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Abstract

Background: The molecular pathway that controls cardiogenesis is temporally and spatially regulated by master
transcriptional regulators such as NKX2-5, Isl1, MEF2C, GATA4, and b-catenin. The interplay between these factors and their
downstream targets are not completely understood. Here, we studied regulation of b-catenin and GATA4 by NKX2-5 in
human fetal cardiac myocytes.

Methodology/Principal Findings: Using antisense inhibition we disrupted the expression of NKX2-5 and studied changes in
expression of cardiac-associated genes. Down-regulation of NKX2-5 resulted in increased b-catenin while GATA4 was
decreased. We demonstrated that this regulation was conferred by binding of NKX2-5 to specific elements (NKEs) in the
promoter region of the b-catenin and GATA4 genes. Using promoter-luciferase reporter assay combined with mutational
analysis of the NKEs we demonstrated that the identified NKX2-5 binding sites were essential for the suppression of b-
catenin, and upregulation of GATA4 by NKX2-5.

Conclusions: This study suggests that NKX2-5 modulates the b-catenin and GATA4 transcriptional activities in developing
human cardiac myocytes.
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Introduction

During early development myocardial cells within primary and

secondary heart fields form under influence of bone morphoge-

netic proteins (BMPs), fibroblast growth factors (FGFs), and

proteins from Wnt family, that initiate expression of a cascade of

cardiac-associated transcription factors including NKX2-5, Isl1,

MEF2C, GATA4, and b-catenin and their downstream targets

(reviewed in [1,2]). The cardiac function of these transcription

factors and their regulation is only partially understood. The

importance of Nkx2-5, GATA4, and MEF2C in cardiac

development has been demonstrated in many studies [3,4],

reviewed in [5]; the role of Wnt/b-catenin pathway in cardiogen-

esis has recently begun to be unraveled [6]. Although the early

studies were pointing at an inhibitory role for b-catenin dependent

Wnt pathway on cardiogenesis [2,7–9], more recent studies have

shown a biphasic role where b-catenin is necessary at earlier stages

of cardiomyogenesis and inhibitory at later stages of heart

development. Furthermore, cardiac-specific deletion of b-catenin

has proved to be deleterious when b-catenin is deleted in cardiac

cells originated from the secondary heart fields [10], suggesting

spatial difference in gene cascades that control cardiac myocyo-

genesis. Since NKX2-5 transcription factor is one of the earliest

genes expressed in the heart cells we hypothesized that b-catenin

might be regulated by NKX2-5 in cardiac myocytes. Analysis of

promoter regions identified candidate NKX2-5 binding elements

(NKEs) in b-catenin and GATA4 genes. To test if b-catenin and

GATA4 are regulated by NKX2-5, endogenous NKX2-5

expression was knocked down by expressing antisense NKX2-5

RNA (XKN) in human fetal ventricular myocytes. This study

shows that b-catenin and GATA4 transcription factors are

regulated by NKE sequences in the promoter region of these

genes. In addition, we confirm direct physical interactions between

NKX2-5 and NKEs in the promoters of b-catenin and GATA4 as

demonstrated by electrophoretic mobility shift, chromatin immu-

noprecipitation, and luciferase promoter assays. This study

supports the essential role of NKX2-5 in maintaining the cardiac

gene expression program and suggests direct regulation of b-

catenin and GATA4 by NKX2-5 in human cardiomyocytes.

Results

Identification of NKX2-5 binding sites in the promoters of b-

catenin and GATA4 genes
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The genomic sequence surrounding the first exons of human b-

catenin and GATA4 genes were searched for NKX2-5-binding

consensus sequence (NKE), TNAAGTG [11], using TFSEARCH.

