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Abstract
Case-control association studies often collect extensive information on secondary phenotypes,
which are quantitative or qualitative traits other than the case-control status. Exploring secondary
phenotypes can yield valuable insights into biological pathways and identify genetic variants
influencing phenotypes of direct interest. All publications on secondary phenotypes have used
standard statistical methods, such as least-squares regression for quantitative traits. Because of
unequal selection probabilities between cases and controls, the case-control sample is not a
random sample from the general population. As a result, standard statistical analysis of secondary
phenotype data can be extremely misleading. Although one may avoid the sampling bias by
analyzing cases and controls separately or by including the case-control status as a covariate in the
model, the associations between a secondary phenotype and a genetic variant in the case and
control groups can be quite different from the association in the general population. In this article,
we present novel statistical methods that properly reflect the case-control sampling in the analysis
of secondary phenotype data. The new methods provide unbiased estimation of genetic effects and
accurate control of false-positive rates while maximizing statistical power. We demonstrate the
pitfalls of the standard methods and the advantages of the new methods both analytically and
numerically. The relevant software is available at our website.
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INTRODUCTION
There is a proliferation of genomewide association (GWA) studies worldwide. These studies
usually employ the case-control design, which consists of a sample of cases (i.e. diseased
individuals) and a sample of controls (i.e., disease-free individuals). Most GWA studies
measure a variety of quantitative or qualitative traits other than the disease trait that defines
the case-control status. Exploring these secondary phenotypes can discover genetic variants
influencing previously unstudied phenotypes and provide important clues about causal
pathways. Although the main interest of case-control association studies lies in the
comparison of cases and controls, analysis of secondary phenotype data may supplement the
case-control comparison in the initial reports or become the primary focus of subsequent
publications.
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Indeed, recent months have seen an explosion of publications on genetic variants influencing
human quantitative traits, such as height [Weedon et al., 2007; Sanna et al., 2008; Weedon
et al., 2008; Lettre et al., 2008; Gudbjartsson et al., 2008], body mass index (BMI) [Frayling
et al., 2007; Loos et al., 2008], and lipid levels [Saxena et al., 2007; Willer et al., 2008;
Kathiresan et al., 2008]. The data for those publications came mostly from case-control
association studies of complex diseases (e.g., diabetes, cancer and hypertension). The most
recent publications were based on meta-analysis of multiple GWA studies involving
thousands or tens of thousands of individuals.

All publications on quantitative traits have relied on standard linear regression analysis (i.e.,
classical least-squares estimation under the linear model). Five types of analysis have been
conducted to assess the effects of SNPs on quantitative traits using data from case-control
association studies: (1) controls only; (2) cases only; (3) combined sample of cases and
controls; (4) meta-analysis of cases and controls; (5) joint analysis of cases and controls
adjusted for the disease status. Methods (1) and (2) are restricted to controls and cases,
respectively. Method (3) analyzes cases and controls together and ignores the disease status.
In method (4), cases and controls are analyzed separately and the results are combined by a
meta-analytic procedure. Method (5) analyzes cases and controls together and includes the
disease status as a covariate in the model.

None of the aforementioned analysis methods is statistically correct. Because cases and
controls are selected at different rates from their respective subpopulations, the case-control
sample does not constitute a random sample of the general population. As a result, the
population association between a SNP and a secondary trait can be distorted in the case-
control sample. Thus, method (3) can be grossly misleading, especially when the secondary
trait is strongly correlated with the disease and the sampling rates are very different between
cases and controls. The other four methods are conditional on the disease status and are thus
unaffected by the biased case-control sampling. However, the associations between a SNP
and a secondary trait in the case and control groups can be quite different from the
association in the general population if the secondary trait is correlated with the disease.

To illustrate the above points, we consider a dichotomous secondary trait taking the values 0
and 1 with equal probability and a SNP with minor allele frequency (MAF) of 0.2. Assume
that the disease rate is 10%, the odds ratio of disease with the SNP is 1.5 under the dominant
mode of inheritance, and the odds ratio of disease with the secondary trait is 2. If the SNP is
unrelated to the secondary trait in the general population (i.e., the odds ratio is 1), then the
odds ratios of the secondary trait with the SNP will be approximately 0.975 in the case and
control groups, and the odds ratio in the combined sample of cases and controls with an
equal number of cases and controls will be approximately 1.045; see Table I for details. In
other words, there exist (spurious) associations between the SNP and the secondary trait in
the case and control groups, as well as in the combined sample, despite the absence of
association at the population level. This phenomenon implies that methods (1), (2) and (3)
are all biased; methods (4) and (5) are also biased because they combine the biased results
from the case and control groups. Because GWA studies typically have large sample sizes,
even modest levels of bias can lead to grossly inflated false-positive rates, especially in
meta-analysis.

