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Variation, Signal, and Noise in Cerebellar Sensory–Motor
Processing for Smooth-Pursuit Eye Movements

Javier F. Medina and Stephen G. Lisberger
Howard Hughes Medical Institute, Department of Physiology, W. M. Keck Foundation Center for Integrative Neuroscience, University of California, San
Francisco, California 94143-0444

Neural responses are variable, yet motor performance can be quite precise. To ask how neural signal and noise are processed in the brain
during sensory–motor behavior, we have evaluated the trial-by-trial variation of Purkinje cell (PC) activity in the floccular complex of the
cerebellum, an intermediate stage in the neural circuit for smooth-pursuit eye movements. We find strong correlations between small
trial-by-trial variations in the simple spike activity of individual PCs and the eye movements at the initiation of pursuit. The correlation
is lower but still present during steady-state pursuit. Recordings from a few pairs of PCs verified the predictions of a model of the PC
population, that there is a transition from highly covariant PC activity during movement initiation to more independent activity later on.
Application to the data of a theoretical and computational analysis suggests that variation in pursuit initiation arises mostly from
variation in visual motion signals that provide common inputs to the PC population. Variation in eye movement during steady-state
pursuit can be attributed primarily to signal-dependent motor noise that arises downstream from PCs.
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Introduction
Even Tiger Woods cannot replicate the same perfect golf swing
over and over. Some motor variation is inevitable (Todorov and
Jordan, 2002; Davids et al., 2006). Still, given the amount of noise
in the operation of individual neurons (Calvin and Stevens, 1967;
White et al., 2000), and the conspicuously variable responses of
individual neurons to identical presentations of the same stimu-
lus (Calvin and Stevens, 1968; Softky and Koch, 1993; Shadlen
and Newsome, 1994; Stein et al., 2005), movements can be re-
markably precise. To achieve precise movements, the brain must
reduce neural noise at each processing level (e.g., by pooling or
averaging the activity of many upstream neurons) (Shadlen and
Newsome, 1994; Pouget et al., 2000; van Beers et al., 2002; Car-
mena et al., 2005; Averbeck et al., 2006). At the same time, noise
will be added at each level because of the probabilistic nature of
synaptic transmission and action potential generation (Calvin
and Stevens, 1967; White et al., 2000). How the brain achieves
“reliable computation with unreliable components” (von Neu-
mann, 1956) will depend on how much noise is added and re-
duced at each processing level, and ultimately on the trial-to-trial
variation of neural responses.

We can summarize the factors that contribute to the trial-to-

trial variation in the spike rate of any individual neuron in terms
of two components: correlated variation that is shared across a
population of neurons versus independent noise that is private to
each individual neuron. Averaging the activity of many neurons
will reduce independent noise to a degree that depends on the size
of the neuronal population, but correlated variation cannot be
“averaged away” (Shadlen and Newsome, 1994; Abbott and
Dayan, 1999; Averbeck et al., 2006). If a population of sensory
neurons with some correlated variation provided a strong com-
mon input to multiple neurons at the next level, then the activity
of the downstream neurons would also covary from trial to trial.
The resulting correlated component of neural responses would
propagate inexorably onward, ultimately leading to motor vari-
ation in the behavior.

In the present study, we have developed and used a new ap-
proach to examine how neural signals and noise are processed by
the brain during sensory–motor behavior. Based on an analysis of
the trial-by-trial correlations between neural and behavioral re-
sponses, we examine the neural sources of motor variation up-
stream and downstream of the floccular complex of the cerebel-
lum, an intermediate stage in the neural circuit that drives
smooth-pursuit eye movements (Robinson and Fuchs 2001;
Thier and Ilg, 2005). Our data reveal surprisingly strong trial-by-
trial correlations between the variation in pursuit eye movements
and the responses of individual Purkinje cells (PCs) during the
initiation of pursuit, as well as remarkably small amounts of vari-
ance reduction between the responses of individual PCs and eye
movement behavior. Estimates of the variance of noise added
downstream from the cerebellum and the trial-by-trial correla-
tions between the firing of pairs of PCs support the hypothesis
that most of the variation in the initiation of pursuit arises up-
stream from the cerebellum, presumably from noise in visual
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motion processing (Osborne et al., 2005). Motor noise is added
downstream of the cerebellum (Jones et al., 2002; van Beers et al.,
2004) but makes a significant contribution to motor variation
only later in the response.

Materials and Methods
Eye movements were recorded from two rhesus monkeys (Macaca mu-
latta) that had been trained and prepared for experiments using methods
described previously (Medina et al., 2005; Ramachandran and Lisberger,
2005). During each experimental session, the monkey sat in a dimly lit
room inside a specialized primate chair with its head immobilized and
received a water reward for accurately tracking a small spot presented on
a screen in front of it. While the monkey was tracking, we recorded the
activity of well isolated PCs in the right floccular complex of the cerebel-
lum. The Institutional Animal Care and Use Committee at the University
of California, San Francisco had approved all procedures.

