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Abstract

Background: Many different genetic alterations are observed in cancer cells. Individual cancer genes display point
mutations such as base changes, insertions and deletions that initiate and promote cancer growth and spread. Somatic
hypermutation is a powerful mechanism for generation of different mutations. It was shown previously that somatic
hypermutability of proto-oncogenes can induce development of lymphomas.

Methodology/Principal Findings: We found an exceptionally high incidence of single-base mutations in the tumor
suppressor genes RASSF1 and RBSP3 (CTDSPL) both located in 3p21.3 regions, LUCA and AP20 respectively. These regions
contain clusters of tumor suppressor genes involved in multiple cancer types such as lung, kidney, breast, cervical, head and
neck, nasopharyngeal, prostate and other carcinomas. Altogether in 144 sequenced RASSF1A clones (exons 1–2), 129
mutations were detected (mutation frequency, MF = 0.23 per 100 bp) and in 98 clones of exons 3–5 we found 146
mutations (MF = 0.29). In 85 sequenced RBSP3 clones, 89 mutations were found (MF = 0.10). The mutations were not
cytidine-specific, as would be expected from alterations generated by AID/APOBEC family enzymes, and appeared de novo
during cell proliferation. They diminished the ability of corresponding transgenes to suppress cell and tumor growth
implying a loss of function. These high levels of somatic mutations were found both in cancer biopsies and cancer cell lines.

Conclusions/Significance: This is the first report of high frequencies of somatic mutations in RASSF1 and RBSP3 in different
cancers suggesting it may underlay the mutator phenotype of cancer. Somatic hypermutations in tumor suppressor genes
involved in major human malignancies offer a novel insight in cancer development, progression and spread.
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Introduction

We have performed a comprehensive deletion survey of 3p on

more than 400 of lung, renal, breast, cervical and ovarian

carcinomas (major epithelial cancers) using a defined set of markers,

combining conventional LOH with quantitative real-time PCR

(QPCR), comparative genomic and NotI microarrays hybridisa-

tions [1,2,3,4,5]. We identified two most frequently affected 3p21.3

regions, LUCA (LUng CAncer) at the centromeric and AP20 at the

telomeric border of 3p21.3. Aberrations of either region were

detected in more than 90% of the studied tumors suggesting they

harbor multiple tumor suppressor genes (TSG) [5,6,7].

One of them is RASSF1 gene (from LUCA region) that can exist

in different alternative splicing forms (at least 7 different isoforms).

In this work we studied the most important RASSF1A, the largest

splicing form [8]. Several studies have shown that loss of RASSF1A

expression occurs because of tumor acquired promoter DNA

methylation in many different cancers. For example, RASSF1A is

silenced by promoter hypermethylation in over 90% of small cell

lung carcinomas (SCLC) and clear cell renal cell carcinomas
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(RCC) and in about 40% of non-small cell lung carcinomas

(NSCLC). The gene is able to suppress growth of lung and renal

cancer cells in culture and tumor formation in mice [6]. In

addition, occasional missense mutations in RASSF1A have been

reported. RASSF1A codes for 340 amino acids. The amino acid

sequence of RASSF1A contains a predicted diacylglycerol (DAG)

binding domain and a Ras association domain. RASSF1A can

induce cell-cycle arrest by engaging the Rb-family cell cycle

checkpoint [9]. These and other results strongly suggest that

RASSF1A is an important human tumor suppressor protein acting

at different levels of tumor progression [6].

Another gene is RBSP3 also called HYA22 and CTDSPL. It exists

in two splice forms (A, 265 amino acids and B, 276 amino acids)

that map to AP20 region and belongs to a gene family of small C-

terminal domain phosphatases that may control the RNA

polymerase II transcription machinery [10]. Expression of the

gene was greatly decreased in several SCLC and NSCLC cell

lines. RBSP3 showed growth suppression with regulated transgenes

in culture and suppression of tumor formation in SCID mice. It

was demonstrated that transient expression of both A and B forms

resulted in drastic reduction of phosphorylated form of RB protein

presumably leading to a block of the cell cycle at the G1/S

boundary. After this finding the gene was renamed (RB protein

serine phosphatase from chromosome 3). All these features are

consistent with classical characteristics of a TSG.

Interestingly, both RASSF1 and RBSP3 could collaborate in cell

cycle arrest: the former by inhibiting cyclin D1 [9] and the latter

by dephosphorylating RB [10]. This supports the hypothesis that

TSGs in these two regions could act synergistically [4,5].

Moreover two other TSGs from these regions could cause

increasing mutation frequencies in tumors (MLH1 from AP20

and G21/NPRL2 from LUCA) [11,12,13].

It is well known that cancer is the result of genetic and

epigenetic changes and point mutations is one of the most

important mechanisms for the development of cancer [14,15].

Previously, others and we detected numerous single-base

changes/mutations in RASSF1A that were believed to be SNPs

[8,16,17]. Moreover, RBSP3 mutations were detected in all 14

tumors of different origins expressing the gene [10].

To study the apparently high mutation frequencies of TSG(s) in

these regions of 3p21.3, we performed a comprehensive mutation

analysis of RASSF1A [18,19] and RBSP3/HYA22 [10] in several

cancers. Here we show that exceptionally frequent single-base

mutations occur in these genes in multiple cancer types. The

mutations were not cytidine-specific as would be expected if

generated by AID [20] or other APOBEC family [21,22] enzymes.

These mutations were not due to RNA editing and appeared de

novo during cell divisions.

Results

Bioinformatics analysis of EST cDNA clones reveals high
mutation frequency of RASSF1 and RBSP3

First we examined publicly available EST sequence data for

RASSF1A and RBSP3 (for RASSF1A Accession No. NM_007182;

RBSP3A, Accession No. AJ575644, and for RBSP3B, Accession

No. AJ575645). Sequences with homology below the threshold

(see Materials and Methods) i.e. containing multiple distinct

mismatches to the annotated genes and unknown nucleotides (N)

were not considered. Sequences close to the end of reads were also

excluded. The data presented in Table 1 show that the RASSF1A

and RBSP3 genes were mutated at extremely high rates. For the

RASSF1A we considered only 17 clones (mutation frequency per

100 bp, MF = 0.22). Six of them were obtained from cancer tissues
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and all of them contained mutations (MF = 0.42). Eleven

sequences were from normal tissues (four clones with one

mutation) and MF = 0.1, i.e. mutation frequencies were statistically

significantly different (P = 0.025).