The 2 kb sequence immediately upstream of the first exon of

human b-catenin gene (CTNNB1) [12] was searched for candidate

NKEs. Analysis of this sequence revealed candidate NKEs in

positions 2900 to 21400 (Fig. 1). Binding sites for USF (upstream

stimulating factor) and other transcription factors such as SP-1,

P300, ADR1, MyoD, and GATA1 were also found in this region

(not shown). Similar analysis on the sequence surrounding the first

exon of GATA4 gene was performed and a candidate NKEs in

position -1540 was identified. The identified NKEs are located in

the regions partially conserved between human and mouse when

the promoter sequences are aligned using rVISTA (Fig. 1).

NKX2-5 regulates the expression of b-catenin and GATA4
in cardiac myocytes

We further studied the regulation of b-catenin and GATA4 by

NKX2-5 in ventricular myocytes. The myocyte cultures were

.90% a-MyHC positive as determined by immunocytochemistry

(Fig. 2A). The myocyte cultures were treated with NKX2-5

antisense RNA produced from an adenovirus. The cells exposed

to antisense RNA showed .95% reduction in NKX2-5 protein

levels 48 hours post-treatment, while the level of PCNA control was

unaffected (Fig. 2B). Antisense inhibition of NKX2-5 led to a

significant increase in b-catenin protein level suggesting that

NKX2-5 negatively regulated b-catenin, while expression of

GATA4 and MEF2C was suppressed, suggesting a positive

regulation by NKX2-5 (Fig. 2B). Furthermore, b-catenin and

GATA4 protein level changes were dependent on the concentration

of antisense NKX2-5 (AdXKN) used in the experiments (Fig. 2C).

Cardiomyocytes treated with AdXKN for 48 hrs demonstrated

reduction in the expression of myosin heavy chain, an indication of

disruption in cardiac cell sarcomeric structure and function

(Fig. 2D). No other morphological differences were detected

between the AdXKN-trandsfected cells and controls after 48 hrs.

NKX2-5 binds to the b-catenin and GATA4 promoters
To study direct binding of NKX2-5 to the b-catenin and GATA4

promoters through the putative NKEs, we performed electropho-

retic mobility shift assay (EMSA) using nuclear extract from

retrovirally-transduced C2C12 cells overexpressing NKX2-5 [13].

The binding of NKX2-5 to NKE1 within b-catenin and to NKE-

G within GATA4 promoter were examined and detected only in

the presence of nuclear extract containing NKX2-5 protein

(Fig. 3A). These results were further confirmed by chromatin

immunoprecipitation (ChIP) on cultured cardiac myocytes

(Fig. 3B). A known NKX2-5-binding site in the atrial natriuretic

factor (ANF) promoter region [14], was used as positive control,

and primers amplifying the 4th exon of b-catenin (CTNNB1-E) was

used as negative control in ChIP analysis. The DNA harboring the

candidate NKE sequences in the promoters of GATA4 and b-

catenin genes were immunopreceipitated (Fig. 3B). This further

confirms physical interaction of NKX2-5 to the candidate NKEs

in the promoters of GATA4 and b-catenin.

Functional characterization of NKX2-5 binding sites in
GATA4 and b-catenin promoters

In order to confirm that the identified sequences had either

enhancer or repressor activity, we performed promoter-luciferase

reporter assay. Regions surrounding the NKEs, the region between

primers GF2 and GR2 for GATA4, and BF2 and BR2 for b-catenin

indicated in figure 1, were examined for repressor or enhancer

activity, in COS7 cells. The region containing NKE in GATA4

promoter sequence led to an approximate 5 fold increase in the

promoter activity, while the region surrounding NKEs in the b-

catenin promoter sequence repressed promoter activity by 2.5 fold, in

the presence of NKX2-5 expressed from an adenovirus (Fig. 4A).