Pursuit task. The monkey normally completed �1200 pursuit trials in
a session. At the start of each trial, a stationary target appeared at the
center of the screen, and the monkey was required to fixate it for an
interval that was randomized between 600 and 1200 ms. To minimize the
occurrence of saccades during the initiation of pursuit, target trajectories
followed standard step/ramp motion (Rashbass, 1961); after the fixation
period, the target was displaced eccentric to the position of gaze (step)
and immediately began moving toward the fixation point at constant
speed (ramp) for a total duration of 750 ms. If the monkey kept gaze
within a 2 � 2° window around the moving target, then he received a
water reward at the end of the trial. The direction of target motion for
each particular trial was either in the ON direction of the PC being
recorded (normally RIGHT or DOWN) or in the OFF direction (nor-
mally LEFT or UP), although only the data for the ON direction were
subjected to the analyses described later. The speed of the target was 10,
20, or 30°/s. Both direction and speed were varied randomly from one
trial to the next so that the monkey could not anticipate the target
trajectory.

The magnetic search coil technique was used to obtain real-time sig-

nals proportional to horizontal and vertical eye
position (Fuchs and Robinson, 1966), which
then were passed through an analog circuit to
create signals proportional to horizontal and
vertical eye velocity. The circuit differentiated
frequency content from 0 to 25 Hz and filtered
higher frequencies with a roll-off of 20 dB per
decade. Analog signals were digitized at 1 kHz;
the digital records of eye velocity were differen-
tiated to obtain the eye acceleration.

Single-unit recording. Recordings from single
PCs were made with glass-insulated platinum–
iridium microelectrodes manufactured in our
laboratory. Recordings from pairs of PCs were
made with glass-insulated tungsten microelec-
trodes purchased from Alpha Omega Technol-
ogies (Brielle, NJ) and were driven into the
brain using a four-tower NAN drive from
Plexon (Dallas, TX). The approach to the floc-
cular complex was the same as has been de-
scribed previously (Stone and Lisberger, 1990).
PCs could be distinguished from all the other
neuron types in the cerebellar cortex by the
presence of occasional complex spikes (see Fig.
1C). The recorded extracellular unit activity
was passed through a standard head stage, am-
plified, filtered (bandpass, 100 Hz to 10 kHz),
and converted into trigger pulses off-line under
experimenter control using a spike sorter/dis-
criminator. We verified that the recordings
were from single PCs by viewing records digi-
tized at 25 kHz and checking that there were no
instances in which two spikes occurred within a
refractory period.

Data analysis. Eye velocity and extracellular unit activity were analyzed
after each experiment using an interactive computer program. The hor-
izontal and vertical eye velocity traces from individual trials were dis-
played on the computer screen, and all saccades were excised manually.
Any behavioral or neural data in the interval between the start and the
end of the rapid eye deflections associated with each saccade was treated
as missing. To evaluate the millisecond-by-millisecond correlation be-
tween the firing rate and the behavior, we started by reducing the three
dimensions of eye movement to a single dimension and converting it to
the same units as firing rate. For each PC, we computed the inverse model
that relates average firing rate to the average eye position, velocity, and
acceleration (see Eq. 1 in Results). We then used the average inverse
model to predict the firing rate as a function of time for each trial that
contributed to the average. To obtain a comparable index of the firing
rate of the PC, we used a reciprocal of the interspike interval algorithm to
convert the spike train for each individual pursuit trial to a continuous
firing rate variable (Lisberger and Pavelko, 1986).

We calculated the correlation matrix after averaging the predicted and
actual firing rates in 20 ms bins. Thus, the value of the correlation matrix
at (t1,t2) indicates the correlation coefficient between two separate arrays,
each one comprising as many elements as there were trials for a given
speed of target motion in the ON direction. Each element in the first array
contained the average value of the inverse model prediction in the inter-
val [t1 � 9, t1 � 10] for a particular trial, and the corresponding element
in the second array contained the average value of the actual firing rate in
the interval [t2 � 9, t2 � 10] for the same trial. To assess the significance
of the correlation, we bootstrapped to compute “control” correlation
matrices in which the elements of the arrays (i.e., the trials) were shuffled
randomly. We also verified that the correlation matrix did not change
materially when we used non-overlapping sets of trials to compute the
inverse model and the neuron– behavior correlation.

Results
We recorded neural and behavioral responses simultaneously as
monkeys moved their eyes to track repeated presentations of a
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Figure 1. Behavioral and neural variation during smooth-pursuit eye movements. A, Raster showing the neural responses of a
single PC to 200 repetitions of a pursuit trial in which the target moved at 30°/s in the ON direction of the PC under study. B, Eye
movement (top three plots) and firing rate (bottom plot) for the trials shown in A. The thick and thin black traces illustrate the time
courses of the average and SD of each parameter; the gray fringe shows all responses superimposed. The intervals labeled i and s
indicate 100 ms intervals that were used for analyzing the variance of eye motion and firing rate during the initiation and steady
state of pursuit, respectively. C, Example waveform records showing the occurrence of a complex spike, marked by the asterisk on
the expanded trace.
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target that was initially stationary and then
moved at constant speed on a display in
front of them. The raster in Figure 1A
shows the responses of an example PC to
200 repetitions of the same stimulus. The
raw record in Figure 1C shows an example
of a complex spike response from this re-
cording (asterisk), verifying that it came
from a PC. Figure 1A reveals a vigorous
and consistent pattern of spiking from trial
to trial. Yet, analysis of the variance reveals
considerable trial-by-trial variation in the
firing rate of the PC and in the eye posi-
tion, velocity, and acceleration in the same
trials (Fig. 1B). The SD of each parameter
of eye motion (thin traces) was small dur-
ing fixation, increased quickly during the
first 100 ms of the response as the eyes ac-
celerated to match the speed of the target,
and remained high and fairly constant
throughout the first 500 ms of pursuit, the
interval we used for most of our quantitative
analyses. The time course of behavioral vari-
ation was similar for all 51 recording ses-
sions. Typical SDs of the smooth component
of eye motion during the initiation of pursuit
(interval marked “i”) were as follows: eye po-
sition, 0.3–0.6°; eye velocity, 2–3°/s; eye ac-
celeration, 40–70°/s2.