Eighty one per cent of the RBSP3 sequences (63 out of 79)

contained mutations/mismatches. MF for RBSP3 ESTs was 0.63.

Again it was much higher in clones isolated from cancer (MF = 1.05)

than from normal tissues (MF = 0.45). This difference was also

significant (P,0.001). The difference was even more pronounced

for mutations changing amino acid sequences (MF 0.72 versus 0.24)

and similar for RASSF1A clones (MF 0.33 versus 0.1).

The number of available (and mutated) EST sequences was

significantly higher for both RASSF1A and RBSP3, but due to the

very stringent criteria many were excluded from analysis.

Importantly, we have also detected hypermutations in other

exons of RASSF1A, shared with RASSF1C (recently shown to be a

TSG with a different tissue specificity than RASSF1A, see [23]. MF

for the exons 3–6 was 0.43 and for the mutations changing amino

acids MF = 0.25 and therefore RASSF1C is also hypermutated.

A similar bioinformatic analysis was done for the insulin gene

(333 bp, complete ORF). No mutations were detected in more

than 1000 sequenced clones isolated from cell lines and somatic

tissues. In 20 available p16/INK4a (exons 1–3, 447 bp) clones

sequenced from cancer and normal cells we found no mutations

and in 6 clones for GPR14 (1170 bp) only 1 mutation was found in

cancer cells (MF = 0.01). In our experiments described below (see

next Section and Section ‘‘Different mutations frequencies in other

genes’’) in 31 sequenced GPR14 clones no mutations were found

indicating that this mutation is rather rare. The mutation

frequency for GPR14 was statistically significantly different as

compared both to the RASSF1A and RBSP3 (P = 0.01).

Frequent mutations in RASSF1A in human carcinomas,
cancer and haematopoietic cell lines

During analysis of RASSF1A we have isolated several mutant

clones including one double mutant [16]. This high frequency of

mutations was surprising since for RASSF1A and other candidate

genes in the AP20 and LUCA regions the mutation frequencies

were reported to be low to none [6,19]. At the same time many

polymorphisms were recorded for RASSF1A and in many cases it

was not clear whether it was a real single nucleotide polymorphism

or somatic mutation in cancer cells because control normal cells

were not available [8]. Importantly, in all these studies single-strand

conformation polymorphism (SSCP) and direct sequencing from

PCR products was used. The admixture of stroma, blood vessels,

lymphocytes and other normal cells would hamper detection of

mutations using these methods (see M/M). Tumor heterogeneity

creates additional problems for recognizing mutations. Therefore

we decided to re-investigate the mutational status of RASSF1A in

multiple tumor types including primary tumors and cancer cell

lines. First, RASSF1A cDNA was isolated from an RCC biopsy

(T356) and the surrounding normally looking kidney parenchyma

(N356). Several cDNA clones were sequenced. In six clones derived

from normal kidney parenchyma, no mutations were found.

However of seven clones from the tumor tissue, mutations were

detected in three (P = 0.14). All were A to G substitutions. To

exclude RNA editing, genomic DNA from the same patient was

isolated and the first two exons (DAG domain) of RASSF1A were

amplified by PCR. Several clones derived from normal and tumor

tissue were then sequenced: all six clones from the tumor biopsy

showed mutations while of the fourteen analyzed clones from

normal tissue only one was mutated (P,0.001). The observed

mutations in the cDNA from tumor cells were not created by RNA

editing because the mutations were detected also on genomic DNA

level. Normal cell contamination and high expression of RASSF1A

in normal cells, compared to cancer cells, can explain the different

ratios between mutated and normal RASSF1A clones from cDNA

and genomic DNA. Most surprising was the fact that with the

exception of two genomic clones from the tumor biopsy with

deletion of C at position 254 (Accession No. NM_007182), all other

detected mutations were in different positions.

As a control we amplified GPR14 from the same patient and

sequenced 10 clones from cancer and from the surrounding

normal tissue. No mutations were found proving that high

mutation rate is specific for the RASSF1A gene.

To check whether different mutations in the same tumor

occurred due to the tumor heterogeneity or some other

mechanism(s), we isolated and sequenced RASSF1A clones (only

exon 1 and 2; 391 bp) from genomic DNA of four RCC cell lines.

In TK164 all three and in KRC/Y (2+2) all four sequenced clones

contained mutations. In TK10, among 22 clones, 9 were mutated.

Importantly, the majority of clones contained different mutations.

Only one clone was sequenced from Caki1, and it was mutated.

We also sequenced this gene from genomic DNA of four

lymphoid cell lines (BL2 and RAMOS are Burkitt cell lines, and

IARC171 and MutuIII are lymphoblastoid cell lines) and the

results were very similar to the RCC cell lines (Table 2).

Altogether, among 84 sequenced clones 55 contained mutations

that in most cases differed. MF in RASSF1A in these experiments

was between 0.14 and 0.70.

In all further experiments, we analyzed genomic DNA (exon 1

and 2 for RASSF1A and the whole RBSP3 transgene in pETE

vector) if not specially mentioned.

Mutations in RASSF1A can be generated de novo
To distinguish between the possibility that different mutated

RASSF1A genes were mutated at once (‘‘burst of mutations’’) or

were constantly generated over time, we performed experiments

with single cells. In this experiment BL2 cells, (which previously

showed the highest rate of mutation: 10 clones with 25 mutations),

were diluted and plated into wells with an expected frequency of

0.3 cells per well. Three randomly selected wells (designated as

BL2-cl.1, 2 and 3) containing single cells were expanded and

further analyzed. DNA was isolated from these clones after 10

days (approximately 10 divisions, 103 cells).

