blocks and P < 0.05 for block 2, 3,
and 4 with other blocks). The significant pair-wise comparisons between blocks are marked
on the figure. For example, “(4 : 6, 8, 10−16)” means L1 in block 4 is significantly greater than
that in blocks 6, 8 and blocks 10 to 16. Pearson correlation analysis showed a strong relationship
between L1 and force for the fatigue experiment (Fig. 8a). The correlation coefficients were
all above 0.8 and the correlations are all significant. For the control data (L1 calculated during
rest period), no significant L1 differences among blocks and EEG channels were found and no
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significant correlation between the L1 and force was detected (Fig. 8b). Paired t-tests showed
that the L1 values were significantly greater in the active than rest periods (P < 0.001).

3. DISCUSSION
In this study, we attempted to reveal the relationship between nonlinear properties of human
scalp EEG signals and levels of muscle force and fatigue. We found that the largest Lyapunov
exponent (L1) was significantly related to muscle force, regardless of whether fatigue being
involved in the motor performance.

As an important index of chaos, the Lyapunov exponent estimates the mean exponential
divergence or convergence of nearby trajectories of the attractor. A system with at least one
positive Lyapunov exponent is chaotic, reflecting sensitive dependence on the initial conditions
(Roschke et al., 1993). This suggests that L1 values can be regarded as a measurement of
complexity or flexibility of a dynamic system (Aftanas et al., 1997; Jeong et al., 1998b; Jin et
al., 2002; Roschke et al., 1995). In the neuron network, the number of neurons that were
recruited into an action and their discharging behavior are the major factors that contribute to
the complexity (Lutzenberger et al., 1995). Compared to the rest condition, a larger number of
cortical neurons, especially in the motor function-related areas, are thought to participate in
controlling a motor task. Similarly, compared to the low-force condition, more neurons are
expected to participate in controlling greater force with higher discharge rates (Cadoret and
Smith, 1997; Thickbroom et al., 1999), adding complexity to the signal, and correspondingly,
increasing the L1 values. Moreover, the sensory feedback from the muscle to the brain may
further increase complexity of the signal, and thus, resulting in an even larger L1 value.

The larger L1 values at higher force levels may suggest that the brain recruits more neurons
and increases the firing rates of those neurons in a linear relationship with force. A number of
former studies show that force is linearly related to the level of brain activation. For instance,
the linear increase of brain activation level due to the increase of force was shown in functional
magnetic resonance imaging (fMRI) and positron emission tomography (PET) data, which
represent the brain task-related responses in blood metabolism (Kinoshita et al., 2000;
Thickbroom et al., 1998). EEG data also showed that both the cortical potential and power of
the signal are linearly correlated with force (Nishihira et al., 1989; Siemionow et al., 2000).
Studies on monkeys revealed that the neuron firing rate is proportional to the level of exerted
force by the animals (Maier et al., 1993; Smith et al., 1975). Our previous study (Liu et al.,
2005a) also showed that the fractal dimension (FD) of EEG signals had a linear correlation
with handgrip force. All these results suggest that the number of involved neurons and perhaps
their level of activity increase in proportion to the force exerted under normal conditions.

