1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duasnue Joyiny vd-HIN

s NIH Public Access
Y,

Author Manuscript

Published in final edited form as:
Nature. 2008 August 21; 454(7207): 995-999. doi:10.1038/nature07140.

Spatio-temporal correlations and visual signalling in a complete
neuronal population

Jonathan W. PiIIowl, Jonathon Shlensz, Liam Paninski3, Alexander Sher4, Alan M. Litke4,
E. J. Chichilniskyz, and Eero P. Simoncelli®

1 Gatshy Computational Neuroscience Unit, UCL, 17 Queen Square, London WCIN 3AR, UK
2 The Salk Institute, 10010 North Torrey Pines Road, San Diego, California 92037, USA

3 Department of Statistics and Center for Theoretical Neuroscience, Columbia University, 1255 Amsterdam
Avenue, New York, New York 10027, USA

4 Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, 1156 High Street, Santa
Cruz, California 95064, USA

5 Howard Hughes Medical Institute, Center for Neural Science, and Courant Institute of Mathematical
Sciences, New York University, 4 Washington Place, Room 809, New York, New York 10003, USA

Abstract

Statistical dependencies in the responses of sensory neurons govern both the amount of stimulus
information conveyed and the means by which downstream neurons can extract it. Although a variety
of measurements indicate the existence of such dependenciesl_S, their origin and importance for
neural coding are poorly understood. Here we analyse the functional significance of correlated firing
in a complete population of macaque parasol retinal ganglion cells using a model of multi-neuron
spike responses4’5. The model, with parameters fit directly to physiological data, simultaneously
captures both the stimulus dependence and detailed spatio-temporal correlations in population
responses, and provides two insights into the structure of the neural code. First, neural encoding at
the population level is less noisy than one would expect from the variability of individual neurons:
spike times are more precise, and can be predicted more accurately when the spiking of neighbouring
neurons is taken into account. Second, correlations provide additional sensory information: optimal,
model-based decoding that exploits the response correlation structure extracts 20% more information
about the visual scene than decoding under the assumption of independence, and preserves 40% more
visual information than optimal linear decoding6. This model-based approach reveals the role of
correlated activity in the retinal coding of visual stimuli, and provides a general framework for
understanding the importance of correlated activity in populations of neurons.

How does the spiking activity of a neural population represent the sensory environment? The
answer depends critically on the structure of neuronal correlations, or the tendency of groups
of neurons to fire temporally coordinated spike patterns. The statistics of such patterns have
been studied in a variety of brain areas, and their significance in the processing and
representation of sensory information has been debated extensively2*3'7‘13
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Previous studies have examined visual coding by pairs of neuronst! and the statistics of
simultaneous firing patterns in larger neural populations-*:-2. However, no previous approach
has addressed how correlated spiking activity in complete neural populations depends on the
pattern of visual stimulation, or has answered the question of how such dependencies affect
the encoding of visual stimuli.

Here we introduce a model-based methodology for studying this problem. We describe the
encoding of stimuli in the spike trains of a neural population with a generalized linear model
(Fig. 1a), a generalization of the well-known linear—nonlinear—Poisson (LNP) cascade
model#:16.17 In this model, each cell’s input is described by a set of linear filters: a stimulus
filter, or spatio-temporal receptive field; a post-spike filter, which captures dependencies on
spike-train history (for example, refractoriness, burstiness and adaptation); and a set of
coupling filters, which capture dependencies on the recent spiking of other cells. For each
neuron, the summed filter responses are exponentiated to obtain an instantaneous spike rate.
This is equivalent to exponentiating the filter outputs and then multiplying; the exponentiated
post-spike and coupling filters (as plotted in Fig. 1) may therefore be interpreted as spike-
induced gain adjustments of the neuron’s firing rate.