The results were as follows: for BL2-cl.1, five of 10 sequenced

clones were mutated (mutation frequency per 100 bp (MF), was

0.14), for BL2-cl.2, five of 13 clones (MF = 0.15; two clones

contained T43T mutations with codon changed from ACA to

ACG) and for BL2-cl.3, three of 17 clones were mutated

(MF = 0.07; two clones contained N70G mutations). Altogether

16 single base pair mutations were detected, all were transitions

and only five of them showed mutated G or C. This experiment

clearly shows that mutations in the RASSF1A locus could be

generated de novo during cell proliferation.

The complete list of 129 mutations (111 mutations were

different) found in exons 1 and 2 of RASSF1A in all experiments is

shown in Table S1A. See also Table 2 and 3 and Figure 1A.

Altogether 144 clones were sequenced (56,3 KB) and the average

frequency of mutations was 0.23/100 bp for transcribed sequences

and 0.17/100 bp for coding sequences. Among them, there were

four nucleotide changes that occurred in non-coding 59, three stop

(nonsense) and five frameshift (deletions) mutations. Of the

remaining 127 mutations, 82 were missense and 35 synonymous.

RBSP3 is also hypermutated in various cancers
During previous analyses of small cell lung carcinoma (SCLC)

cell line N417, two RCC, one breast carcinoma (BC) and two

RASSF1, RBSP3 High Mutability
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ovarian carcinoma (OC) biopsies that all expressed RBSP3, we

detected mutations in the RBSP3 cDNA in all six cases [10; see

Table S2A].

To test whether the hypermutation feature is a characteristic

only of the RASSF1A gene or a more general phenomenon, we

similarly analyzed the recently identified multiple tumor suppres-

sor gene RBSP3 located in AP20, 3p21.3 telomeric region [10].

Using RT-PCR, cDNA was isolated from two of each RCC, BC

and OC biopsies and the SCLC cell line N417. Multiple clones

were sequenced. Results, presented in Table S2A, Table 3 and

Figure 1B, showed that almost all isolated clones suffered

mutations. As reverse transcriptase used in RT-PCR has a

significantly higher error rate than other polymerases used in

PCR, we attempted to reproduce the observed high mutation rate

at the genomic DNA level, as in the case with RASSF1A.

Unfortunately, it was difficult to perform this experiment on the

genomic RBSP3 due to the large size of the gene (more than

120 kb), numerous small exons (at least 9), and high GC content

(reaching 100% in some regions). However this problem was

solved using cloned RBSP3 in SCID mice.

RBSP3 revealed high mutability in SCID mice on genomic
level

SCLC cell line ACC-LC5 and RCC cell line KRC/Y were

transfected with RBSP3A and RBSP3B splicing isoforms in the

pETE vector and stable cell clones were isolated. Four of these

clones (AHA1 and AHB1 for ACC-LC5 and KHA4 and KHB9

for KRC/Y) were inoculated into SCID mice (see M/M).

Cell clones KHA4 and KHB9, containing RBSP3A or RBSP3B

were grown in vitro in parallel with tumors in SCID mice. After 8

weeks DNA was isolated from grown tumors and cell lines, and the

RBSP3A and B genes were amplified by PCR from pETE vector

and cloned. Again multiple clones were sequenced and results of

the experiment are shown in Table 4 and Table S2B. Only 30% of

RBSP3 KHA4 and KHB9 plasmid clones were mutated in vitro, as

compared to 85% mutated clones after growth in SCID mice. This

difference according to Fischer test is statistically significant

(P,0.001).

In summary, in RBSP3 experiments we identified 89 mutations

among which 79 were individually distinct (see Tables S2A and

S2B). The average frequency of mutations was 0.10/100 bp for

transcribed sequences. This frequency is more than 0.11/100 bp

for coding sequences (see Table 3 and Figure 1B). Among them,

seven nucleotide changes occurred in non-coding regions and five

were frameshift (deletions) mutations. Of the remaining 77

mutations, 68 were missense and 9 synonymous.

Thus, the mutation frequency was 2.5 fold less than for the first

two exons of the RASSF1A (see above). The significant difference in

mutation frequencies could be accounted for by differences in

nucleotide composition of the genes, or it could reflect intrinsic

differences in the hypermutation rates of the genes. It could also be

important that for the RBSP3 the whole gene was sequenced while

for the RASSF1A only its 59 end.

RASSF1A and RBSP3 amplified by PCR from E.coli DNA
don’t show high frequency of mutations

We have performed PCR amplification of E. coli DNA

containing plasmids (i.e. total DNA isolated from E.coli containing

mixture of genomic and plasmid DNA) with these two genes. For

each gene ten and four ng of DNA was used. Unfortunately lower

Table 2. Mutations in RASSF1A exon 1and 2 in different cell types.

Locus
RASSF1A/Cell
line Description

Number of
clones, mutated+
nonmutated

Mutation
frequency,
per 100 bp

Total
number of
mutations Deletions

Transitions
over
transversions

Mutations
of G/C
nucleotides

IARC171 Burkitt’s lymphoma derived cell line 11+7 0.23 15 no 2 9

BL2 Burkitt’s lymphoma derived cell line 10+0 0.70 25 3 1 16

RAMOS Burkitt’s lymphoma derived cell line 11+2 0.56 26 1 1.2 15

mutuIII Burkitt’s lymphoma derived cell line 7+0 0.56 14 1 1.6 9

TK10 renal cell carcinoma derived cell line 9+13 0.15 12 no 0 8

TK164 renal cell carcinoma derived cell line 3+0 0.28 3 no 2 2

KRC/Y renal cell carcinoma derived cell line 2+2 0.14 2 no 0 no

T356(RCC) renal cell carcinoma biopsy 6+0 0.51 11 3 0.6 5

N356(RCC) normal renal cell biopsy 1+13 0.02 1 no 0 no

Caki1 renal cell carcinoma derived cell line 1+0 0.28 1 no 0 1

doi:10.1371/journal.pone.0005231.t002

Table 3. Experimental mutations frequency in the RASSF1A and RBSP3 genes.