Besides complexity, enhanced L1 values also reflect the increased flexibility of information
processing. Here, the flexibility may be understood as the facility of the central nervous system
to reach different states of information processing from similar initial states (Roschke et al.,
1995). In the fatigue experiment, the decrease in L1 values with muscle fatigue suggests that
the brain's ability to do this (100% handgrip MVC) and other similar tasks weaken. The
“weakening” of the brain by fatigue may be supported by our recently finding that showed a
significant reduction in the power of the EEG frequencies (11−35 Hz) as a result of fatigue
induced by repetitive handgrip MVCs (Liu et al., 2005b). Many studies reported correlations
of L1 values with information processing flexibility of the brain under functional or clinical
conditions. For example, the decreased L1 values were found in Alzheimer's disease patients
(Jeong et al., 1998b), or after sound and light stimulation in healthy subjects (Jin et al.,
2002). The L1 values were also shown as an enhancement in response to affective induction
(Aftanas et al., 1997).
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Similar L1 change patterns were found among the five EEG recording locations for the force-
level and fatigue experiments. This observation suggests that different regions of the brain
work synchronously to accomplish the same task (Konig and Engel, 1995), assuming that
signals of each electrode originated from an independent cortical field. It is well-known that
electrodes C3, Cz and Fz are positioned over cortical areas closely related to motor control.
Moreover, it has been found that the parietal cortex is also important in control of hand function
(Murata et al., 2000; Sakata et al., 1997). Therefore, it is understandable that similar L1 changes
were seen at C3, Cz, Fz and Pz locations during our handgrip experiments. The L1 from channel
C4 also followed a similar pattern of correlation with force and fatigue compared to the other
4 channels, suggesting that the ipsilateral (right hemisphere) primary sensorimotor cortex was
also involved in the task modulation. Such a phenomenon of ipsilateral involvement has been
noticed in many other studies (Crone et al., 1998; Dettmers et al., 1995; Ehrsson et al., 2000).
The similarity in the L1 modulation under the fatigue and force-level conditions among
different functional regions in the brain indicates that the primary sensorimotor cortices (C3
and C4) and higher-level secondary and association cortices (Fz, Pz and Cz) modulate a motor
task in a coordinated manner.

Since the first algorithm for calculating the Lyapunov exponents from a time series data was
introduced by Wolf et al. (1985), it has been used in many fields. Kantz et al. (1994) improved
Wolf's algorithm independently and developed a practical method for calculating the largest
Lyapunov exponent. This algorithm works well in presence of noise and for small data sets,
and has been used in processing physiological data (Gonzalez et al., 1999; Lai et al., 2004).
The analytical methods of nonlinear system theory offer new approaches to the analysis of
EEG signals in addition to the conventional methods such as MRCP or spectral analysis.
Compared with the conventional methods, nonlinear analysis reconstructs the signal into a
phase space, and condenses the information into a single value, which reflects a property of
the whole dynamic system. It is worth noting that numerical results of nonlinear measures like
L1 depend on the choice of several input parameters, such as dimension and time lag. Therefore,
the absolute values of L1 should be viewed with caution. A reasonable interpretation should
be based on statistical assessment of L1 values. In our analysis, the data length, the choice of
dimension m, time lagτ and minimum distance ε (see Methods) remained the same for all the
trials within each experimental session of any individual subject. Our conclusion was based
on the statistical evaluation of L1 changes, adding consistency and reliability to our analysis.

Special precautions to minimize noise during the experiments were taken in the data collection.
The subjects were required to neither move their head and body nor to blink their eyes or bite
down on their teeth when squeezing the handgrip device. They were also required to
concentrate on the performance of the task during the experiment. They practiced before the
experiment until they could perform the task as required. Furthermore, data with observable
artifacts were eliminated at the post processing stage.

In summary, L1, as a measurement of complexity or flexibility of a dynamic system, is shown
to be a useful chaotic index in analysis of EEG data. It serves as a relatively sensitive quantity
for objective classification of fatigue stages of the brain and recognition of intensity of motor
command to control various levels of muscle force without involvement of muscle fatigue. The
nonlinear analysis (L1), especially combined with other tools such as MRCP or spectra
analysis, provides a powerful method for revealing functional relevance of rather noisy brain
signals, such as scalp EEG.
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4. EXPERIMENTAL PROCEDURE
Experiment

Subjects and Motor Task—Eight right-handed healthy volunteers (6 men and 2 women,
age = 30.1 ± 2.3 yrs) participated in the study. The experimental procedures were approved by
the Institutional Review Board at the Cleveland Clinic Foundation. All volunteers signed an
informed consent form prior to the participation.