Although this model is strictly phenomenological, its components can be loosely compared to
biophysical mechanisms: the stimulus filter approximates the spatio-temporal integration of
light in the outer retina and passive dendritic filtering; the post-spike filter mimics voltage-
activated currents following a spike; coupling filters resemble synaptic or electrical interactions
between cells (and can mimic the effects of shared input noise); and the exponential
nonlinearity implements a ‘soft threshold’, converting membrane potential to instantaneous
spike probability. Note that the post-spike and coupling filters, which allow stochastic spiking
in one cell to affect subsequent population activity, give rise to shared, non-Poisson variability
in the model response.

We fit the model to data recorded in vitro from a population of 27 ON and OFF parasol ganglion
cells (RGCs) in a small patch of isolated macaque monkey retina, stimulated with 120-Hz
spatio-temporal binary white noise. The receptive fields of each of the two cell types formed
a complete mosaic covering a small reglion of visual space (Fig. 1b), indicating that every
parasol cell in this region was recorded 518 sych complete recordings, which have not been
achieved elsewhere in the mammalian nervous system, are essential for understanding visual
coding in neural populations.

The model contains many parameters that speci?/ the shapes of all filters, but fitting by
maximizing likelihood remains highly tractable®. A penalty on coupling filters was used to
obtain a minimally sufficient set of coupling filters, which yields an estimate of the network’s
functional connectivity19’20.

Figure 1 shows the estimated filters describing input to example ON and OFF cells. The
stimulus filters exhibit centre-surround receptive field organization consistent with previous
characterizations of parasol cells. Post-spike filters show the time course of recovery from
refractoriness after a spike, and coupling filters show the effects of spikes from nearby cells:
for the ON cell (top), spikes in neighbouring ON cells elicit a large, transient excitation
(increasing the instantaneous spike rate by a factor of three), whereas spikes in nearby OFF
cells elicit suppression. These effects are reversed in the OFF cell, which is excited/suppressed
by spikes in neighbouring OFF/ON cells. Both populations exhibit approximate nearest-
neighbour connectivity, with coupling strength falling as a function of distance between
receptive field centres®. We found that fitted stimulus filters have smaller surrounds than the
spike-triggered average, indicating that a portion of the classical surround can be explained by
interactions between cells2L (see Supplementary Information).
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To assess accuracy in capturing the statistical dependencies in population responses, we
compared the pairwise cross-correlation function (CCF) of RGCs and simulated model spike
trains (Fig. 2). For nearby ON-ON and OFF-OFF pairs, the CCF exhibits a sharp peak at zero,
indicating the prevalence of synchronous spikes; however, for ON-OFF pairs, a trough at zero
indicates an absence of synchrony. For all 351 possible pairings, the model accurately
reproduces the CCF (Fig. 2a—c, e, f).

To examine whether inter-neuronal coupling was necessary to capture the response correlation
structure, we re-fitted the model without coupling filters (that is, so that each cell’s response
depends only on the stimulus and its own spike-train history). This ‘uncoupled model’ assumes
that cells encode the stimulus independently, although correlations may still arise from the
overlap of stimulus filters. However, the uncoupled model fails to reproduce the sharp CCF
peaks observed in the data. These peaks are also absent from CCFs computed on trial-shuffled
data, indicating that fast-timescale correlations are not stimulus-induced and therefore cannot
be captured by any independent encoding model.

Higher-order statistical dependencies were considered by inspecting correlations in three-
neuron groups: triplet CCFs show the spike rate of one cell as a function of the relative time
to spikes in two other cells (Fig. 2e—g)1 . For adjacent neurons of the same type, triplet CCFs
have substantial peaks at zero (“triplet synchrony’), which are well matched by the full model.

Although the full and uncoupled models differ substantially in their statistical dependencies,
the two models predict average light responses in individual cells with nearly identical
accuracy, capturing 80-95% of the variance in the peri-stimulus time histogram (PSTH) in 26
out of 27 cells (Fig. 3a—c). Both models therefore accurately describe average single-cell
responses to new stimuli. However, the full model achieves higher accuracy, predicting multi-
neuronal spike responses on asingle trial (8 + 3% more bits per spike, Fig. 3d). This discrepancy
can be explained by the fact that noise is shared across neurons. Shared variability means that
population activity carries information about a single cell’s response (owing to coupling
between cells) beyond that provided by the stimulus alone. Individual neurons therefore appear
less noisy when conditioned on spiking activity in the rest of the population than they appear
in raster plots.