Gene, length
Number of sequenced
clones

Total length/coding
sequences, Kbp Number of mutations

Mutation frequency, per
100 bp

total In coding region total In coding region

RASSF1, exons 1–2 144 56.3/51.4 129 89 0.23 0.17

RASSF1, exons 3–5 98 50.6 146 145 0.29 0.29

RBSP3, exons 1–8 85 85.3/70.6 89 79 0.10 0.11

doi:10.1371/journal.pone.0005231.t003

RASSF1, RBSP3 High Mutability
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amount of E. coli DNA didn’t produce sufficient amount of PCR

products for further cloning. Ten clones in each experiment were

sequenced and no mutations were detected. These results indicate

that the observed hypermutation rate of RASSF1A and RBSP3

cannot be explained by PCR polymerase errors.

Search for founder mutations in RASSF1A in single cell
clones

The main idea of this experiment was the following. If a

mutation originates in the cell and not in the tube in vitro then in

the cell population grown from one cell some fraction (depending

on the number of alleles present in the single cell) of plasmid clones

should contain the same (i.e. a founder) mutation. To perform this

experiment we isolated 15 single cell KRC/Y clones as described

in the section ‘‘Mutations generated de novo’’. In this case we grew

the cells for three weeks to obtain more DNA and generate more

mutated clones. KRC/Y cells were used instead of BL2 cells as it

was easier to detect that we have one cell in the well. However, we

of course cannot exclude that in some of the 15 selected wells there

were more than one cell. RASSF1A exons 3–5 were tested in this

experiment (see M/M) as they were more easily isolated than

exons 1 and 2 and contained more sequence information (516 nt

vs. 391 nt). Moreover, according to EST sequence data this part of

RASSF1A has higher MF. From each PCR reaction 10 plasmid

clones were selected and DNA was isolated. However, due to

different technical problems (no or rearranged insert, bad quality

DNA or sequencing, etc.) usually only six-seven plasmid clones

were further analysed. Totally 98 plasmid clones were sequenced

(Table 5). One founder mutation was detected in all cell clones and

in 46 (47%) of plasmid clones. It was a change of A to G (nt26735,

Accession No. AC002481) just at the border of intron 2 and exon

3. This mutation destroyed the splice acceptor site AG/G and thus

inactivated the gene. As this founder mutation appeared in all

single cell clones most probably it originated before we started to

do this experiment. Forty other founder mutations specific for

each cell clone were also detected (see Table 5 and Table S1B).

Interestingly in one case it was possible to construct a tree showing

how founder mutations were accumulated. First it was only one

mutation than two and then additional independent mutations

(Figure 2).

Figure 1. Mutations in RASSF1A and RBSP3 in natural and experimental tumors. Position of mutations detected in RASSF1A and RBSP3 is
shown in A and B respectively. Examples of mutations are shown in C. For RASSF1A only mutations in coding sequences of exons 1 and 2 are shown.
Mutations in the whole coding part of RBSP3 are shown. Red ‘‘X’’ marks stop nonsense mutations or deletions. ‘‘Z’’ designates synonymous
mutations.
doi:10.1371/journal.pone.0005231.g001

Table 4. Mutation frequency of the RBSP3A and RBSP3B
genes in vitro and in vivo in the gene inactivation test.

Gene/cell clone In vitro In vivo

tested mutated tested mutated

RBSP3A/KHA4 11 3 13 10

RBSP3B/KHB9 12 4 15 14

Total 23 7 28 24

doi:10.1371/journal.pone.0005231.t004
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Different mutation frequencies in other genes
Similar sequencing experiments were performed with insulin

and albumin genes isolated from KRC/Y cell line (see M/M). In

contrast to RASSF1A and RBSP3 results, only one of 21 sequenced

insulin genomic clones (999 bp including complete ORF) and one

of 19 albumin cDNA clones (700 bp, exons 12–15) were mutated

(MF for both genes was less than 0.01). However in both cases, we

could not exclude the possibility of polymorphisms. Additionally,

two more genes were tested for mutations in genomic DNA.

GPR14 (G protein-coupled receptor 14, 1018 bp) and transcrip-

tion elongation factor A (SII) TCEA1 (1066 bp) were PCR

amplified (see M/M) from DNA of KRC/Y cells and 11 clones

for each gene were sequenced. All clones contained normal copies

of the gene. No mutations were found in other 3p21.3 candidate

genes: BLU (15 clones were sequenced), 101F6 (6 clones), PL6 (6

clones) after KRC/Y stable clones containing these genes were

inoculated into SCID mice. Moreover, for already mutated

mutFUS1 (10 clones) and mutP53 (6 clones) no additional

mutations were found (data not shown).

Mutations in RASSF1A, RBSP3A and RBSP3B are not
generated by AID or APOBEC related mechanisms

It has been recently shown that the activation-induced cytidine

deaminase (AID) is responsible for somatic hypermutations in

activated B cells. Moreover hypermutations generated by this

enzyme in oncogenes can cause malignancies in haematopoietic

cells [24]. Although much remains to be learned concerning AID,

several target sequence motifs for the mutations have been

identified, namely WRC, RGYW and DGYW causing C/G

mutations. The large family of APOBEC genes, also shown

recently to mutate genes on DNA level [21,22], mostly targeted

the RCW motifs causing mutations in C/G. Therefore, we

checked whether these motifs were targeted or more frequent in

RASSF1 and RBSP3 sequences when compared to the stable

insulin gene. The frequency of the WRC motif per 100 bp varies

from 12.3 to 14.3 for RASSF1 and RBSP3 genes, and the insulin

gene contains 16.5 such motifs per 100 bp. Other motifs showed

the same distribution (also higher in the insulin gene), arguing

against the involvement of these enzymes in hypermutating the

RASSF1 and RBSP3 genes described here. Indeed, the APOBEC

and AID enzymes cause mutations almost exclusively in C/G

nucleotides, while we observed mutations of all 4 nucleotides

(Figure 3). The results actually showed that mutations in A/T were

even more frequent than in C/G. We tried to find a recognition

motif. We studied all mutations (Figure 3A) or a subset of

mutations (Figures 3B and 3C), but no obvious motifs have been

yet identified.