The motor tasks involved handgrip contractions against a force measurement device using the
right arm (see Data Recording below). Two motor tasks were performed in two different days.
Task 1 consisted of intermittent handgrip contractions at 20%, 40%, 60%, and 80% of maximal
voluntary contraction (MVC) force levels (the MVC was determined at the beginning of the
experiment). An oscilloscope was placed facing the subject, the target force was displayed on
its screen as a horizontal cursor. The subjects performed 20 handgrip contractions at each force
level by matching the target. Each trial lasted about 3 s. A 20-s rest was provided after each
contraction to minimize fatigue. The order of performing the four force levels was randomized.
In task 2, the subjects performed handgrip MVCs that resulted in significant fatigue. Each
MVC trial lasted 3 s and followed by a fixed 5-s rest.

Data Recording
Force: Handgrip force was measured by a data-recording system that consisted of a handgrip
device connected to a pressure transducer (EPX-N1 250 PSI, Entran Devices, Inc., Fairfield,
NJ) in a hydraulic environment, and a signal amplifier (DC – 50 Hz) (see Liu et al. (2002) for
details). The handgrip device was a soft plastic bottle that could be comfortably gripped by
hand. The force applied by handgrip was sensed and converted to a voltage signal by the
pressure transducer. The output of the transducer was directed to the amplifier and then to an
input channel of the Spike 2 data acquisition system (version 3.05, Cambridge Electronic
Design, Ltd., Cambridge, UK), which transferred the voltage data to a laptop computer. The
sampling rate for the force data was 100 Hz. A sampled time course of force data during the
experiment is displayed in Fig. 1. Before the experiment, a brief (∼ 3 s) handgrip MVC was
performed and the force was recorded. This MVC force was used to determine the target force
levels. At the end of each experimental (task) session, the subjects exerted another brief
handgrip MVC and the force was measured to examine whether muscle fatigue had set in.

EEG: EEG signals were recorded from the scalp using a 64-channel NeuroSoft SYNAMPS
system (version 4.2, NeuroScan, El Paso, Texas, USA). The subjects were seated in a position
that allowed them to perform the handgrip comfortably. The electrode cap that holds the 64
Ag-AgCl electrodes was placed onto each subject's head based on the International 10−20
positioning method (Jasper, 1958). Conducting gel (Electro-gel™, Electro-Cap International,
Inc., Eaton, OH, USA) was injected into the electrodes to connect the recording surface of each
electrode with the scalp. The impedance of the EEG channels was maintained below 10 KΩ.
One of the 64 electrodes (O2) was used to record the handgrip force. All the remaining 63
electrodes were referenced to the linked mastoids (M1 and M2). With this arrangement, the
force signal was able to serve as the trigger signal for EEG processing (see below).

The EEG signals were band-pass filtered (0.05−70 Hz), amplified (× 75,000), and recorded on
the hard disk of the computer at a sampling rate of 2000 Hz. The subjects were required to
concentrate on the task performance and minimize distractions as much as possible. They were
asked to maintain a stable body position and avoid eye blinks, teeth biting and head movements
during the handgrip contractions, whereas minimal eye blinks and body adjustment were
allowed during the resting periods. Possible sources of distraction or noise, such as sound or
light, were minimized.
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Data Analysis
Trigger and segmentation—The data were processed using house-coded programs within
the Spike2 software package, MatLab (Version 7.0, The MathWorks, Inc., Natick, MA) and
the TISEAN package (Hegger et al., 1999). The raw EEG data were visually inspected and
trials with artifacts due to eye blinks or head movements were excluded (on average 2±2 out
of 100 trials removed).

A trigger was set at the 10% MVC level in the rising position of the force in each trial (Fig.
1). This trigger point was defined as time “0”. In each trial, the EEG signal corresponding to
the time period from −0.75 to 3.0 s (active period) and −3.0 to −2.0 s (rest period) was
segmented and used for data analysis (Fig. 1).