Similar results were obtained when mouse NKX2-5 was expressed

from a plasmid in COS7 cells carrying the promoter-luciferase

constructs (data not shown). To further confirm that the candidate

NKEs in the b-catenin and GATA4 promoters were involved in

binding to Nkx2-5, we mutated or deleted the candidate NKE

sequences (Fig.1 and 4B). Introduction of base changes in NKE at

position 2912 (mNKE1) and deletions of the region encompassing

the two NKEs in the 59 half of the sequence (mNKED) in b-catenin

upstream sequence completely inactivated NKX2-5 repression,

while base changes at positions 2948 (mNKE2) and 21065

(mNKE3) had less effect on the promoter activity (Fig. 4B). Deletion

of 10 bases in the 59 half not containing an NKE did not

significantly change the promoter activity. Introducing base changes

to the NKE in GATA4 promoter, reduced promoter activity by

almost 50% when cells were treated with a high concentration of

adenovirus expressing NKX2-5 (Fig. 4B).

Nkx2-5 modulates Wnt/b-catenin pathway in
cardiomyocytes

To further study the Nkx2-5 regulation of Wnt/b-catenin

pathway in cardiomyocytes, mouse Nkx2-5 was overexpressed in

mouse neonatal cardiomyocytes using adenoviral system and

concomitantly Wnt/b-catenin pathway was activated by treating

cells with Wnt-3A. As demonstrated in figure 5, upregulation of b-

catenin downstream target genes, Axin2 and Cx43 [15,16] was

completely blunted in cells overexpressing Nkx2-5, further

supporting the functional role of Nkx2-5 in the regulation of b-

catenin in cardiomyocytes.

b-catenin and GATA4 transcript levels in heterozygous
Nkx2-5+/2 mice

To further study the proposed regulation of GATA4 and b-

catenin by Nkx2-5 in vivo, we examined, by quantitative RT-PCR,

the level of b-catenin and GATA4 RNAs in Nkx2-5+/2 mouse

embryo hearts at 11.5 dpc. Nkx2-5 RNA level in heterozygotes

(Nkx2-5+/2) are decreased to approximately 80% of that in the

wild type mice. An approximately 20% increase in b-catenin

transcript level was detected. Similarly, Gata4 RNA level was also

increased (Fig. 6).

Discussion

Nkx2-5 transcription factor regulates multiple aspects of cardiac

cell structure, function, and development [5,17,18]. Identification of

genes downstream of Nkx2-5 is therefore crucial in understanding

the transcriptional network that regulates cardiac myogenesis.

Following identification of candidate NKEs in the promoter of

GATA4 and b-catenin genes; using EMSA and ChIP, we demon-

strated that Nkx2-5 binds to the region surrounding identified

sequences. Furthermore, gene reporter assay revealed that the

regions encompassing NKEs were functional and that base change

or deletion of the NKEs resulted in either reduction or complete loss

of activation or repression of the promoter activity when Nkx2-5

was co-expressed in COS7 cells. The data presented here indicates

that NKX2-5 negatively regulates b-catenin in cardiac myocytes. b-

catenin activation is the hallmark of canonical Wnt pathway

(reviewed in [2]). Both Wnts and Wnt inhibitors are expressed in the

developing heart suggesting a requirement for regulated Wnt

signaling. At early stages of development in mouse embryos b-

Nkx2-5 Regulates b-Catenin
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Figure 1. Identification of NKX2-5 binding sites in b-catenin (CTNNB1) and GATA4 promoters. The promoter sequence of b-catenin and
GATA4 genes contains candidate NKX2.5 binding sites (boxed sequences). The first exons of b-catenin and GATA4 are indicated with capital-bold
letters and primers: BF1, BR1, GF1, and GR1 used in ChIP analysis are underlined. Primers GF2, GR2, BF2, and BR2 (underlined) delineate the region
cloned and used in luciferase assay. The base changes in the NKE sequences (mNKEs), used in gene reporter assays have been shown. The bottom
panel shows the level of DNA sequence conservation between human and mouse 2-kb upstream of b-catenin and GATA4 first exons. Shaded areas
demonstrate very high level of conservation. Black boxes indicate the identified NKEs.
doi:10.1371/journal.pone.0005698.g001
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catenin directly regulates Islet1 expression [10], a gene essential for