The fact that method (3) is biased seems to contradict with the universally accepted practice
of performing standard logistic regression on case-control data. Standard logistic regression
analysis of case-control data indeed yields correct maximum likelihood estimates of odds
ratios, although the estimate of the disease rate is generally biased [Prentice and Pyke,
1979]. This remarkable result, however, applies only to the primary disease outcome that

Lin and Zeng Page 2

Genet Epidemiol. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



defines the case-control status, and not to a secondary outcome that is correlated with the
disease.

We have developed valid and efficient statistical methods to analyze secondary phenotype
data in case-control association studies. Our methods are based on likelihood functions that
properly reflect the case-control sampling. The corresponding maximum likelihood
estimates are approximately unbiased and normally distributed. Furthermore, the estimates
are statistically efficient in that they have the smallest variances among all valid estimates,
and the corresponding association tests are the most powerful among all valid tests.

In the next section, we describe in more detail the ingredients of the new methods and the
pitfalls of standard methods, particularly methods (1)-(5). In the subsequent Results section,
we use Monte Carlo simulation to quantify the bias of standard methods in common
situations and to evaluate the operating characteristics of the new methods. We relegate the
technical details about the new and standard methods to Appendices A and B, respectively.

METHODS
NEW METHODS

Let D denote the case-control status (1 = disease; 0 = no disease) and Y denote the secondary
phenotype. Also, let X denote the genotype score for a SNP of interest. Under the additive
mode of inheritance, X is the number of minor alleles; under the dominant (recessive)
model, X indicates, by the values 1 versus 0, whether or not the individual carries at least
one minor allele (two minor alleles). We use a generalized linear model to formulate the
effects of X on Y, and write the conditional density of Y given X as P(Y|X). If Y is a
quantitative trait, we use the linear regression model, which specifies that the conditional
distribution of Y given X is normal with mean β0 + β1X and variance σ2. If Y is a
dichotomous trait, we use the logistic regression model, under which

We relate Y and X to D through the logistic regression model

We are mainly interested in β1.

For a case-control study with a total of n subjects, the data consist of (Di, Yi, Xi) (i = 1,…, n).
Because the sampling is conditional on the case-control status, the likelihood function takes
the retrospective form,  which is

where P(Di = 1) = ΣyΣx P(Di = 1|x, y)P (y|x)P(x), P(Di = 0) = 1 − P(Di = 1), and P(Di = 0|Xi,
Yi) = 1 − P(Di = 1|Xi, Yi). We maximize this function by the Newton-Raphson algorithm.
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Likelihood-based statistics (i.e., Wald, score and likelihood-ratio statistics) can be used to
make inference about the parameter of main interest β1.

The estimation of γ0 may be unstable, especially for dichotomous Y. When the disease is
rare such that P(D = 1|X, Y) ≈ eγ0+γ1X+γ2Y, the parameter γ0 cancels in the numerator and
denominator of the likelihood function. When the disease is not rare but the disease rate is
known approximately, we can incorporate the information about the disease rate into the
estimation. We can include environmental covariates in the models for Y and for D, but then
the probability distribution of continuous environmental covariates will enter into the
likelihood function as a high-dimensional nuisance parameter. We eliminate such nuisance
parameters through the profile-likelihood approach. The interested readers are referred to
Appendix A for the theoretical and computational details of the new methods.

STANDARD METHODS
As described in the Introduction section, standard statistical methods have been applied to
the secondary phenotype data from case-control studies in five different ways, which we
will refer to as methods (1)-(5). Methods (1)-(3) are based on the prospective likelihood
function Πi P(Yi|Xi), where the product is taken over the controls, the cases or all study
subjects. The maximization of this function yields the classical least-squares estimation for
quantitative traits and the standard logistic regression for dichotomous traits. Method (4)
combines the least-squares or odds ratio estimates of the case and control samples through
the inverse-variance meta-analysis procedure. Method (5) is based on the prospective
likelihood function  which is a parametric way of combining the results of
the case and control samples.