More studies are needed to resolve this question as this pattern

can be different in normal and cancer cells and could be

dependent on nucleotide composition of a gene. These small

differences in patterns could mask the recognition motif.

RASSF1A and RBSP3 mutants from RCC biopsy and lung
cancer cell line have significantly reduced growth-
inhibiting activity

We tested one RASSF1A gene, isolated from an RCC biopsy

that contained two mutations (Cys65Arg and Val211Ala), for

growth inhibition under cell culture conditions following transfec-

tion into the KRC/Y and prostate cancer LNCaP cells. In KRC/

Y cells the mutated gene had a significantly reduced growth

suppression activity (Figure 4A) while in LNCaP it had almost no

suppressing activity (same as the empty vector, see [16,17]).

In another experiment, we used RBSP3 clones isolated from

N417 SCLC cell line with a His139Tyr mutation. Again

significant decrease in growth suppressor activity was observed

(Figure 4B).Clearly, not all mutations found in this study would

inactivate the RBSP3 and RASSF1 genes, and this may be

especially true for mutants isolated from normal cells some of

which could be polymorphisms. Indeed, different mutants of

RBSP3 had significantly different growth suppression activity

(Figure 4B).

Conclusions
By sequencing 327 RASSF1A and RBSP3 clones, we detected

364 mutations with frequencies reaching 0.70 per 100 bp.

Interestingly many clones contained more than 1 mutations (see

Table S3A, B, C). Only one SNP was detected in RASSF1A ten

clones (exon1a – AAGRCAG, K21Q) and it was excluded from

the list of mutations [http://www.ncbi.nlm.nih.gov/SNP/snp_ref.

cgi?locusId=11186]. No SNP were found in RBSP3 sequences.

The frequency of mutations was similar to other reported cases

of somatic hypermutations found in Rho/TTF, MYC and BCL6

in large-cell lymphomas (MF was from 0.12 for MYC to 0.69 for

Figure 2. Flow chart showing accumulation of mutations
(including two founder mutations) in RASSF1A exons 3–5 in
the single cell clone #9. Synonymous mutation Pro122Pro was
caused by nucleotide change ATCRAAC. Mutation GTCRGTA also
didn’t result in any amino acid change (Val174Val).
doi:10.1371/journal.pone.0005231.g002

Table 5. Founder mutations in single cell KRC/Y clones.

Cell clone Mutation

Number of sequenced
plasmid clones with
founder mutation

All 15 clones nt26.735(ARG) 46

1 T196T 3

2 R240R, K241R 2

3 D157N 4

4 I139T 5

4 V225A 4

5 N155S 3

8 K232R 3

9 I139N 3

9 I146N 2

10 L256W, P274P 2

12 E126G 2

14 L260S 4

15 D262G 3

Total founder mutations 86

doi:10.1371/journal.pone.0005231.t005

RASSF1, RBSP3 High Mutability
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Figure 3. Distribution of mutations in RASSF1A (A) and RBSP3 (B and C). For RASSF1A all mutations were analyzed. For RBSP3 mutations found
in GIT (B) and in human cancer (C) were analyzed separately. Bubble graphs depict the proportion of substitutions occurring at each of the four bases
in the RASSF1A and RBSP3, depending on the distance from the mutated nucleotide (No. 0). N, any nucleotide;B = C, G or T; D = A, G or T; S = G or C;
V = A,C, or G; W = A or T.
doi:10.1371/journal.pone.0005231.g003
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BCL6). However it was significantly lower than for immunoglob-

ulin genes (12.7 mutations per 100 bp, see [25]. However, for the

first time we found high frequency of somatic mutations in

different tissues including non-haematopoietic and in tumor

suppressor genes contrary to the previous reports where oncogenes

were studied.

As AccuPrimeTMPfx DNA polymerase creates maximally one

error in 36106 bp, our results proved that the observed

Figure 4. Reduced growth inhibiting activity of RASSF1A (A) and RBSP3A (B) mutants. A. Growth of stably transformed KRC/Y RCC cells with
wild type and mutant RASSF1A (Cys65Arg and Val211Ala) without doxycycline (the gene is on) is presented in A. On day 6, the number of cells with
wt RASSF1A was 36105 and the number of cells with mutant RASSF1A was 56105 (1.7 times more than wt). On day 10, the number of cells with wt
RASSF1A was 66105 and the number of cells with mutant RASSF1A was 1.86106 (3 times more than wt). The effect of expression of wild type and
mutant RBSP3A and RBSP3B on colony formation efficiency in KRC/Y cells is shown in B. Mutants were isolated from the N417 SCLC cell line
(His139Tyr), the ovarian tumor biopsy T4 (three mutations: Asn31Asp, Pro79Ser and Glu87Lys) and the KRC/Y cell line (three mutations: Lys35Met,
Asp103Gly and Leu181Pro). The number of blasticidin-resistant colonies compared to the empty pETE were: 90% for mutant from N417, 15% for
mutant from T4 biopsy and 25% for mutant from KRC/Y. The number of colonies for wtRBSP3A were 5–10% compared to the pETE colonies.
doi:10.1371/journal.pone.0005231.g004
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hypermutation frequencies in the experiments could not be

explained by erroneous performance of polymerases. In our

experiment with SCID mice when AccuPrimeTMPfx DNA

polymerase and 25 cycles were used, 85% of RBSP3 clones

contained mutations.

During the growth of the same cell lines in vitro, 30% of RBSP3

clones (also 25 cycles and AccuPrimeTMPfx DNA polymerase)

were mutant.

In experiments with RASSF1A (391 bp of the first and second

exons), 65% of clones contained mutations (experiments with

normal cells are not included). Moreover, in our experiments, we

used different polymerases with different error rate (see M/M) and

no significant differences in mutation frequency were observed,

arguing against the generation of the mutations during PCR

amplification. Different mutation frequencies between in vivo and

in vitro experiments and in ESTs isolated from normal and cancer

cells is an additional argument against the artificial nature of the

hypermutation rate observed in RBSP3 and RASSF1 genes.