the development of cardiac cells in the secondary heart field, and

therefore, b-catenin is essential for development of cardiac cells that

originate from the secondary heart field [19]. In mouse embryonic

stem cells Wnt/b-catenin appears to have a biphasic role as it

enhances cardiogenesis at early stages of differentiation while

conversely inhibiting cardiogenesis at later stages of development

[20]. The inhibitory function of Wnt/b-catenin in cardiogenesis is

supported by several lines of evidence such as formation of multiple

hearts in mice in which b-catenin is ablated in the endoderm [9],

and the blockage of cardiogenesis when Wnt-3A or Wnt-8C are

ectopically expressed in the precardiac mesoderm of chicken and

xenopus embryos [8]. Our results add to these findings and suggest

that b-catenin expression is repressed in cardiac myocytes at least at

Figure 2. Down-regulation of NKX2-5 alters expression of cardiac-associated genes. (A) Cardiac myocytes and fibroblasts isolated from
human fetus at 20-22 weeks of age and cultured for 5 days were immunostained with anti-MyHC antibody (MF-20) to determine the percentage of
myocytes in the preparations. The isolated myocyte culture contained .90% MyHC+ cells while the fibroblasts revealed ,5% MyHC+ cells. (B) The graph
summarizes the western blot analysis after treatment with AdGFP and AdXKN (antisense Nkx2-5 RNA) at 8 MOI, and immunoblotting with NKX2-5,
GATA4, b-catenin, MEF2C, PCNA, and GAPDH antibodies. The level of Nkx2.5 was reduced to less than 5% in antisense RNA-treated cells (n = 3, P = 0.002).
Similarly, GATA4 and MEF2C were downregulated significantly while no difference was detected in the level of PCNA. b-catenin was upregulated in the
myocytes treated with AdXKN (n = 3, P = 0.016). (C) Western blot analysis of 20-wk old cardiac myocytes treated with increasing concentration of AdXKN
showed changes in GATA4 and b-catenin that corresponded with the level of NKX2-5. Lane 1 represents cells treated with AdGFP control at 8 MOI. (D)
Immunostaining of cardiomyocytes with MF20 (myosin heavy chain) revealed a reduction in the amount of myosin heavy chain (indicated by arrows)
and with a punctate pattern of staining in cells exposed to antisense NKX2-5 for 48 hrs (AdXKN) compared to control cells (AdGFP).
doi:10.1371/journal.pone.0005698.g002
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the gestational ages tested and that this transcriptional repression is

mediated by Nkx2-5. Previous studies have suggested the presence

of a transcriptional repressor domain at the carboxyl-terminus of

Nkx2-5 [11,17] that may mediate the repressor activity of Nkx2-5

on b-catenin gene expression shown in this study. Repression of

genes such as connexins 40 and 43 in murine cardiomyocytes

overexpressing Nkx2-5 has been shown in other studies but the

molecular nature and the possible co-factors involved are not

identified. Transcriptional repression has also been demonstrated

for other cardiac-associated factors such as GATA4/FOG2

complex directly repressing Lhx9 gene in the heart [21]. In vivo,

examination of b-catenin RNA level in Nkx2-5 heterozygous hearts

(reduced Nkx2-5) revealed an increase in b-catenin RNA which was

in agreement with our in vitro data. A recent study has shown that

activation of Wnt/b-catenin downregulates Hdac1, a suppressor of

Nkx2-5 and GATA4 in cardiomyocytes [22]. Therefore, in Nkx2-5

heterozygous hearts, higher levels of b-catenin could increase Nkx2-

5 and GATA4 via downregulation of Hdac1. It is note worthy that

in Nkx2-5 heterozygous hearts the level of Nkx2-5 is not exactly half

as compared to the wild type hearts. Further study is required to

delineate the regulation of b-catenin in cardiac myocytes originated

from primary (e.g. left ventricle) or secondary (e.g. right ventricle)

heart fields and at different developmental stages.

Moreover, our study indicated the direct regulation of GATA4

by NKX2-5 in human fetal cardiac myocytes. The role of

GATA4 in early cardiogenesis is clearly established [3,5,23].