We have conducted a thorough investigation into the properties of the five standard
methods. We state here the main conclusions while relegating the details to Appendix B. If
the secondary phenotype is not related to the case-control status, or more precisely, D is
independent of Y given X (i.e., γ2 = 0), then all five methods are valid. If the SNP is not
associated with the case-control status, or more precisely, D is independent of X given Y
(i.e., γ1 = 0), then all five methods yield correct estimates of odds ratios for dichotomous
traits, but the least-squares estimates for quantitative traits produced by the five methods are
biased unless β1 = 0 or γ2 = 0. When the disease is rare in that the probability of disease is
virtually 0, all standard methods except (3) are approximately valid.

The fact that standard methods are generally invalid unless γ1 = 0 or γ2 = 0 is disconcerting.
Most secondary phenotypes are strongly correlated with the case-control status, so that γ2 ≠
0. Thus, any SNPs that are associated with the case-control status will tend to be detected as
being associated with secondary phenotypes by standard methods even when the latter
associations do not exist. When the associations truly exist, all five methods may produce
estimates that are biased toward the null and thus reduce statistical power.

RESULTS
We conducted extensive simulation studies to assess the performance of the standard and
new methods in the analysis of secondary quantitative traits. We considered a SNP with
MAF of 0.3 and additive mode of inheritance. For the model of the secondary quantitative
trait, we set β0 = σ2 = 1, and let β1 = 0 and −0.12 under the null and alternative hypotheses,
respectively; β1 = −0.12 means that each copy of the minor allele decreases the trait value
by 12% of its standard deviation. For the disease-risk model, we set γ2 = log 2, varied the
value of γ1 from 0 to log 2, and chose the value of γ0 to yield a disease rate of 1% or 5%.
Note that γ1 pertains to the change in the log odds ratio of disease for each copy of the minor
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allele of the SNP and γ2 to the change in the log odds ratio of disease for one standard-
derivation increase of the quantitative trait. The choice of γ2 = log 2 represents a strong, but
not uncommon, association between the secondary phenotype and the disease. For each
combination of simulation parameters, we generated 1,000,000 data sets with 1,000 cases
and 1,000 controls. We compared the new method to standard methods (1)-(3), i.e., the
least-squares methods based on the data from the control group, the case group, and the
combined sample of cases and controls. We focused on methods (1)-(3) because methods (4)
and (5) are closely related (1) and (2).

We summarize the key results in Figures 1 and 2. Figure 1 shows the biases of effect
estimates and the coverage probabilities of 99% confidence intervals for β1 as a function of
the odds ratio of disease with the SNP (i.e., eγ1) under the alternative hypothesis (i.e., β1 =
−0.12). Figure 2 displays the type I error and power for testing the null hypothesis of β1 = 0
at the nominal significance level of 1%. We restricted the horizontal axis to 1.5 because the
odds ratios that have been observed in GWA studies thus far are mostly less than 1.5
although the odds ratios may be higher in candidate genes studies.

The new method performs very well. The effect estimates are virtually unbiased, and the
variance estimates accurately reflect the true variations (latter data not shown). A a result,
the confidence intervals have proper coverage probabilities, and the association tests have
correct type I error rates. The power of the new method is always above 80%.

The least-squares method based on the combined sample of cases and controls, i.e., method
(3), can be very wrong, especially when the SNP is strongly related to the disease. The effect
estimates are biased, the confidence intervals have poor coverage probabilities, and the type
I error is inflated. The problems associated with this method are more severe for rarer
diseases. The type I error rates are 8 times and 5 times the nominal significance level under
the disease rates of 1% and 5%, respectively, when the odds ratio of disease with the SNP is
1.3. This strategy may be more powerful or less powerful than the new method, dependent
on how the SNP affects the disease status and the secondary phenotype. Figure 2 shows that
this strategy can be substantially less powerful than the new method.

When the disease is rare, say less than 1%, the least-squares methods based on controls only
and cases only, i.e., methods (1) and (2), are appropriate in that the effect estimates are
approximately unbiased, the confidence intervals have adequate coverage probabilities, and
the association tests have reasonable type I error rates. These two methods, however, use
half of the study subjects and are thus much less powerful than the new method. For
relatively common diseases, methods (1) and (2) yield biased effect estimates, improper
confidence intervals and inflated type I error, especially when the SNP is strongly related to
the disease. When the disease rate is 5% and the odds ratio of disease with the SNP is 1.5,
the type I error rates for methods (1) and (2) are about 1.3% and 1.8%, respectively.