Force analysis—The force data during the holding period of each trial (steady force) was
measured and normalized to each subject's initial MVC in the fatigue experiment. The 100
MVC trials were grouped into 20 blocks with five trials in each block. The force was averaged
in each block and over the eight subjects. Because the actual forces were very close to the target
force levels during the 4-level-force experiment, the target forces (20, 40, 60 and 80% MVC)
were used for the analysis of this task.

Chaos analysis—The EEG data were a sequence of voltage measurement sampled at
discrete time points. To perform non-linear dynamic analysis a multivariate phase space was
established first. The signal sequence was unfolded in the phase space. This procedure is known
as state space reconstruction, which is based on the embedding theorem attributed to Takens
(1981). Briefly, suppose s(1), s(2), ..., s(N) is our sequence of voltage measurements s(t), the
reconstructed trajectory, X, can be expressed as a matrix where each row is a phase-space
vector, i.e.,

(1)

where Xi is the state of the system at discrete time i. Each Xi is given by

(2)

where τ is the time lag or reconstruction delay, and m is the embedding dimension. The total
number of points in the phase space n can be determined as n = N − (m − 1)τ. These Xi replace
the scalar data measurements s(i) with data vectors in an Euclidean m-dimensional space in
which the invariant aspects of the sequence of points s(t) are captured with no loss of
information about the properties of the original system.

Determination of time lag—The time lag τ between successive elements in the delay
vectors is not the subject of the embedding theorem, i.e., it could be arbitrary since the data
items are assumed to have infinite precision and infinite number of length. However, in
practice, the proper choice of the time lag is quite important. If τ is taken too small, there is
almost no difference between the different elements of the delay vectors such that all points
are accumulated around the bisectrix of the embedding space (Casdagli et al., 1991; Gibson et
al., 1992). If τ is taken too large, the different coordinates may not be well correlated, in this
case the reconstructed attractor may become very complicated, even if the underlying ‘true’
attractor is simple.

We determined the time lag τ using the method of Average Mutual Information (AMI)
(Gallager, 1968). AMI is a type of nonlinear correlation function because the definition of
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information requires the joint distribution of the two measurements. Generally, the definition
of AMI between measurement ai drawn from a set A = {ai} and measurement bj drawn from
a set B = {bj} is given by

(3)

where PAB(a,b) is the joint probability density for measurements A and B resulting in values
a and b. PA(a) and PB(b) are the individual probability densities for the measurements of A
and of B, respectively. If the measurement of a value from A resulting in ai is completely
independent of the measurement of a value from B resulting in bj, then PAB(ai,bj) factorizes as
PAB(ai,bj) = PA(ai)PB(bj) and the amount of the mutual information between the measurements
is zero as it should be. In our case, we created a histogram for the probability distribution in
the data. Denote pi as the probability that the signal assumes a value inside the ith bin of the
histogram, and let pij (τ) be the probability that s(t) is in bin i and s(t+τ) is in bin j. Then derived
from Eq.(3), the mutual information for time lag τ reads as

(4)

In the special case of τ = 0, the joint probabilities pij = piδij and the expression yields the Shannon
entropy (Gallager, 1968) of the data distribution. In the limit of large τ, s(t) and s(t +τ) have
nothing to do with each other and pij thus factorizes to pipj and the mutual information becomes
zero. In our study, the AMI was normalized so that I(τ = 0) = 1. A representative AMI curve
of one trial was shown in Fig. 2a. The AMI value decreases as the increase of the time lag. The
time lag where AMI falls to 20% determines a practical value for τ (Sarnthein et al., 1998).
This criterion led to τ ≈ 4 ms for both the fatigue and the force-level data.