Mutations were detected with similar frequency both in cDNA

and genomic DNA for RBSP3 and RASSF1, however, no high

mutability either on genomic or cDNA level were found for

albumin, insulin, GPR14, TSG p16/INK4a or transcription

elongation factor A (SII) TCEA1. Moreover, no mutations were

found in experiments with SCID mice for 5 genes: BLU, 101F6,

PL6, mutFUS1 and mutP53. Expression of RBSP3 [10] in six tested

samples differed almost 50-fold and on genomic level RBSP3 was

present usually in 3–8 copies [26]. Our previous experiments using

marker NL3-001 located 90 kb apart from the RASSF1A

demonstrated that in tumor cells this region in most cases is

present in 1–5 copies [4,5]. Still the frequency of mutations was

almost the same. Thus number of template molecules didn’t

influence significantly mutability level. Moreover, repeated

sequencing of the same plasmid and isolated by different persons

and at different time gave identical results (6 RASSF1A and 6

RBSP3 plasmid clones were sequenced) excluding frequent

sequencing errors.

Both genes are CG rich however it seems that although high

CG content can induce additional mutations it cannot explain the

fact that two genes with significantly different CG content

(RASSF1A, exons 1–2, 72.3%; RASSF1A, exons 1–6, 59.8% and

RBSP3, exons 1–8, 54.3%) both possess high mutability while

other genes with similar CG content (e.g. GPR14, 72.5%; p16/

INK4a, 71.6%; insulin 61.6%) didn’t show any high frequency of

mutations.

Using the same PCR conditions plasmids containing RBSP3 and

RASSF1A were amplified from E.coli and no mutations were

discovered arguing against generation of mutations during PCR

amplification.

Experiments to find founder mutations with single-cell clones

additionally confirm that mutations originate in the cell.

Interestingly that from the single cell clone No. 9 we isolated

plasmids with one, two or three mutations. This fact clearly

showed how these mutations originate from one parental cell clone

(Figure 2). Importantly after sequencing exons 3–5 of RASSF1A

gene from KRC/Y we discovered founder mutation (destroying

splice acceptor site) that was present in approximately 50% of 98

sequenced plasmid clones. This founder mutation appeared in all

single cell clones and thus most likely it originated before we

started this experiment.

For identification of tumor suppressor genes, we use the gene

inactivation test, GIT [26,27]. This test is based on the functional

inactivation of the analyzed genes during tumor growth in SCID

mice. Our hypothesis was that under selective pressure in vivo the

introduced TSG must be inactivated in growing experimental

(xenografted) tumors (by deletion, mutation, promoter methyla-

tion) as in the naturally growing tumors. The expression of the

tested gene in the GIT was regulated by tetracycline and the level

of expression was under physiological conditions. In our published

papers [10,23] wild type RBSP3 and wild type and mutated

RASSF1A genes were tested in GIT. The genes were PCR

amplified from tumors and sequenced. In contrast to the wild type

RBSP3 and RASSF1 genes, that were inactivated (i.e. deleted, non-

expressed, mutated) in all 32 grown tumors, the mutant RASSF1A

was not additionally mutated in any of four analyzed tumors.

Importantly, in these GIT experiments we used direct sequencing

of PCR products. These experiments showed that ‘‘founding

mutations’’ really do exist.

Analysis of public EST databases confirmed our experimental

data. It should be noted that the frequency of mutations in

RASSF1A and RBSP3 found in EST databases even using very

stringent criteria was significantly higher than found in our

experiments. MF for all mutations for RBSP3 was 0.63 and for

RASSF1 it was 0.22. Probably, this discrepancy could account for

the differences between the cell types analyzed in our experiments

and in the EST database.

Unfortunately only 17 RASSF1A clones could be analysed

because other EST sequences were either not sufficiently good or

could be other isoforms of the RASSF1 gene.

Interestingly, mutations of RASSF1A and RBSP3 changing

amino acids were found even in clones isolated from normal cell

RNA, however, at a lower frequency than in cancer cells (MF

ratios for cancer/normal sequences were 3.3 and 3, respectively).

This difference for both genes was statistically significant

(P,0.001) This probably reflects the selection for and the

advantage of coding mutations during cancer progression.

Important to mention that ‘‘normal’’ sequences include also

non-annotated sequences so we cannot exclude that some of the

‘‘normal’’ sequences actually represent cancer cells.

In fact, these results correlate with the data from the mouse in

vivo experiments that showed a higher frequency of mutations in

SCID tumors than in the same cells grown in vitro. Interestingly,

the same mutations were observed in cells grown in vitro and in vivo,

in SCID mice (see Table S2B).

We have also experimentally tested whether RASSF1A (genomic

DNA, exons1 and 2) harbored mutations in normal tissues and

found one mutated clone out of 14 in normal kidney (normal

control to T356, see section ‘‘Frequent mutations in RASSF1A in

human carcinomas’’). Important to note that so called ‘‘normal’’

kidney could be already partially transformed despite of normal

phenotype because it was obtained from tissues adjacent to the

tumor. We also sequenced complete RASSF1A cDNA from normal

heart and detected six mutated clones out of 15 tested. All six heart

mutated clones contained the same two mutations: L214L with

codon changed from CTA to CTG and V236V with codon

changed from GTA to GTG. Mutations in heart RASSF1 cDNA

were most likely SNP as they could be also found in other RASSF1

clones in public databases (e.g. AC002481, NM_170713.2,

NM_170714.1). In any case it is clear that mutations in RASSF1

in normal cells are more rare than in cancer cells.

As we found mutations in all 5 coding exons of RASSF1A (the

last 6th exon contains only 48 amino acids = 144 bp). It means that

other six known isoforms of RASSF1 are also frequently mutated.

Exceptionally high level of germ line SNP mutations in

RASSF1A found in several studies [8] support our data that the

two genes we studied have rather frequent mutations even in

normal cells.