All the aforementioned results pertain to MAF of 0.3, γ2 of log 2, 1,000 cases and 1,000
controls, and nominal significance level of 1%. We also considered other combinations of
simulation parameters. The new methods continued to perform well. The performance of
standard methods became worse as MAF, γ2 or sample size was increased and as the
nominal significance level was lowered. In addition, the performance of methods (1) and (2)
became worse as the disease rate was increased.

Figure 3 displays the type I error rates of the five standard methods for MAF of 0.2, disease
rate of 7%, 2,000 cases and 2,000 controls, and nominal significance level of 10−6. The type
I error rates for all five methods increase rapidly with increasing values of γ1 and γ2 and are
seriously inflated even with moderate values of γ1 and γ2. Under γ1 = log 1.3 and γ2 = 0.5,
the type I error rates of methods (1)–(5) are, respectively, 1.7, 2.4, 20, 3.2 and 3.2 times the
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nominal significance level; under γ1 = log 1.2 and γ2 = 1, the five type I error rates are 1.9,
6.2, 25, 6.7 and 7 times the nominal significance level. Controls-only analysis has the least
inflation of type I error, followed by cases-only analysis. Meta-analysis of cases and controls
has higher type I error than cases-only and controls-only analyses, mainly because it has
twice the sample size. The joint analysis of cases and controls with the disease status as a
covariate in the linear model has slightly higher inflation of type I error than the meta-
analysis. The analysis of the combined sample without adjusting for the disease status, i.e.,
method (3), performs much worse than the other four methods.

DISCUSSION
The purpose of this article is two-fold: to evaluate the standard methods and to develop
better methods for the analysis of secondary phenotype data in case-control association
studies. We have demonstrated both analytically and numerically that all the standard
methods can have severely inflated type I error and reduced power in practical situations.
The new methods provide accurate control of the type I error and have the highest
efficiency/power among all valid methods. We have developed efficient numerical
algorithms to implement the new methods and posted the software online. With our
software, analysis of a GWA study (with 500K-1,000K SNPs) can be completed in a few
hours.

As mentioned in the Introduction section, the recent publications on human height, BMI and
lipid levels relied on standard linear regression analysis of quantitative trait data from case-
control studies of complex diseases. We are not challenging the conclusions of those
publications because some of the initial results were validated in cross-sectional or cohort
data, but the effect estimates and P-values reported in the papers might be questionable.
Using valid and efficient statistical methods in the initial scans would reduce the number of
false positives and increase the number of true positives among the initial results and thus
enhance the success rates of validation efforts. It would be even more important to use
proper statistical methods in any validation analysis.

When the disease is rare, all standard methods except (3) are approximately valid. Our
simulation studies revealed that this assumption is problematic when the disease rate is
appreciably higher than 1%. As shown in Figures 1 and 2, methods (1) and (2) have serious
problems when the disease rate is 5%. We recommend to use the rare disease assumption
only when the disease rate is less than 2%.

Many of the complex diseases currently under study are relatively common (5-10%), so the
results of Figure 3 are particularly relevant. If the disease is type 2 diabetes, then γ2 is close
to 1 for BMI and triglyceride levels and close to 0 for height. Thus, standard linear
regression analysis of BMI and triglyceride levels in case-control studies of type 2 diabetes
would be more biased than that of height. The most recent publications on quantitative traits
were based on meta-analyses of tens of thousands of subjects, so the inflation of type I error
would be much more profound than what is seen in Figure 3.

Although only a small fraction of SNPs are truly associated with a complex disease, any
SNPs that are associated with the disease in the observed data (mostly by chance) will tend
to be spuriously associated with secondary traits in the case and control groups as well as in
the combined sample; therefore, all five standard methods can cause large-scale increases of
false positive results in GWA studies. Indeed, the quantile-quantile plots in several
publications [Weedon et al., 2007; Weedon et al., 2008; Gudbjartsson et al., 2008] showed
substantial deviations of observed statistics from the expected (after correcting for
population stratification), even at the 0.01 level of significance.
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APPENDIX A: THEORETICAL AND COMPUTATIONAL ASPECTS OF NEW
STATISTICAL METHODS

We provide theoretical and computational details for the new statistical methods. In the
main text of this article, X pertains to a single SNP. In this appendix, we expand X to contain
all genetic and environmental factors of interest (including gene-environment interactions).
We use Pθ(y|x) to denote the conditional density of Y given X = x, which is formulated
through a parametric model with a set of parameters θ. We assume that

where γ1 is now a vector.