GATA4 inactivation results in myocardial thinning and disrup-

tion of myocyte cell proliferation [24]. The presence of high

affinity GATA4 binding sites in cardiac enhancer regions of the

Nkx2-5 promoter [25,26] have suggested that Gata4 is genetically

upstream of Nkx2-5. Accordingly, the expression of GATA4 is

upregulated prior to Nkx2-5 in P19CL6 cardiomyocyte model

[27].Treatment of in vitro cultured ventricular myocytes with

antisense NKX2-5 in this study, however, led to a reduction in

GATA4 level suggesting that NKX2-5 positively regulates the

expression of GATA4, at least in cultured cardiac myocytes, and

therefore, not only does GATA4 regulate NKX2-5, but the

converse regulation exists as well. GATA4 RNA level in Nkx2-

5+/2 embryos, however, was unexpectedly upregulated. We

reason that this upregulation represents a complex regulation of

GATA4 transcription factor during development. Since GATA4

begins to express in cardiac progenitor cells prior to Nkx2-5 [27],

Figure 3. EMSA and ChIP assays indicate direct binding of NKX2-5 to b-catenin and GATA4 promoters. (A) EMSA was performed to
demonstrate binding of NKX2-5 to NKE1 (within b-catenin promoter) and NKE-G (within GATA4 promoter). Arrows indicate specific bands that are
detected only in nuclear extract (NE) from C2C12 cells expressing Nkx2-5. Faint band detected with C2C12+GFP nuclear extract might represent
binding of endogenous Nkx2-5 to the oligonucleotides. (B) ChIP analysis using anti-Nkx2.5 antibody resulted in precipitation and amplification of
DNA harbouring b2catenin (CTNNB1-P) and GATA4 (GATA4-P) promoters encompassing the NKEs. ANF promoter and b-catenin exon 4 (CTNNB1-E)
sequences were used as positive and negative control respectively. Also ‘‘2’’ represents IgG control and ‘‘+’’ represents the samples where anti-NKX2-
5 antibody was added, for each experiments.
doi:10.1371/journal.pone.0005698.g003
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its expression may be controlled by unknown factors that are

upregulated in the Nkx2-5 heterozygous hearts due to a

compensatory mechanism, and therefore, higher expression of

GATA4 in the Nkx2-5 heterozygous hearts may be essential to

maintain Nkx2-5 above a threshold level necessary for the normal

development of the heart.

Figure 4. Promoter luciferase assay indicates regulation of b-catenin and GATA4 by NKX2-5. (A) The graphs demonstrate promoter
activity luciferase reporter assay. For this assay, the regions between primers GF2 and GR2 for GATA4 and BF2 and BR2 for b-catenin were amplified
and cloned into pGL3-promoter plasmid. Luciferase reporter assay using these constructs demonstrated repression for b-catenin sequence, and
activation for GATA4 sequence, of promoter activity when the adenovirus expressing NKX2-5 was co-transfected into COS7 cells. Cells transfected
with the constructs were exposed to various MOIs (5-40 MOI) of Nkx2-5-adenovirus as indicated (n = 3 for each concentration). (B) Mutational analysis
of b-catenin and GATA4 promoters. The approximate positions of mutated NKEs in b-catenin and GATA4 promoters and deletion of the 59 half
(mNKED) of the b-catenin promoter sequence have been indicated. Luciferase reporter assay was performed using wild type (WT-B: b-catenin, and
WT-G: GATA4) and mutated (mNKEs) promoters after adding adenovirus expressing NKX2-5 at either 15 (gray bars) or 30 (black bars) MOI. White bars
indicate promoter activities in untreated cells. Activities of the promoters harboring mutated NKEs were all statistically different from the equally
treated WT values (# and * indicate P,0.02) except for deletion of sequence not containing an NKE (mNKED10).
doi:10.1371/journal.pone.0005698.g004
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Overall, our study proposes a model where Nkx2-5 negatively

regulates b-catenin and positively regulates GATA4 in cardiomy-

ocytes, as depicted in figure 7. The in vitro cell culture model of fetal

cardiac myocytes, such as the one used in this study, in combination

with antisense RNA or siRNA technology [28] helps to elucidate the

transcriptional regulatory network in cardiac myogenesis.