Determination of dimension—Once we determined the time lag τ, the next step was to
determine a proper dimension of the attractor. Consider the situation that an m0 dimensional
delay reconstruction is an embedding, but an m0 − 1 dimensional is not. When passing from
m0 to m0 − 1, one simply projects along one coordinate and thus maps different parts of the
attractor onto each other, i.e., two points far away from each other in the higher-dimensional
space could become neighbors in the lower-dimensional space due to projection. Hence, the
dimension is determined by looking at the nearest neighbor of each point Xi in dimension d =
1, 2, ..., and asking whether that neighbor remains a neighbor in dimension d + 1. If all nearest
neighbors remain neighbors as the dimension increases, then all points are true neighbors rather
than being false neighbors due to projection from a higher dimension. This is called the false
nearest neighbors test (Abarbanel, 1996), which works robustly even in the presence of noise.
The percentages of false nearest neighbors of one trial were drawn in Fig. 2b. The percentage
drops down as the dimension increases. Less than 0.1% false nearest neighbors was found at
dimension of 5 or higher in our data analysis. By using this false nearest neighbor method, we
determined the embedding dimension to be 5 for both the fatigue and force level EEG data.

Calculation of the largest Lyapunov exponent (L1)—The largest Lyapunov exponent
L1 is one of the most important indices in describing the properties of a chaos system and it
can be defined as follows (Kantz and Schreiber, 1997).
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Let Xi1 and Xi2 be two points in the phase space with distance ∥Xi1 − Xi2∥ = δ0 = 1. Denote
δΔ i the distance at time i between the two trajectories emerging from these points, i.e., δΔ i =
∥Xi1 + Δ i − Xi2 + Δ i∥. Then L1 is determined by

(5)

A positive L1 means an exponential divergence of nearby trajectories, i.e., chaos. In other
words, L1 is an index to measure how much the outcome of a system depends on the initial
conditions. In this study, we adopted the algorithm introduced by Kantz (1994). It has been
tested to be useful for small data set and also works well in the presence of noise.

Practically, a point Xi0 of the time series in embedding space was chosen and all neighbors
with distance from Xi0 that were smaller than ε were selected. Then the average over the
distances of all neighbors to the reference part of the trajectory as a function of the relative
time was computed. The logarithm of the average distance at time Δ i was calculated (plus the
logarithm of the initial distance). Repeating this for many values of i0, the fluctuations of the
effective expansion rates were averaged out. In formula, we calculated:

(6)

where the reference points Xi0 are the embedding vectors using the determined dimension m
and time lag τ; U(Xi0 ) is the neighborhood of Xi0 with diameter ε . ε can neither be too small
(otherwise few neighbors could be found inside the range of ε, resulting in larger statistical
fluctuations) nor too big (resulting in a very time consuming calculation). According to Kantz
(1994), this algorithm is not sensitive to the choice of ε as long as an acceptable number of
neighbors are found. Based on our preliminary analysis, we set a reasonable value of ε, which
was about 5% of the maximal peak-to-peak interval of the trial.

After the curve S(Δ i) was obtained, a linear range in every S(Δ i) plot was selected and linearly
fitted. The slope was the largest Lyapunov exponent (L1). Fig. 3 shows the plot of the quantity
S as a function of time step Δ i . After a sharp rising, S increases steadily along Δ i starting
from about 0.02 s. After the time step at about 0.2 s, it reaches to a relatively stable value. In
this example, the quantity S shows a linear curve during the time range from 0.02 to 0.2 s. This
portion of S was linearly fitted and thus the slope was determined. For the fatigue experiment,
the 100 trials were segmented into 20 blocks with 5 trials in each block. Within every block,
the L1 values were averaged. For the force level experiment, the 20 trials at each force level
were averaged. Finally, the results of all subjects were grand averaged. The data from both the
active period (−0.75 to 3 s) and rest period (−3 to −2 s) were calculated and then compared.