The data consist of (Di, Yi, Xi) (i = 1,…, n). The likelihood function is

where P(x) is the density of X, and

For discrete components, the integration is replaced by the summation.

Before deriving estimation methods, we need to determine which parameters are estimable
or identifiable. We wish to show that two sets of parameters {γ0, γ1, γ2, θ, P(x)} and {γ0*,
γ1*, γ2*, θ*, P*(x)} are identical if they yield the same likelihood. It is natural to assume that
Pθ(Y|X) = Pθ*(Y|X) if and only if θ = θ* and that the data matrix for (1, X, Y) is of full rank.

We first consider the case in which the disease is rare such that P(D = 1|X, Y) ≈ eγ0+γ1TX+γ2Y

and P(D = 0|X, Y) ≈ 1. Then the likelihood function becomes

We let D = 0 to obtain Pθ(Y|X)P(X) = Pθ*(Y|X)P*(X), which implies P(X) = P*(X) and θ =
θ*. We let D = 1 to obtain γ1TX + γ2Y = γ1*TX + γ2*Y + c, where c is a constant. Because the
data matrix for (1, X, Y) is of full rank, this equation yields γ1 = γ1* and γ2 = γ2* (implying c
= 0). Thus, all parameters are identifiable.

Next, we consider the case in which the disease rate is known. Since P(D = 1) is known,
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Summing over D = 0 and 1 yields Pθ(Y|X)P(X) = Pθ*(Y|X)P*(X), which implies θ = θ* and
P(X) = P*(X). This further implies γ0 + γ1TX + γ2Y = γ0* + γ1*TX + γ2*Y. Hence, all
parameters are identifiable.

The remaining case is when the disease is not rare and the disease rate is unknown. It can be
shown that γ1 = γ1*, γ2= γ2*, and

where c0 is a constant [Roeder et al., 1996]. In most cases, the above equation implies θ =
θ*. (In particular, we can show that θ = θ* for continuous traits satisfying the linear
regression model; this is also true for dichotomous traits satisfying the logistic regression
model if γ2 = 0 or if γ2 ≠ 0 and there is a continuous component of X that is related to D.)
Then

If γ2 ≠ 0, then the above equation clearly implies γ0= γ0* and P(x) = P*(x), so all parameters
are identifiable. If γ2 = 0, we have

so γ1, γ2 and θ are identifiable while P(x)/(1 + eγ0+γ1Tx) is identifiable up to some constant.

In all cases, we estimate the parameters by maximizing the likelihood functions. Because
P(x) is potentially high-dimensional, we use the profile likelihood approach. We provide
estimation procedures separately for the three cases discussed above.

We first consider the rare-disease case. Write pi = P (Xi). By differentiating the log-
likelihood function with respect to pi, we obtain

where λ is the Lagrange multiplier for the constraint Σi pi = 1, and n1 is the number of cases.
Multiplying the above equation by pi and summing over i, we see λ = n − n1. Thus,
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where

By the arguments of Lin and Zeng [2006], maximizing the likelihood function is equivalent
to maximizing

which is called the profile log-likelihood function for γ1, γ2, θ and ξ.

When the disease rate is known, we maximize

subject to the constraints that Σi pi = 1 and

where ξ0 is the known value of P(D = 1). By using the Lagrange multipliers, we see that the
estimate for pi satisfies

The two constraints imply λξ0 + λ̃ = n; therefore,
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where λ satisfies Σi pi = 1. Thus, the profile log-likelihood function for θ, γ0, γ1 and γ2 is

where λ is determined by the equation

under the constraint that each term in the summation is positive.

Finally, we deal with the case in which the disease is not rare and the disease rate is
unknown. If γ2 = 0, we can use standard statistical methods; see Appendix B. Suppose that
γ2 ≠ 0. By introducing the Lagrange multiplier λ, we differentiate the log-likelihood function
to obtain

where n1 and n0 are the numbers of cases and controls. It is easy to see that λ = 0, so

where ξ = P(D = 1). Plugging this expression into the log-likelihood function yields the
profile log-likelihood function for γ0, γ1, γ2, θ and ξ