Figure 5. Disruption of Wnt/b-catenin pathway in mouse cardiomyocytes overexpressing Nkx2-5. Cells were transfected with adenovirus
expressing mouse Nkx2-5 and concomitantly treated with mouse Wnt-3A. Treatment with Wnt-3A increased the level of Axin2 and Cx43 RNAs by
approximately 2 folds, in the control cardiomyocytes. In Nkx2-5 overexpressing cardiomyocytes, upregulation of Axin2 and Cx43 by Wnt-3A was
blunted.
doi:10.1371/journal.pone.0005698.g005
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Materials and Methods

Cardiac myocyte culture
Human fetal hearts at gestational ages 20–22 (n = 5) weeks were

collected in IMDM+20% FBS. Ventricles were separated and the

fat and connective tissues were removed before mincing. The

tissue was then digested by incubating in enzyme solution (1 mg/

ml collagenase type II, 0.125% trypsin, 0.03% glucose) for 10 min

at 37uC and passed through a filter. These steps were repeated 2–3

times and the cells were pelleted by centrifugation. The cell

mixture was resuspended in the media and the number of live cells

was counted. Fibroblasts were separated from other cardiac cells

using anti-fibroblast antibody-conjugated magnetic beads pur-

chased from Miltenyi Biotech. Inc., according to manufacturer’s

instruction. Cells were cultured in IMDM+20% FBS for 3–5 days

at 37uC and 5% CO2
.

Mouse neonatal cardiomyocytes were prepared using similar

protocol. Isolated cells obtained after tissue digestion were pre-

plated for 1 hr to allow attachment of fibroblasts to the plate. Cells

not adhered were then seeded on plates coated with 0.1% gelatin

and cultured in DMEM+15% FBS for 24–48 hrs before they were

used in experiments.

Ethics Statement
Fetal cardiac cells were derived from terminated pregnancies

under an approved protocol by the Hospital for Sick Children

Research Ethics Board. Written consent was obtained from

mothers who participated in the study. The use of mice in this

study was also approved by an institutional ethics board.

Immunofluorescence and western blot analyses
Immunofluorescence and western blot analyses were performed

according to the standard procedures. Myosin heavy chain

antibody (MF-20) was obtained from the Developmental Studies

Hybridoma Bank developed under the auspices of the NICHD

and maintained by the University of Iowa, Department of

Biological Sciences, Iowa City, IA 52242. Other antibodies were

purchased: PCNA (DAKO), GAPDH (Novus Biologicals), b-

catenin (Upstate Biotech.) and Nkx2-5, GATA4, and MEF2C

(Santa Cruz Biotechnology). For western blot analysis one to three

plates of cardiac myocytes, for each experimental condition, were

lysed with RIPA buffer and the samples were separately loaded on

SDS-PAGE gel and blotted.

Production of sense and antisense NKX2-5 adenovirus
and treatment of myocyte cultures

Human NKX2-5 cDNA was amplified from fetal heart RNA by

RT-PCR using one-step RT-PCR kit (Qiagen) and using primers:

agactggtcgactgccaccatgttcc and agagtcagggatcctagttgaggtg, and

digested with SalI/BamHI. NKX2-5 cDNA was cloned into SalI/

BglII site of pAdTrack-CMV (Stratagene Inc.) in forward and

reverse orientations. Manufacturer’s instructions were followed to

produce the virus. The virus titer and multiplicity of infection

(MOI) were estimated using HEK-293 cells and by calculating the

number of GFP+ cells. The recombinant adenoviruses were used

at different MOIs.