Neuron– behavior correlations
during pursuit
Before computing trial-by-trial correla-
tions between neural and behavioral re-
sponses, it was necessary to convert our
measurements of smooth eye movement into the same units as
firing rate and to reduce the three dimensions of eye movement
(position, velocity, and acceleration) to the single dimension of
firing rate. For each PC, we computed the average firing rate
across trials on a millisecond-by-millisecond basis and used a
regression model developed by others to fit the average firing rate
as a weighted, linear combination of the average eye position,
velocity, and acceleration (Shidara et al., 1993; Leung et al., 2000;
Roitman et al., 2005):

fr�t� � aË�t � �t� � rĖ�t � �t� � kE�t � �t� � rr (1)

where rr is the spontaneous firing rate during fixation and �t
indicates by how much time the eye movement averages need to
be shifted to optimize the fit to the average firing rate (�8 ms for
the PC analyzed in Figs. 1 and 2). The values of parameters a, r,
and k represent the average sensitivity of the PC to eye accelera-
tion (0.19 spikes/s per degrees/s2), velocity (0.68 spikes/s per de-
grees/s), and position (�0.39 spikes/s per degree). The terms
aË(t), rĖ(t), and kE(t) represent the contributions of average ac-
celeration, velocity, and position to the average firing rate (Fig.
2A, bottom plot). As shown in detail below, the regression model
provided an excellent fit to the average firing rate during both the
initiation and the steady-state phases of the pursuit response, for
this and all of the other 51 PCs in our sample. As reported previ-
ously (Takemura et al., 2001), more elaborate models with
acceleration-dependent nonlinearities, or extra sensory terms re-
lated to visual signals, produced only marginally better fits. Their
use did not alter any of our conclusions.

Equation 1 is normally used to predict the time-varying aver-
age firing rate from the time-varying averages of eye acceleration,
velocity, and position, but in our analysis, we used it to obtain a
surrogate of the eye movement for each trial in the units of firing
rate (spikes/s). We used Equation 1 and the values of a, r, k, and rr
from the average model to convert the time-varying eye acceler-
ation, velocity, and position traces in each trial into a prediction
of the firing rate in that trial (Fig. 2A, middle plot, the “predicted
firing rate”).

During the initial pursuit response, we found a strong corre-
lation between the trial-by-trial variations in predicted and actual
firing rate of PCs. The color of each pixel in the correlation matrix
of Figure 2B indicates the trial-by-trial correlation coefficient (R)
at the corresponding pair of time points along the x- and y-axes.
R reached values as high as 0.7 for this particular PC, as shown by
the white pixels in the center of the yellow blob in the top left
quadrant of the matrix. A more conventional view of the corre-
lation is shown in Figure 2C by plotting predicted versus actual
firing rate for all individual trials in three separate scatter plots
that represent data from three time points (Fig. 2A, f, i, and s).
The correlation is almost nonexistent during fixation (f, r �
0.08), strongest during the initiation of pursuit (i, r � 0.68), and
weaker during steady-state pursuit (s, r � 0.29). Because the
prediction of the model defined by Equation 1 is linearly related
to the eye movements that comprise the behavior, we use the
term “neuron– behavior correlation” or “RNB” to describe the
correlations outlined in Figure 2, B and C. For the same reason,
we use the predicted firing rate as an index of the eye movement
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Figure 2. Correlation between eye movements and the firing rate of an example PC. A, The top two sets of traces show actual
and predicted firing rate for the PC in Figure 1; black and gray lines show means and single trial responses. The bottom set of traces
shows the contributions of the average eye position (Pos), velocity (Vel), and acceleration (Accel) to the average predicted firing
rate. B, “Correlation matrix” that uses the color of each pixel to indicate the strength of the trial-by-trial correlation between
predicted firing rate at the time on the x-axis and the actual firing rate at the time on the y-axis. C, Trial-by-trial comparison
between actual and predicted firing rate at three separate times: fixation, initiation, and steady-state pursuit; each point shows
data from a different trial. Colored lines show the result of linear regression analysis. The labels f, i, and s indicate specific times
within the intervals indicated by the same indices in Figure 1.
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and its variation and refer to it in our equations with the subscript
“EYE”, even though it has the same units as firing rate.

All 51 PCs in our sample had neuron– behavior correlations
with features very similar to those of the example PC shown in
Figure 2. In the correlation matrices for the example PC (Fig. 2B)
and the population average across all 51 PCs (Fig. 3B), the region
of statistically significant neuron– behavior correlation appears
as a thin band running more or less along the diagonal from top
left to bottom right. Thus, the temporal window of the correla-
tions was brief: they were local in time. There also is a period of
negative correlations extending both to the right and down from
the time of the highest correlation, during the initiation of pur-
suit. We attribute these features to negative correlations in the
autocorrelation matrices for eye velocity and eye acceleration
(supplemental Fig. 1, available at www.jneurosci.org as supple-
mental material). Correlations were retained in the face of cross-
validation analysis and were lost when the eye movements and
firing rates were shuffled across trials (see Materials and
Methods).