The pattern of mutations was very different compared to those

reported for AID and APOBEC enzymes and cannot be explained

RASSF1, RBSP3 High Mutability
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by polymerase errors. This is the first report of high mutation

frequencies of RASSF1 and RBSP3 genes in different epithelial

malignancies. In our preliminary paper [28] we analyzed

mutations in RASSF1A gene in NPC samples and the results

supported the present observations. In the NPC experiments 35

mutations were detected in 23 patients and mutations were

considered real if at least two clones from the same patient

contained the same mutation. Ten clones for each sample were

sequenced in these experiments. Both DNA strands were

sequenced.

At present, we don’t know the nature of the mechanism

responsible for this hypermutability, and only speculations could

be done for its physiological function(s) in normal cells. There are

several DNA polymerases in vertebrate cells that inaccurately copy

templates and could be involved in generating hypermutations [29].

One of them, POLH (error rate 361022), has a mutation target

motif WA and may contribute to hypermutagenesis of immuno-

globulin genes at A-T bases [30]. POLH is expressed in all tissues

and, in principle, could cause hypermutations in non-haematopoi-

etic cells. We found that 50% of all observed mutations in RBSP3

happened in A or T surrounded by G or C. That means that the

mutation target motif for 50% of mutations in RBSP3 is SWS and is

different from the POLH motif. It is reasonable to suggest that

other(s) yet unknown DNA polymerase(s) may be responsible for the

high mutability rates we report here and more than one polymerase

contributes to hypermutations [29,31].

Our results also argue that mutations are not completely random.

They are not correlated with predicted numbers (Tables 1, 2, 3). For

example according to statistical calculations our sequences of

RASSF1A exons 1 and 2 should contain 0.026 nonsense mutations

but in reality we detected 3 nonsense mutations, P,0.001 (see Table

S1A). For RASSF1A exons 3–5 the predicted number of nonsense

mutations is 0.037 and we found 3 such mutations, P,0.001 (see

Table S1B). This fact may reflect the nature of cancers and normal

tissues studied here. We cannot also exclude that these mutations

still have some preferable motif(s).

We mentioned in the text that clonal selection for more

aggressive growth of cancer cells could add to changing proportion

of different mutations. In our previous paper [28] we also observed

an unusual distribution of mutations. Among 35 detected

mutations we found 30 transitions, 3 transversions, 2 deletions

(frameshift), 3 nonsense (stop), 26 missense and only 4 were

synonymous.

High frequency of mutations in different cancers and normal

cells was reported earlier for P53 [32]. However, at present it is

difficult to compare these results with our study as different

methodologies were used and most likely different mechanisms of

mutagenesis were involved.

When this manuscript was completed two new publications

appeared in PNAS that support our observations and concept

[33,34].

Interestingly, in the paper of Yang et al. [35] hypermutability

was demonstrated in damaged single-strand DNA formed at

double–strand breaks in yeast S. cerevisia. Although yeast data may

not apply to human cells, it is worthwhile to note that AP20 and

LUCA regions where RASSF1 and RBSP3 are located were found

extensively damaged (deletions, amplifications) in 90% of studied

major epithelial cancers [2, 4, 5, see Introduction].

Materials and Methods

Ethics Statement
All work with mice was performed in special ‘‘Animal House’’ in

MTC according to the standard rules. The study was done in

accordance to the guidelines (incl. husbandry) issued by the

STOCKHOLMS Norra Djurforsoksetiska Namnd (Animal Ethic

Committee of North Stockholm).

Paired tumor/normal samples were obtained from the Blokhin

Cancer Research Center, Russian Academy of Medical Sciences

after surgical resection of primary tumors and stored in liquid

nitrogen.. Top and bottom sections (3–5 mm thick) cut from frozen

tumor tissues were examined histologically and only samples

containing 70% or more tumor cells were used in the study. The

samples were collected in accordance to the guidelines issued by

the Ethic Committee of the Blokhin Cancer Research Center,

Russian Academy of Medical Sciences (Moscow). All patients gave

written informed consent that is available upon request. The study

was done in accordance with the principles outlined in the

Declaration of Helsinki.

Cell lines and experiments with SCID mice
Cell lines were obtained from the MTC-KI (Stockholm,

Sweden) cell lines collection. Cell and tumor growth assays were

done as described previously [13,16,23,26]. GIT was performed as

described previous [16,26,27].

In brief, plasmid DNAs were purified using R.E.A.L. Prep kit

(Qiagen, Valencia, CA). Transfections were performed using

LipofectAMINE PLUS Reagent (Life Technologies, Rockville,

MD) according to the manufacturer’s protocol. After transfection,

cells were selected with 5 mg/ml Blasticidin and 200 ng/ml

doxycycline for two-four weeks. For colony formation assay cells

were selected for 2 weeks, fixed, stained with Giemza and counted

for transfection efficiency. For isolation of stably transfected cell

clones, selection was done for four weeks. PCR positive clones

from each recombinant were tested for expression using Northern

hybridization and selected clones, 56106 cells/mouse, were

inoculated subcutaneously with or without Matrigel (BD, Franklin

Lakes, NJ) into six-week-old female SCID mice. Each mouse

received only 1 injection. SCID mice were observed for tumor

formation twice a week for up to seven weeks, if tumor formation

was observed, tumors were measured using calipers. The tumors

were explanted for DNA preparations.

General methods
All molecular biology and microbiology procedures were

performed as described previously [10,13,36]. DNA and RNA

were isolated from total tumor samples containing less than 30%

of non-tumor cells according to histopathology examination.

Construction of pETE vector and KRC/Y and LNCaP cell

lines producing tetracycline trans-activator tTA were described in

ref. [26].

Polymerases used for PCR
In experiments with cell lines and biopsies we used natural Taq

polymerase (New Englands Biolabs, Ipswich, MA, USA) and

JumpStartTMAccuTaqLA DNA Polymerase (Sigma-Aldrich, St.

Louis, MO, USA). In some experiments (for comparison) we used

AccuPrimeTMPfx DNA polymerase (Invitrogen, Carlsbad, CA,

USA). No significant difference was observed between these three

polymerases. Usually 30 cycles were used.