We measured the effect of correlations on single-trial, single-cell spike-train prediction by
using the model to draw samples of a single cell’s response given both the stimulus and the
spiking activity in the rest of the population on a single trial (Fig. 3e, f). Averaging the resulting
raster plot gives a prediction of the cell’s single-trial spike rate, or ‘population-conditioned’
PSTH for a single trial. We compared these predictions with the cell’s true spike times (binned
at 2 ms) across all trials and found that on nearly every trial, the model-based prediction is
more highly correlated with the observed spikes than the neuron’s full PSTH (Fig. 3g). Note
that the full PSTH achieves the highest correlation possible for any trial-independent
prediction. Thus, by exploiting the correlation structure, the coupled model predicts single-
neuron spike times more accurately than any independent encoding model.

Although the full model accurately captures dependencies in the activity of RGCs, it is not
obvious a priori whether these dependencies affect the amount of sensory information
conveyed by RGC responses. In principle, the correlation structure could be necessary to
predict the responses, but not to extract the stimulus information that the responses carry13.
To examine this issue directly, we used the full and uncoupled models to perform Bayesian
decoding of the population response (Fig. 4a), which optimally reconstructs stimuli given an
accurate description of the encoding process. For comparison, we also performed Bayesian
decoding under a Poisson (that is, LNP) model and optimal linear decodings.
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Each decoding method was used to estimate short (150-ms) segments of the stimulus given all
relevant spike times from the full population (Fig. 4b). Bayesian decoding under the coupled
model recovers 20% more information than Bayesian decoding under the uncoupled model,
indicating that knowledge of the correlation structure is critical for extracting all sensory
information contained in the population response. This improvement was invariant to
enhancements of the model’s stimulus filters and nonlinearities (see Supplementary
Information), indicating that the difference in performance arises specifically from the coupled
model’s ability to incorporate the correlation structure. Our results also show that spike history
is relevant for decoding (a Poisson model preserves 6% less information than the uncoupled
model22) and that restricting to a linear decoder further reduces the information that can be
recovered from RGC responses.

Decoding analysis can also be used to examine the coding fidelity of specific stimulus features.
Asasimple illustration, we examined the temporal frequency spectrum of reconstructed stimuli
and found that the response correlation structure is most important for decoding those stimulus
frequencies (6—-20 Hz) that are encoded with highest fidelity (Fig. 4c).

These results demonstrate that the responses of a population of retinal ganglion cells are well
described by a generalized linear model, and that correlations in the response can be exploited
to recover 20% more visual information than if responses are regarded as independent given
the stimulus. In contrast, Sg)revious studies have reported this information gain to be less than
10% for pairs of neurons 12 However, pairwise analyses provide little evidence about the
importance of correlations across an entire population. Second-order correlations between pairs
of neurons could give rise to either much larger (scaling with the number of neurons n) or much
smaller (falling as 1/n) gains for a full population (see Supplementary Information). To
compare more directly with previous findings, we performed Bayesian decoding using isolated
pairs of neurons from the same population; we found a <10% gain in sensory information when
correlations were included (see Supplementary Information). This is consistent with previous
findings, and shows that the information gain for a complete population is larger than that
observed for pairs. We also compared the model to a pairwise maximum-entropy model, which
has recently been shown to capture the instantaneous spiking statistics of groups of retinal
ganglion cells1415 The coupled model exhibits similar accuracy in capturing these statistics,
but has the advantage that it accounts for the temporal correlation structure and stimulus
dependence of responses, which are essential for assessing the effect of correlations on sensory
coding.