Figure 3C shows on a neuron-by-neuron basis that the neu-
ron– behavior correlation was consistently larger during the ini-
tiation of pursuit than later in the response: each PC plots well
above the unity line. The average value of RNB during the initia-
tion of pursuit across the population of 51 PCs was slightly 	0.6

when target speed was 10°/s and 
0.6 when target speed was 20 or
30°/s. The average value of RNB during steady-state pursuit was
�0.12 for all speeds of target motion.

Several trivial explanations do not seem to be able to account
for the differences in RNB between the initial and the steady-state
components of the pursuit response. First, the value of RNB did
not depend on whether the correlation matrix was computed
with all traces aligned on the onset of target motion, or after
shifting each neural/behavioral response in time so that all eye
movement traces were aligned on the moment of the initiation of
pursuit (Fig. 3A). This rules out the uninteresting possibility that
RNB is higher during pursuit initiation simply because of slight
trial-by-trial variation in the timing of the onset of pursuit. Sec-
ond, the difference in the correlation coefficient between initia-
tion and steady-state pursuit cannot be attributed to systematic
differences in the variance of either the neural or the behavioral
responses across phases of pursuit, because these differences were
small and not consistently higher or lower for any particular
phase of the pursuit response across our sample of PCs (Fig. 1C).
Third, the lower values of RNB during steady-state pursuit cannot
be attributed to a worse fit of the regression model of Equation 1
during steady-state pursuit, because the fits were equally good in
both the initiation and steady-state phases (Fig. 4A,D). Linear
regression analysis of the average firing rate of the model versus
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the actual average firing rate across all PCs revealed regression
slopes of 0.936 and 0.951 in the initiation and steady-state inter-
vals, with correlation coefficients of 0.98 in both cases (Fig.
4A,D). Furthermore, the value of RNB during steady-state pursuit
did not increase when the regression model was fitted only to the
steady-state phase of the behavior (Fig. 4E), whereas that during
the initiation of pursuit decreased in seven PCs (Fig. 4B). Finally,
we cannot explain the low values of RNB during steady-state pur-
suit as a consequence of selection bias or a failure to sample PCs
with a strong response during this phase of the movement. We
recorded from all PCs that were responsive, during the initiation,
the steady-state, or both phases of the pursuit response. Our sam-
ple shows the same range of response amplitudes during the ini-
tiation and steady-state of pursuit as found in a previous study
from our laboratory (Krauzlis and Lisberger, 1994) (Fig. 4C), and
the relationship between the value of RNB and response ampli-
tude during steady-state pursuit (Fig. 4F) gives no evidence that
neurons with small responses that we may have failed to sample
would yield large values of RNB.

To quantify the contribution of RNB to the total variance in
firing rate as a function of time, we selected the 45° diagonal (top
left to bottom right) through the correlation matrix that had the
largest summed value of correlations and measured the value of
RNB at each time along that diagonal: Figure 5A shows RNB as a
function of time along the diagonal selected for the example PC in
Figure 2B. RNB

2(t) estimates the fraction of the variation in PC
firing that could be called “signal” in the sense that it could be
attributed to variation in the eye movement at each time. Figure
5B shows the time course of the total variance in the firing rate of
the example PC (bold trace) and the fraction that was related to

the evoked eye movement (gray fill). During the initiation of
pursuit, �50% of the variation in the firing rate of this PC was
related to the evoked eye movement. During steady-state pursuit,
	10% of the variation in the firing rate of this PC could be
attributed to variation in the evoked eye movement. Because the
predicted firing rate is linearly related to the smooth eye move-
ment vector, the converse statement also is true: during the ini-
tiation and steady-state phases of pursuit, �50% and 	10% of
the variation in the evoked eye movement could be attributed to
variation in the firing of this one PC.

Figure 5C provides a population summary of the time course
of the signal-to-noise ratio of PC firing, defined as the percentage
of total firing rate variance attributed to the trial-by-trial varia-
tion in the smooth eye movement divided by that not related to
eye movement. The average time course of the signal-to-noise
ratio for all 51 PCs showed a pronounced peak of �1.0 during the
initiation of pursuit and rapidly dwindled to 0.1 (Fig. 5C, bold
trace). A similar time course was seen in each individual PC (Fig.
5C, gray traces).

Time courses of neuron–neuron correlations and variance of
downstream noise
Our measurements of neuron– behavior correlations have im-
portant implications regarding how signals and noise are pro-
cessed as they move through the sensory–motor circuit for pur-
suit. As pointed out in the Introduction, two important factors
control how well the brain generates precise movements in the
face of the noisiness of individual neurons: the degree of neuron–
neuron correlation, which determines how much noise reduc-
tion can be achieved by averaging the activity of neuronal popu-
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(1994). F, The neuron– behavior correlation during steady-state pursuit is plotted as a function of the magnitude of the steady-state response. All neural responses were plotted after subtracting the
background firing rate during fixation. Data are for target motion at 30 deg/s.
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lations; and the amount of neural noise that is added at each
processing level. The strong neuron– behavior correlations found
during the initiation of pursuit suggest two intuitions about these
variables. First, if the variation in the firing rate of each of any two
PCs of a large population is highly correlated with the variation in
the emitted behavior on a trial-by-trial basis, then the firing rates
of the two PCs also should be correlated with each other (this
intuition breaks down if the number of PCs contributing to the
behavior is very small). Second, because more downstream noise
will lead to lower values of neuron– behavior correlation, a
high neuron– behavior correlation implies that the amount of
noise added downstream is relatively small. The mathematical
analysis and computer simulation described in the Appendix
formalize these two intuitions. If we assume that the responses
of more than �40 PCs are averaged to generate a motor com-
mand, then the average neuron–neuron correlation and the
average variance of downstream noise can be approximated by
the following equations:

RNN�t� � RNB�t���EYE
2 �t�

�FR
2 �t�

(2)

�BS
2

�FR
2 �t� �

�EYE
2

�FR
2 �t� � RNN�t� (3)

where RNN and RNB are the average values of neuron–neuron and
neuron– behavior correlations across our sample and the �X

2 are
the average variances of the firing rate (�FR

2 ), the surrogate of eye
movement created by the predictions from the inverse model of
Equation 1 (�EYE

2 ), and the noise added downstream (�BS
2 ). The

variances are all expressed as a ratio, normalized to the average
variance of PC firing rate, to emphasize that the variance ratio on
the right side of the equations is an index of noise reduction
between the PCs and the evoked movement. We note that the
ability to estimate the noise reduction depends on using Equation
1 to reduce the dimensionality of the pursuit eye movement and
express it as a predicted firing rate, in the same units as the actual
firing rate.

We applied Equations 2 and 3 to the population averages
obtained from our data to generate estimates of the time courses
of RNN and �BS

2 , shown in Figure 6. The data show that the average
variance of the eye movement computed using the inverse model
prediction of Equation 1 (Fig. 6A), the average variance of actual
PC firing (Fig. 6C), and their ratio (Fig. 6E) all have complex time
courses that depend on the speed of target (and eye) motion. In
general, each variable is larger for higher speeds of target motion.
In contrast, the time course and values of the average neuron–
behavior correlation are almost identical across target speeds
(Fig. 6B). Note that there is remarkably little variance reduction
between the firing of individual PCs and the eye movements, the
latter as reflected in the surrogate of eye movement provided by
the inverse model. Even during the initiation of pursuit, the vari-
ance of the eye movement is at least half of the variance of the PC
firing rate (Fig. 6E).

Equation 2 estimates that the average neuron–neuron corre-
lations will show a peak during the initiation of pursuit and then
settle to a considerably lower value during steady-state pursuit
(Fig. 6D). The estimated neuron–neuron correlations are similar
across target speeds during pursuit initiation but are related to
target speed during steady-state pursuit. Equation 3 estimates
that the variance of the noise added downstream from the cere-
bellum is relatively small during the initiation of pursuit (Fig.
6F). At the time of the peak in RNB, 150 ms after the onset of target

motion (Figs. 6B,D,F, vertical dashed lines), the estimated vari-
ance of downstream noise is essentially at its baseline of 	8% of
the average variation of PC firing. By the end of the first 100 ms of
pursuit, 200 ms after the onset of target motion, the estimated
downstream variance reaches �10, 30, and 40% of the variance of
PC firing for target motion at 10, 20, and 30°/s. The estimated
downstream noise accumulates further as time proceeds and de-
pends strongly on the speed of eye and target motion during
steady-state pursuit.

Neuron–neuron correlations between PCs
To test the estimates of Figure 6D about neuron–neuron corre-
lations, we recorded from three pairs of PCs in one monkey. The
pairs were recorded on separate electrodes at sites that probably
were at least 0.5 mm apart. In Figure 7A–C, the red and black
traces show the time course of RNB for each of the two neurons in
the pair, and the solid blue trace shows the time course of RNN.
For each pair, the value of RNN reached a peak of 0.25– 0.5 at the
same time as the peak of the RNB and declined to values that were
not clearly different from zero. The average value of RNN across
the three pairs of neurons (Fig. 7D, blue line) agreed well with the
prediction of Equation 2, computed from the average data across

Figure 5. Dynamic modulation of signal and noise in PC firing. A, Time course of neuron–
behavior correlation (Rnb) for the example PC from Figures 1 and 2. B, The bold trace and the
gray area show the time courses of total trial-by-trial variance in firing rate and eye movement-
related variance for the PC in Figures 1 and 2. C, Black and gray traces show the average time
course of the signal-to-noise ratio and the individual data for all 51 PCs in our sample. Data are
for target motion at 30°/s.
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the six PCs (Fig. 7D, magenta line). The
values of RNN were not different from zero
at any time during the responses in stan-
dard shuffled controls.

Figure 6D allows estimates of the aver-
age neuron–neuron correlation, but for
pursuit initiation, our data also suggest a
way to predict the neuron–neuron corre-
lation between individual pairs of neurons
not recorded simultaneously. The mea-
sured value of RNN for each of the three
pairs of neurons we recorded agreed well
during pursuit initiation with the theoret-
ical prediction, confirmed with computer
simulation, that in the absence of down-
stream sources of variance, RNN should be
equal to the product of the two values of
RNB (Fig. 7A–C, dotted curves). If we con-
sider each possible pair of neurons chosen
from the 51 PCs we recorded individually,
then Figure 7E shows the predicted neu-
ron–neuron correlation during pursuit
initiation in terms of the RNB for the two
neurons; the curves are contours that in-
dicate the expected values of RNN for each
pair of values of RNB. The three pairs we
have recorded simultaneously (six large
symbols) are distributed across the space
of our larger sample, indicating that we
sampled a reasonable range of possible
pairs.