In experiments with single cell clones and SCID mice

AccuPrimeTMPfx DNA polymerase and 25 cycles were employed.

Natural Taq polymerase has an error rate 4.5–561025 (i.e.

maximally 1 mistake per 200.000 bp) and the JumpStartTMAccu-

TaqLA DNA Polymerase exhibits 6.5 fold higher fidelity. In many

experiments, to exclude the possibility of generating mutations

during the polymerization, we used the most error free polymerase
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available (15–26 fold better fidelity than ordinary Taq polymerase)

AccuPrimeTMPfx DNA polymerase and only 25 cycles.

The size of the RBSP3B is 1003 bp and the accuracy of ordinary

Taq polymerase is approximately one error in 26105 bp. This

means that after 30 cycles 15% of clones would be expected to

contain mutation(s) in the RBSP3 and after 25 cycles 12.5%. In the

case of AccuPrimeTMPfx DNA polymerase, after 30 cycles 1% of

clones would be mutant and after 25 cycles only 0.84%. In our

experiment with SCID mice, 85% of RBSP3 clones contained

mutations (AccuPrimeTMPfx DNA polymerase, 25 cycles).

During the growth of the same cell lines in vitro, 30% of RBSP3

clones (also 25 cycles and AccuPrimeTMPfx DNA polymerase)

were mutant.

PCR and Sequencing
PCR primers were purchased from Invitrogen (Carlsbad, CA,

USA). PCR was done as described earlier [2]. Initial denaturation

was done for 2 min at 95uC following 25–30 cycles: 95uC for

15 sec, 64uC for 30 sec and extension at 68uC for 1 min per 1 kb.

RBSP3A and RBSP3B: gene fragments (ORF) have been

obtained by PCR from cDNA isolated from different cell lines

using the following primer sets, according to manufacturer’s

manual.

RBSP3B. 120C: 59-GCGGCCGCCGCGCCGCGCACC-

CATGGACGGCCCGGCCATC-39 (nucleotides 1-40) and

HYA22C: 59-AAAACAAAACAGGTAGGCATGGCCA-

CATTC-39 (nucleotides 1003-973). See GenBank Accession

No. AJ575645

RASSF1A: genomic fragments (GenBank Accession

No. AC002481).

Ex1–Ex2. F2A: 59-GCCCAAAGCCAGCGAAGCAC-39 (nu-

cleotides 18051-18070) and EX2F2: 59-ACCCAGG-

CAGCCCTCGAGAA-39 (nucleotides 21066- 21047).

Ex3–Ex5. RassF1-2intrF: 59-TGT CCA TGC TGG CCC ATC

TTG C-39 (nucleotides 26713-26734) and RassF1-5exR: 59-CAC

CTC CCC AGA GTC ATT TTC CTT C-39 (nucleotides 27530-

27554).

RASSF1A: cDNA fragment cDNA (ORF):

F2A: 59-GCCCAAAGCCAGCGAAGCAC-39 (nucleotides 97-

116) and

F2B: 59-AGCCATACCT GGCTACACCCACAGG-39 (nucle-

otides 1343- 1319),

see GenBank Accession No. NM_007182

GPR14: genomic fragment (ORF).

GPR14F: 59 - CCCATCTCAGGGAGTGTCCA - 39 (nucle-

otides -52 - 33),

and GPR14R: 59 - GTAGTTCCTGGTGAGCAGCGTG-

TAG - 39 (nucleotides 966 - 942), see GenBank Accession

No. NM_018949

TCEA1P2: genomic fragment (ORF).

TCEA1F: 59 - TTTGTGAGGAAGGGGGCCTA - 39 (nucle-

otides 705 - 724),

and TCEA1R: 59 - ATATTTTGCCAATTCTTCCAACT-

CAACA - 39 (nucleotides 1775 - 1748), see GenBank Accession

No. X73534

pETE primers [26]:

LiTetF: 59 - GCCTATATAAGCAGAGCTCGTTTAG - 39

AtetR: 59 - CCAAACTCATCAATGTATCTTATCA - 39

Insulin: genomic fragment (ex1–ex3).

InsF: 59-CTGTCACCCAGATCACTGTCCTTC-39 (nucleo-

tides 546-569) and InsR: 59-GGGCTGCGTCTAGTTGCAG-

TAGTT-39 (nucleotides 1702-1679), see GenBank Accession

No. AY138590.1.

Albumin: cDNA fragment (ex12–ex15). AlbF: 59-GAAC-

CAGTTATGTGTGTTGCATGAGAA-39 (nucleotides 1482 -

1508), and AlbR: 59-CCCACAGAAACTAGAAATCCTC-

TACCG-39 (nucleotides 2181 -2155), see GenBank Accession

No. NM_000477.3.

All experiments were performed using Gene Amp PCR System

9700 (Perkin Elmer, Foster City, CA, USA).

PCR products were cloned, using the TOPO TA cloning kit for

sequencing (Invitrogen). Plasmid DNA was purified using the

R.E.A.L.- Prep kit (Qiagen, Valencia, CA). Sequencing was done

using an ABI 310 Sequencer (Applied Biosystems, Foster City,

CA), according to the manufacturer’s protocol.

Bioinformatics
For RASSF1A only exons 1 and 2 with a total length of 357 bp

(Acc.No. NM_007182) were analyzed. For RBSP3 the longest

isoform B (Acc.No. AJ575645; the total length is 831 bp) was

analyzed. The gene sequences were searched against GenBank

EST division, a collection of expressed sequence tags, or short,

single-pass sequence reads from mRNA (cDNA). The statistically

significant thresholds for the alignment (score) that provided

elimination of alien mRNA sequences was set for RASSF1A at 462

and for RBSP3 at 404. These thresholds were obtained from

expertise estimation to cut off clusters of short and non-significant

homologies to the query sequences. An additional manual

refinement against low quality sequences was performed. Nucle-

otide similarity searches were performed with BLAST 2.2.

In all experiments we always compared a given sequence with

the annotated sequences as shown in previous paragraph.

Probabilities of mutation frequency differences were calculated

using Poisson distribution.
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