Although it provides an accurate functional description of correlated spike responses, the
generalized linear model does not reveal the biophysical mechanisms underlying the statistical
dependencies between neurons: coupling does not necessarily imply anatomical connections
between cells, but could (for example) reflect dependencies due to shared input noisel. The
model also lacks several mechanisms known to exist in retinal ganglion cells (for example,
contrast gain-control23), which may be required for characterizing responses to a wider variety
of stimuli. One additional caveat is that Bayesian decoding provides a tool for measuring the
sensory information available in the population response, but it does not reveal whether the
brain makes use of this information. Physiological interpretations of the model and mechanisms
for neural read-out of sensory information in higher brain areas are thus important directions
for future research.

Nevertheless, the generalized linear model offers a concise, computationally tractable
description of the population encoding process, and provides the first generative description
of the space—time dependencies in stimulus-induced population activity. It allows us to quantify
the relative contributions of stimulus, spike history and network interactions to the encoding
and decoding of visual stimuli, and clarifies the relationship between single-cell and population
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variability. More generally, the model can be used to assess which features of the visual
environment are encoded with highest and lowest fidelity, and to determine how the structure
of the neural code constrains perceptual capabilities. We expect this framework to extend to
other brain areas, and to have an important role in revealing the information processing
capabilities of spiking neural populati0n54'

METHODS SUMMARY

Data

Fitting

Encoding

Decoding

Multi-electrode extracellular recordings were obtained in vitro from a segment of isolated,
peripheral macaque monkey (Macaca mulatta) retina, and analysis was restricted to two cell
types (ON and OFF parasol)15'26'27. A standard spike-sorting procedure, followed by a
specialized statistical method for detecting simultaneous spikes, was used to sort spikes (see
ref. 28). The retina was stimulated with a photopic, achromatic, optically reduced spatio-
temporal binary white noise stimulus refreshing at 120 Hz, with a root-mean-square contrast
of 96%.

Model parameters were fitted to 7 min of spike responses to a non-repeating stimulus. Each
cell’s parameters consisted of a stimulus filter (parametrized as a rank-2 matrix), a spike-history
filter, a set of incoming coupling filters and a constant. Temporal filters were represented in a
basis of cosine ‘bumps’22. Parameters for the uncoupled and Poisson (LNP) models were fitted
independently. Parameters were fitted by penalized maximum likelihood S, with an L1
penalty on the vector length of coupling filters to eliminate unnecessary connections.

Spike prediction was cross-validated using the log-likelihood of 5 min of novel spiking data
(scaled to units of bits per s). Repeat rasters were obtained using 200 presentations of a novel
10-s stimulus. Population-conditional rasters were obtained from the coupled model by
sampling the model-defined probability distribution over the neuron’s response given the
stimulus and surrounding-population activity on a single trial29.

Population responses were decoded using the Bayes’ least-squares estimator (posterior mean)
to reconstruct 18-sample single-pixel stimulus segments (cross-validation data). Linear
decoding was performed using the optimal linear estimator®. Decoding performance was
quantified using the log signal-to-noise ratio (SNR) of each technique, which gives an estimate
of mutual information. Breakdown by temporal frequency was obtained by computing the
Fourier power spectra of the stimuli and residuals and then computing log SNR.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Multi-neuron encoding model and fitted parameters

a, Model schematic for two coupled neurons: each neuron has a stimulus filter, a post-spike
filter and coupling filters that capture dependencies on spiking in other neurons. Summed filter
output passes through an exponential nonlinearity to produce the instantaneous spike rate. b,
Mosaics of 11 ON and 16 OFF retinal ganglion cell receptive fields, tiling a small region of
visual space. Ellipses represent 1 s.d. of a Gaussian fit to each receptive field centre; the square
grid indicates stimulus pixels. c—e, Parameters for an example ON cell. ¢, Temporal and spatial
components of centre (red) and surround (blue) filter components, the difference of which is
the full stimulus filter. d, Exponentiated post-spike filter, which may be interpreted as
multiplying the spike rate after a spike at time zero. It produces a brief refractory period and
gradual recovery (with a slight overshoot). e, Connectivity and coupling filters from other cells
in the population. The black filled ellipse is this cell’s RF centre, and blue and red lines show
connections from neighbouring OFF and ON cells, respectively (line thickness indicates
coupling strength). Below, exponentiated coupling filters show the multiplicative effect on this
cell’s spike rate after a spike in a neighbouring cell. f—h, Analogous plots for an example OFF
cell.
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Figure 2. Analysis of response correlations