Discussion
We found that trial-by-trial variation in
the simple spike responses of individual
PCs in the floccular complex of the cere-
bellum is highly predictive of variation in
smooth eye movements during the initia-
tion of pursuit. The predictive value de-
clines as pursuit transitions into steady-
state performance. We think the high
values of neuron– behavior correlation
during the initiation of pursuit are re-
markable: we knew that the firing of PCs
varied substantially from trial to trial
(Stone and Lisberger, 1990; Fortier et al.,
1993), but we had expected that the varia-
tion would be independent across PCs so
that the noise emanating from the cerebel-
lum would be reduced dramatically by av-
eraging (Shadlen and Newsome, 1994;
Abbott and Dayan, 1999; Averbeck et al.,
2006). We also knew that the smooth eye
movement evoked during the initiation of
pursuit varied from trial to trial, but we
were tempted to subscribe to the well
known doctrine that motor variation
arises from noise injected at very late
stages of motor processing (Jones et al.,
2002; van Beers et al., 2004), thereby con-
taminating a reliable motor command. Our data indicate that
both of our preconceived notions were wrong. On any given trial,
the eye velocity at the initiation of pursuit is faster or slower than

normal because many PCs tend to be slightly more or less active
than average. Trial-by-trial variation in behavioral output is al-
ready present in the discharge of cerebellar neurons.

To determine the neuron– behavior correlation (RNB), we re-
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duced the dimensionality of the behavior and transformed it into
the same units as the firing rate by applying the standard inverse
model of PC firing rate. We determined the best-fitting model for
the average response of each PC and applied that model to the eye
movements in each trial. As others have found, the model pro-
vided superb fits to the average firing rate (Shidara et al., 1993;
Leung et al., 2000; Roitman et al., 2005). If it had provided equally
good fits to the responses in individual trials, then RNB would
have been close to 1. Thus, the degree to which RNB is 	1 quan-
tifies the degree of failure of the inverse model to predict the
trial-by-trial behavior of PCs. Our analysis has formalized and
extended this intuition by using measures of RNB to estimate two
factors that would determine how well the average model can
predict actual responses in single trials: the magnitude of the
correlations in response variation across the population of PCs
and the size of any noise that is added downstream from the
cerebellum. Our analysis highlights the fallacy of the expectation
that the average model would fit perfectly the actual firing rate in
each individual trial. If so, then two implausible predictions
would follow: no noise is added to sensory–motor processing
downstream from PCs and trial-by-trial variations in the firing
rate are perfectly correlated across all floccular PCs that contrib-
ute to the behavior.

Our measurements predict, based on data, intuition, com-
puter simulation, and theory (see Appendix), that the responses
of pairs of PCs are correlated highly during the initiation of pur-
suit and more weakly during steady-state pursuit. This prediction
was supported by recordings from three pairs of PCs, and we
found no pairs that contradicted the prediction. The absence of
neuron–neuron correlations during fixation for the three pairs of
PCs suggests that noise is independent when the eyes are station-
ary. Because independent noise should be reduced by pooling at
the next stage, this may explain why we did not measure note-
worthy neuron– behavior correlations during fixation.

We find the agreement of prediction and experiment encour-
aging, despite the fact that the number of pairs is smaller than we
would have liked and too small to make any strong statistical
statements. Unfortunately, it proved incredibly difficult to isolate
(and hold for the required hour of recording) pairs of PCs that
preferred the same axis of pursuit and that were sufficiently re-
sponsive to have reasonable values of neuron– behavior correla-
tion. We estimate that 800 h of experimental time were consumed
to obtain the three pairs we have shown. We think that the major
difficulty is twofold. First, the geometric organization of the cer-
ebellar cortex mediates against isolating two PCs on one elec-
trode. Second, when two electrodes are introduced into the floc-
cular complex, the nearness of the cerebellar tentorium to the site
of recording creates a situation in which moving one electrode
invariably moves the cerebellar tissue with respect to the other
electrode, reducing the quality of isolation. We expect that new
technology will be needed before this experiment will be practical
for larger numbers of pairs of PCs.

If firing rate variation is correlated across the population of
PCs, then there will be a component of the variation that cannot
be eliminated by averaging across the population response
(Shadlen and Newsome, 1994; Abbott and Dayan, 1999; Aver-
beck et al., 2006). The variation in the averaged response becomes
a common input to neurons in the next level of sensory–motor
processing, creating neuron–neuron correlations that limit the
amount of noise reduction as signals pass onward. Thus, the
neuron–neuron correlations in PCs (see also De Zeeuw et al.,
1997) create a domino effect that moves through the system and
becomes a major contributor to variation in the initiation of

pursuit. Because some degree of neuron–neuron correlation is
present in many brain areas (Gawne and Richmond, 1993; Zo-
hary et al., 1994; Lee et al., 1998), it seems likely that this scenario
would be a feature of almost any sensory–motor system. Further-
more, the approach described here could be used at each level of
the neural circuit for pursuit or other sensory–motor behaviors
to come recursively to a complete understanding of the process-
ing of signal and noise across each individual level of sensory–
motor processing.