Statistical Analysis—A two-way ANOVA was performed to examine the effects of the two
factors (fatigue (block) / force level and recording electrode) and their interactions.
Subsequently, a one-way ANOVA on one of the most interesting factors (fatigue / force level)
was performed, followed by multiple comparisons among L1 values at different blocks / force
levels. The differences between the L1s of the active and rest periods at each block / force level
were examined using paired t tests. The significance level for the differences was chosen at
P < 0.05. A linear regression analysis (Pearson correlation) was applied to examine the linearity
of the correlation between L1 and the force (indicated by the correlation coefficient r2 with a
significance level chosen as P < 0.05).
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Fig. 1.
Sample force and EEG time courses and division of the data sections. The upper part is the
force data of a handgrip trial; the lower part is the corresponding EEG signal (C3). The trigger
(time “0”) is defined as the time at the 10% rising point of the force being generated in the
trial. The active period is defined as the time from −0.75 to 3 s. The rest period is from 3 to 2
s prior to the trigger.
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Fig. 2.
(a) Illustration of the relationship between Average Mutual Information (AMI) and time lag
(τ) in a single trial (solid curve). The threshold, where AMI falls to 20% of its maximal interval,
determines a practical value of τ (dashed line). (b) Illustration of percentages of false nearest
neighbors in one trial. Less than 0.1% false nearest neighbors was found at dimension of 5 or
higher, which determines the dimension.

Yao et al. Page 14

Brain Res. Author manuscript; available in PMC 2010 May 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
A sample plot of the quantity S as a function of time step Δ i in one trial. A linear portion of
the S curve (solid curve) is linearly fitted (dashed line). The slope of the fitted line was
determined as the L1 value.
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Fig. 4.
A grand average of relative (%MVC) handgrip force (over 8 subjects) on each trial block
(totally 20 blocks) in the fatigue experiment. Each block is an average of 5 consecutive trials.
The error bar indicates standard error.
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Fig. 5.
Average L1 maps (based on 8 subjects) corresponding to the active period of the force record
in the force-level experiment. Colors indicate values of L1 with red = high L1 and blue = low
L1. Each map (at each force level) is an average of 20 trials across all the subjects. In each
brain map, the nose is represented by the triangle on the top and left hemisphere is on the left.
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Fig. 6.
Grand average (over 8 subjects) of L1 results of the force level experiment. The L1 values from
five major EEG channels at four different force levels (20%, 40%, 60%, and 80% of MVC)
are shown. (a) The L1 results in the active period, and (b) the L1 results in the rest period. “*”
in (a) indicates significant (P < 0.05) correlation coefficient between L1 and force level.
Significant comparisons between L1 values of force levels are marked on the figure. For
example, “(20 : 40)” means that the L1 value at 20% level is significantly different with that
at 40% level, etc. The difference in L1 values between active and rest periods is significant
detected by paired t-test (P < 0.01). No significant differences were observed in the correlation
and L1 amplitude within the data set of the rest period.
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Fig. 7.
Average L1 maps (based on 8 subjects) over the active period of the force record in the fatigue
experiment. Colors indicate values of L1 with red = highest L1 and blue = lowest L1. Each
block is an average of L1 values over 5 consecutive trials followed by a grand average over
all subjects. Block 1 represents the lowest fatigue level and block 20 the highest. In each brain
map, nose is represented by the triangle on the top and left hemisphere is on the left.
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Fig. 8.
Grand average (over 8 subjects) of L1 results for the fatigue experiment. The L1 values from
five major EEG channels (C3, CZ, C4, FZ, and PZ), which are denoted in different symbols,
are drawn for all 20 blocks of the data. Error bars indicate standard errors. (a) The L1 results
in the active period. The correlation coefficients with force were denoted at the corresponding
EEG channels. “*” indicates P < 0.05 and “**” P < 0.01. The significance of comparisons (P
< 0.05) between L1 values of trial blocks is marked on the figure. For example, “(4 : 6, 8, 10
−16)” means L1 of block 4 is significantly different from that of block 6, block 8 and blocks
10 to 16, etc. (b) The L1 results in the rest period. The L1 values in the active period are
significant different (P < 0.01) from those of the rest period detected paired t-test. No significant
differences were observed in the correlation and L1 amplitude within the data set of the rest
period.
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