a—c, Example CCFs of retinal responses, and simulated responses of the full and uncoupled
models, for two ON cells (a), two OFF cells (b) and an ON-OFF pair (c). The baseline is
subtracted so that units are in spikes per s above (or below) the cell’s mean rate. d, Receptive
field mosaic overlaid with arbitrary labels. Dark grey indicates cells shown in Fig. 1; light grey
indicates cells used for triple correlations (h, i). e, CCFs between all ON pairs, where the i,jth
plot shows the CCF between cell i and cell j. The grey box indicates the CCF plotted in a. f,
g, CCFs between all OFF-OFF pairs (f) and all ON-OFF pairs (g; abscissa height is 30 Hz).
h, Third-order (triplet) CCF between three adjacent ON cells, showing the instantaneous spike
rate of cell 5 as a function of the relative spike time in cells 4 and 8 (left, RGCs; middle, full
model; right, uncoupled model). i, Analogous triplet CCF for OFF cells 15, 16 and 22. |,
Comparison of the triplet CCF peak in RGC and model responses (full model, black;
uncoupled, grey) for randomly selected triplets of adjacent ON (open) and OFF (filled) cells.
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Figure 3. Spike-train prediction comparison
a, Raster of responses of an ON RGC to 25 repeats of a novel 1-s stimulus (top), and responses
of uncoupled (middle) and full (bottom) models to the same stimulus. b, PSTH of the RGC
(black), uncoupled (blue) and coupled (red) model; both models account for ~84% of the
variance of the true PSTH. ¢, PSTH prediction by full and uncoupled models, showing that
coupling confers no advantage in predicting average responses. d, Log-likelihood of novel
RGC spike responses under full and uncoupled models; the full model provides 8% more
information about novel spike trains. e, Magnified 150-ms portion of RGC raster and PSTH
(grey box in a). Red dots highlight RGC spike times on selected individual trials, which are
replotted in f. f, Single-trial spike-train prediction using the coupled model. The top half of
each plot shows the population activity on a single trial: true spike times of the cell (red dots),
coupled ON cells (light grey dots) and coupled OFF cells (dark grey dots; each line in the raster
shows the spike times of a different cell). The bottom half of each plot shows a raster of 50
predicted responses of the cell in question, using both the stimulus and coupled responses
(shown above) to predict spike trains. The red trace shows the single-trial rate prediction
(population-conditioned PSTH), compared with true PSTH of the cell (black trace, identical
in all plots). g, Correlation coefficient of true spike trains with the PSTH (ordinate) and with
population-conditioned predictions (abscissa); the full model predicts single-trial responses
with higher accuracy than the true PSTH.
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Figure 4. Decoding performance comparison

a, Shown is a Bayesian decoding schematic: to estimate an unknown stimulus segment from
a set of observed spike times (highlighted in boxes), the stimulus prior distribution p(s) is
multiplied by the model-defined likelihood p(r|s) to obtain the posterior p(s|r). The posterior
mean is the Bayes’ least-squares stimulus estimate. b, Log of the SNR for linear decoding, as
well as for Bayesian decoding under the Poisson, uncoupled and full models®. The full model
preserves 20% more information than the uncoupled model, which indicates that there is
additional sensory information available from the population response when correlations are
taken into account. Error bars show 95% confidence intervals based on 2,000 bootstrap
resamplings of 3,000 decoded stimulus segments. ¢, Log SNR decomposed as a function of
temporal frequency for various decoding methods (Poisson omitted for clarity).
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