On the basis of similarities in the noise characteristics for pur-
suit and perceptual responses guided by visual motion, Osborne
et al. (2005) suggested that noise in the visual motion system leads
to sensory estimates of target direction and speed that vary from
trial to trial, and that the motor system follows these erroneous
commands perfectly. In agreement with their suggestion, our
analysis predicts that essentially no variation is added in the first
60 ms to the pursuit commands after they emanate from the
cerebellum. Thus, almost all of the variation in this earliest inter-
val of pursuit arises at or before the PCs. Furthermore, the
strength of correlated variation in our three pairs of PCs during
the initiation of pursuit would be expected if a single signal that
varies from trial to trial is distributed widely as a common input
to many PCs: we suggest that this signal might arise in the visual
motion system. Finally, there is good agreement between the time
course of visual motion drive for pursuit and the time course of
the predicted neuron–neuron correlations (Lisberger and West-
brook, 1985; Lisberger et al., 1987). Both are largest during the
initiation of pursuit, when visual motion signals provide the most
prominent drive for pursuit. Later in the response, visual motion
inputs become smaller and less important (Lisberger et al., 1987;
Morris and Lisberger, 1987), and our analysis predicts that neu-
ron–neuron correlations decline. At the same time, we estimate
that the variance of the noise added downstream grows as a func-
tion of time during steady-state pursuit and is “signal dependent”
in that its amplitude depends on the speed of eye movement.
These properties are expected of motor noise (Jones et al., 2002;
van Beers et al., 2004). Our data do not predict where the noise is
added, but the fact that our analysis is based on the signal and
noise in the spike trains of PCs means that the noise must be
added downstream from the generation of spikes in PCs. Our
data do not exclude the possibility that some of the noise might
arise from the failure of the highest frequency simple spike action
potentials recorded at the soma of the PC to propagate down its
axon to cerebellar target neurons (Khaliq and Raman, 2005;
Monsivais et al., 2005).

The dynamic modulation of signal and noise in individual
PCs provides some new insights into cerebellar function. Our
findings raise the possibility that there is a transition from highly
covariant cerebellar responses during movement initiation to
more independent responses later on, and this prediction was
confirmed in our small sample of pairs of PCs. The exact degree
of correlation across the population of PCs may be important for
the operation of the circuit: excessive variation in PC responses is
associated with motor deficits (Hoebeek et al., 2005; Walter et al.,
2006), whereas correlated variation in firing across the popula-
tion may enhance the effect of PCs on their target neurons by
engaging a postinhibitory rebound (Aizenman and Linden, 1999;
Sekirnjak et al., 2003). At the same time, persistent strong corre-
lations in firing across the population of PCs could create syn-
chronous oscillations that would present a hazard to stability in
motor networks and possibly result in ataxia (Cheron et al.,
2005). The balance between correlation and asynchrony may be
adaptive: the cerebellar micro-circuit might benefit from the ad-
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vantages of highly correlated responses early in pursuit and pur-
posively degrade the correlation later in the response. This kind
of dynamic modulation of variation, covariation, and noise may
be imperative for generation of precise outputs by a noisy brain.

Appendix
In Results, we make predictions about the degree of noise reduc-
tion that is obtained by averaging across PCs and the amount of
noise that is added downstream from the PCs. The equations for
making these predictions were obtained from analytical solution
and computer simulations of a model in which the firing rate of
the ith PC at a particular time is defined as follows:

fri � �RNN�i � ��1 � RNN��i (4)

Here, the � and � are random variables with mean equal to zero
and variance equal to �FR

2 ; relaxing these assumptions to allow the
firing rates of different PCs to have different means and variances
precludes a full analytical solution, but simulation showed that
the conclusions of our analysis did not change under more het-
erogeneous conditions. RNN is a free parameter that determines
the degree to which firing rates at a particular time are correlated
across PCs (RNN � 1 implies PCs are perfectly correlated; RNN �
0 implies the firing of different PCs is independent of each other).
This form of the model lacks any explicit correlations across time
and therefore can be solved for the static case and then applied to
data for each particular time. For any given time and trial, � is
drawn once, multiplied by �RNN , and assigned to all PCs,
whereas � is drawn separately for each PC and multiplied by
��1 � RNN� . This creates two components of PC firing. The first
component is perfectly correlated across neurons on each indi-
vidual trial but uncorrelated across trials and has a variance of
RNN �FR

2 . The second component is uncorrelated across both
neurons and trials and has a variance of (1 � RNN)�FR

2 .
We assume that we can write the decoded output of the pur-

suit system as follows:

EYE �

�
i�1

M

fri

M
� � (5)

where M is the number of PCs and � is a random variable that is
added downstream in the brainstem after the firing of all PCs has
been averaged. The downstream signal adds noise with a variance
of �BS

2 . In Equation 5, EYE has the same units as firing rate and is
equivalent to the predicted firing rate derived for each PC using
the inverse model from Equation 1. Our analysis depends on the
single assumption of Equation 5 that the population response of
floccular PCs is converted into a command for smooth eye move-
ment by simply averaging the population response. Other meth-
ods, such as maximum likelihood, vector average, winner-take-
all and Bayesian, least-squares, and optimal linear estimators,
have been postulated for decoding the response of neural popu-
lations (Salinas and Abbott, 1994), and it is clear that noise re-
duction and the effects of correlated activity will depend on the
specifics of the decoding algorithm (Abbott and Dayan, 1999;
Salinas and Sejnowski, 2000, 2001; Shamir and Sompolinsky,
2006). However, simple decoding methods such as averaging the
population response are likely to be implemented in the brain in
cases when all of the neurons are monotonically tuned for the
parameter of interest, as PCs are for eye velocity (Lisberger and
Fuchs, 1978; Robinson and Fuchs, 2001). Indeed, previous anal-
yses of PCs have all supported the idea that their responses simply

are averaged to create a command for eye velocity (Krauzlis and
Lisberger, 1994; Coltz et al., 2000; Krauzlis, 2000), in agreement
with the key assumption made by Equation 5.