Adenoviral vector to express mouse Nkx2-5 was constructed by

amplifying mouse Nkx2-5 cDNA using primers: aacctgcgtcgac-

Figure 6. The level of Gata4 and b-catenin RNA in Nkx2-5+/- heterozygous and wild type hearts. Quantitative RT-PCR analysis of Nkx2-5,
Gata4, and b-catenin in the hearts of 11.5 dpc wild type (WT) and Nkx2-5+/- (HET) embryos revealed augmentation of both Gata4 and b-catenin and
reduction in Nkx2-5 RNA levels. The values (mean6SEM) for each gene were normalized against GAPDH. N = 9 for WT and N = 11 for HET hearts.
doi:10.1371/journal.pone.0005698.g006

Figure 7. A proposed model demonstrating the regulation of b-
catenin, GATA4, and MEF2C by Nkx2-5. Regulation of Nkx2-5 by
GATA4, and its autoregulation has been shown in previous studies.
doi:10.1371/journal.pone.0005698.g007
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caccatgttcc and cggagaaaggatcccaggcctgcg and cloning the cDNA

into NotI/SalI sites of pAdTrack-CMV.

Computational analyses for 59-flanking sequences
TFSEARCH (http://www.cbrc.jp/research/db/TFSEARCH.

html) was used to find putative NKX2-5 binding elements in 2kb

upstream of the transcriptional initiation sites of human GATA4

(accession no. AC090790) and b-catenin genes (accession no.

AY463360.1).

rVISTA (regulatory VISTA, http://genome.lbl.gov/vista/index.

shtml) was used to examine the similarity between human and

mouse sequence in the 59-flanking region of each gene.

Wnt-3A treatment of cardiomyocytes and expression of
Axin2 and Connexin 43

Mouse neonatal cardiomyocytes were prepared as described

above. Cells were transfected with adenovirus expressing mouse

Nkx2-5 at 1 MOI and cultured in growth media for 24 hrs. Cells

were then treated with mouse Wnt-3A (R&D Systems), at a

concentration of 100 ng/mL for 16 hrs in media containing 1%

serum. RNA was isolated using Trizol (Invitrogen) and cDNA was

synthesized. Gene expression was assayed using either pre-designed

Taqman assays or oligonucleotides with SYBR Green. The following

sets of primers were used: Nkx2-5 (Mm00657783_m1, Applied

Biosystems), Gapdh (Mm9999915_m1, Applied Biosystems) Axin2

(tggaggaaaatgcctaccag, acatagccggaacctacgtg), Cx43 (gaacacgg-

caaggtgaagatg, gagcgagagacaccaaggaca), and Gapdh (tccac-

caccctgttgctgtag, gaccacagtccatgccatcact). Expression levels deter-

mined in each assay were normalized against Gapdh. Data were

analyzed by relative quantitation method using standard curve.

Electrophoretic mobility shift assay (EMSA)
EMSA was performed using Lightshift Chemiluminescent

EMSA kit (Pierce). Nuclear extracts were prepared from C2C12

myoblasts expressing either human Nkx2-5 or GFP [13] using

method previously described [29]. Complementary oligonucleo-

tides encompassing the putative NKX2-5 binding sites in b-

catenin (NKE1: tataagaattaacctgcagacagcgctctg) and GATA4

(NKE-G: agaagaaaccctaagtgtgtcgcccccagc) promoters were syn-

thesized and annealed. The annealed oligonucleotides were

biotinylated using 39 end DNA labeling kit (Pierce) and incubated

with 5 mg of nuclear extracts for 20 min to allow binding. The

mixtures were analyzed by gel electrophoresis on 5% PAGE in

0.56 TBE buffer. The membrane was hybridized with HRP-

conjugated straptavidin (Pierce) for detection of DNA-protein

complex according to the manufacturer’s instruction.