Variances sum. So, we can write the trial-by-trial variance of
the eye movement as follows:

�EYE
2 � RNN�FR

2 �
�1 � RNN��FR

2

M
� �BS

2 (6)

M is present in only the second term of Equation 6 because the
variance of the correlated component of firing rate will not be
reduced by averaging across neurons within an individual trial,
whereas the variance of the uncorrelated component of firing rate
will be reduced in proportion to the number of neurons, M. If we
divide both sides of Equation 6 by the variance of PC firing, we get
the following:

�EYE
2

�FR
2 � RNN �

�1 � RNN�

M
�

�BS
2

�FR
2 (7)

Equation 7 is our first analytical result and will be used later.
We next derive an analytical expression for RNB, the neuron–

behavior correlations measured here. The correlation between
two random variables, X and Y, is defined as follows:

R �
E�X � Y�

�E�X � X� E�Y � Y)
(8)

We can convert this to our notation and use it to represent and
predict the neuron– behavior correlations we have computed
from our data:

RNB � R� fri,EYE� �
E� fri � EYE�

�E� fri � fri� E�EYE � EYE�
(9)

Next, we compute each of the expected values E(X,Y) in Equa-
tion 9:

E� fri � EYE� � E�� �RNN�i��(1�RNN)�i�
� 1

M��
j
� �RNN�j��(1�RNN)�j������ (10a)

The fact that all the �i � �j on a given trial allows us to bring
almost all the terms outside the summation in Equation 10a,
yielding the following:

E� fri � EYE� � E�� �RNN�i � ��1 � RNN��i�
� 1

M �M�RNN�i � �1 � RNN�
j

� j� � ��� (10b)

and

E� fri � EYE� � E�� �RNN�i � ��1 � RNN��i�
� �RNN�i �

�1 � RNN

M �
j

� j � ��� (10c)
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If we evaluate Equation 10c by multiplying the terms within the
large parentheses, almost all of the terms have expected values of
zero because they multiply two random variables that have inde-
pendent distributions with means equal to zero. This leaves two
terms that contain the same random variable twice, leading to the
following:

E� fri � EYE� � E�RNN�i
2 �

1

M
�1 � RNN��i

2� (11)

We use the identities: E(X � Y) � E(X) � E(Y); E(cX) � cE(X);
and E(X 2) � �X

2 . Because E(�i
2) � E(�i

2) � �fr
2 , we can convert

Equation 11 to the following:

E� fri � EYE� � �FR
2 �RNN �

1

M
�1 � RNN�� (12)

Similarly, the expected value of a zero-mean random variable
crossed on itself is the variance of the random variable, leading to
the following:

E� fri � fri� � �FR
2 �RNN � �1 � RNN�� � �FR

2 (13)

and

E�EYE � EYE� � �FR
2 �RNN �

�1 � RNN�

M � � �BS
2 (14)

Now, we can substitute Equations 12–14 into Equation 9 to ob-
tain an expression for neuron– behavior correlations:

RNB �

1

M
�1 � RNN� � RNN

� 1

M
�1 � RNN� � RNN �

�BS
2

�FR
2

(15)

Note that RNB is equal to �1/M even if RNN and �BS
2 are zero.

Thus, a large value of RNB predicts large values of RNN only if a
substantial number of PCs contribute to the behavior, as seems
likely in the brain.

Equations 7 and 15 describe two variables we can measure in
our data: the neuron– behavior correlations (RNB) and the ratio
of the trial-by-trial variances of the eye movement and the firing
rate of PCs (�EYE

2 /�fr
2 ). The equations have only three unknowns:

the number of PCs (M), the neuron–neuron correlation among
PCs (RNN), and the variance of the noise added downstream from
averaging the responses of PCs (�BS

2 ). If we assume that the value
of M is fairly large, then Equations 7 and 15 operate as two solv-
able equations in two unknowns, allowing us to predict the time
course of RNN and �BS

2 from the measurements we have made.
Equations 2 and 3 are solutions under the assumption that the
number of PCs (M) is greater than �40 so that any term with M
in the denominator is effectively zero.

Figure 8 summarizes the results of simulating the model de-
scribed by Equations 7 and 15. In Figure 8, A and B, the simula-
tion was run with 100 model neurons. The value of �FR

2 was one,
and both RNN and �BS

2 were varied in steps of 0.1 between 0.1 and
0.9. The points along each different curve show the results of the
simulation for different values of RNN, and each set of points is
plotted as a function of �BS

2 . Neuron– behavior correlation de-
creased as a function of �BS

2 and increased as a function of RNN

(Fig. 8A). The ratio of the variances of the eye movement to PC
firing rate increased as a function of �BS

2 and RNN (Fig. 8B). The
continuous traces show the results of the analytical solution,

agreeing perfectly with the results of the simulations. Figure 8,
C and D, shows the effect of varying the number of PCs in the
simulation on the neuron– behavior correlations and the vari-
ance ratio, for three values of RNN when �BS

2 was 0. The curves
come close to asymptotic behavior if the model contains �40
PCs, as expected from previous analyses (Shadlen et al., 1996).
For the simulations in Figure 8, all model PCs had the same
values of �FR

2 and response magnitude, and the responses were
randomized across model neurons and trials. The same find-
ings applied when we extended the simulations to the more
natural case in which different model PCs have different val-
ues of �FR

2 , different response magnitudes, or even different
values of RNN.
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