Chromatin immunoprecipitation (ChIP)
ChIP was performed according to a published protocol [30]

with some modifications. In brief, cultures of cardiac myocytes

were fixed using formaldehyde. The cells were lysed with RIPA

buffer and sonicated to fragment DNA. DNA-protein complexes

were immunoprecipitated with 1 mg of Nkx2-5 antibody (Santa

Cruz) and protein G (Roche), according to the manufacturer’s

instruction. The immunoprecipitated DNA was used as template

in PCR using primers: ANF: (agtaagaatgcggctcttgc), (gagaca-

gaaccctccccatt), CTNNB1-P: (tcgacaaacgtcaattttgc), (tcgattaag-

cagcctccaat), GATA4-P: (cccttcagccttaagttcc), (gcgacacact-

tagggtttcttc), and CTNNB1-E (cacccggaggtgatttacaca),

(gcctggctctgatctccatgt). Amplification condition was 94uC- 4 min,

94uC- 30 sec, 50uC-30 sec, 72uC- 30 sec, for 35 cycles.

Transfection and reporter gene assays
Promoter regions containing the candidate NKX2-5-binding

sites in b-catenin (CTNNB1) and GATA4 promoters were

amplified using primers GF2 (gagtccgaagagctcgcagattgg), GR2

(ggcgcaaactcgaggaaaggaaac), and BF2 (ggcagttgagctcttaccacttata),

BR2 (ggctgtgaactctcgagtagaacg) and cloned into the SacI/XhoI sites

of pGL3-promoter plasmid (Promega). Plasmids were sequenced

to confirm the correct DNA sequence. COS7 cells were grown in

DMEM+10%FBS and co-transfected with pCMV-lacZ plasmid

and either pGL3-GATA4 or pGL3-bcatenin constructs using

FuGENE 6 (Roche Applied Science).

Mutation or deletion of Nkx2-5-binding elements was carried

out by amplifying the promoter from the wild type reporter

construct using oligonucleotides harboring modified DNA se-

quences (containing PstI sites) and primers on both sides of the

promoter sequence and surrounding the cloning site of pGL3

vector: pGL3-1 (ctagcaaaataggctgtcccag) or pGL3-2 (ccaagcttact-

tagatcgcaga). The amplified DNA fragments were then digested

with either SacI/PstI or PstI/XhoI and subcloned into the SacI/XhoI

sites of the pGL3-promoter vector. Oligonucleotides used to

amplify mutated constructs: mNKE1: aattggaggctgctgcaga-

tagctttctcta, mNKE2: ttgatacctagtgactgcaggaaccagataa, mNKE3:

ctataagaattaactgcagacagcgctctgg, and their complementary se-

quences. To make mNKED, the mNKE3 construct was cut with

PstI and SacI and blunted with Klenow DNA polymerase. The

DNA fragment encompassing the promoter sequence downstream

of mNKE3 site was eluted from gel and cloned into the SmaI site of

pGL3-promoter.

Two to five micrograms of wild type or mutated constructs were

used for transfecting COS7 cells. Cells were then exposed to

different MOIs of adenovirus expressing NKX2-5, one hour after

the start of the transfection. The treated cells were lysed with

Promega Reporter Lysis Buffer and luciferase activity was

measured using a luminometer. The b-galactosidase activity was

measured and used for normalization of the values.

Analysis of Nkx2-5+/2 embryos
Animal procedures were performed under approved institutional

protocol. Heterozygote Nkx2-5 embryos were generated by

breeding Nkx2-5+/2 heterozygote mice. Embryos were genotyped

as previously described [31]. RNA was prepared from hearts of

11.5 dpc Nkx2-5+/2 embryos and used in TaqMan PCR assays

(Applied Biosystems) to detect levels of Nkx2-5 (Mm00657783_m1,

Applied Biosystems), Gata4 (Mm00484689_m1, Applied Biosys-

tems), b-catenin (Mm00483033_m1, Applied Biosystems), and

Gapdh (Mm9999915_g1, Applied Biosystems) RNAs. Data were

analyzed by relative quantitation method using standard curve.

Statistical analysis
Results are expressed as mean6SD unless otherwise indicated.

Statistical significance was determined by one-way ANOVA.

P,0.05 was used to indicate statistical significance.
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