In all three cases, we maximize the profile log-likelihood functions via the Newton-Raphson
algorithm or optimization algorithms. By the arguments used in the proofs of Theorems 2
and 3 of Lin and Zeng [2006], we can show that the maximum likelihood estimators are
consistent and asymptotically normal. In addition, the limiting covariance matrix attains the
efficiency bound and can be consistently estimated by the inverse of the negative Hessian
matrix of the profile log-likelihood function.
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APPENDIX B: THEORETICAL PROPERTIES OF STANDARD STATISTICAL
METHODS

We investigate the validity of standard statistical methods. Let P denote the true probability,
and let Pobs denote the observed probability under the case-control design. Since

and Pobs(Y, X |D) = P(Y, X |D), we have

(1)

Likewise,

(2)

and

(3)

If Pobs(Y |X) = P(Y |X), then the usual (prospective) likelihood based on the combined
sample of cases and controls will yield correct estimates of θ as well as correct variance
estimates. The sufficient and necessary condition for this equality is that Y is independent D
conditional on X, i.e., γ2 = 0. To show the sufficiency, we note that equation (1) under γ2 = 0
entails

Similarly, P(X) = P(X |D = 0)(eγ0+γ1TX + 1)P(D = 0). Plugging these two expressions into
equation (1), we see Pobs(Y |X) = P (Y |X). We show that γ2 = 0 is the necessary condition by
contradiction. Suppose that Pobs(Y|X) = P(Y|X) but γ2 ≠ 0. Then equation (1) implies

This is false since Pobs(D = 1) is arbitrary under the case-control design. Using equations (2)
and (3), we can show that γ2 = 0 is also the necessary and sufficient condition for the
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standard analysis based on controls only or cases only to be valid. In most case-control
studies, secondary phenotypes are correlated with the disease status, so that γ2 ≠ 0.

What happens if D is independent of X conditional on Y, i.e., γ1 = 0? We first consider
dichotomous traits. By switching the roles of X and Y in the above derivation, we see Pobs(X|
Y) = P(X|Y) under γ1 = 0; similar calculations show that Pobs(X |Y, D) is proportional to P(X|
Y). Therefore, standard logistic regression analysis based on cases only, controls only, or the
combined sample yields correct estimates of the odds ratios in the general population. For
quantitative traits, the linear model specifies that Y = β0 + β1

TX + ∈, where ∈ is zero-mean
normal with variance σ2. Write Ỹ = Y − β1

TX. Clearly, Ỹ is independent of X, so standard
linear regression will estimate β1 correctly if and only if Pobs(Ỹ |X) has mean zero. In light of
equation (1), this means

for all X, implying γ1 = −γ2β1. Thus, standard regression analysis is biased under γ1 = 0
unless β1 = 0 or γ2 = 0. This explains the patterns of bias seen in Figure 2.

We now investigate the bias of including the case-control status as a predictor in a
regression model. It follows from equations (2) and (3) that for dichotomous traits,

and for continuous traits,

where c0(X) = ∫y P(y|X)(1 + eγ0+γ1TX+γ2y)−1dy. Thus, the logistic regression of Y on X and D
is not a valid analysis of the effects of X on Y in the general population unless γ1 = 0 or γ2 =
0, whereas the linear regression of Y on X and D generally yields biased estimates of the
effects of X on Y in the general population unless γ1 = 0 and γ2 = 0.

Finally, we consider rare disease. When the disease is rare, equation (1) becomes
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Clearly, Pobs(Y|X) is not equivalent to P(Y|X) unless γ2 = 0. That is, standard analysis based
on the combined sample is generally invalid. For rare disease, equation (2) becomes

Thus, standard analysis based on controls only is approximately valid. On the other hand,
equation (3) becomes

Thus, Pobs(Y|X, D = 1) is not equivalent to P(Y |X) unless γ2 = 0. Interestingly, when Y is
dichotomous,

so standard logistic regression based on cases only yields approximately correct estimates of
odds ratios. If Y is continuous satisfying the linear model, then Pobs (Y |X, D = 1) is
approximately proportional to exp{−(Y − β1

TX − β0 − σ2γ2)2/2σ2}; therefore, standard linear
regression based on cases only is approximately correct for rare disease. Whether the trait is
dichotomous or continuous, the regression means between cases and controls differ only by
a constant, so (for rare disease) the regression of Y on X and D yields approximately correct
estimation of the effects of X on Y in the general population.
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Figure 1.
Relative biases of effect estimates and coverage probabilities of 99% confidence intervals
for four analysis methods: least-squares methods based on controls only, cases only and
combined sample of cases and controls versus the new method. The relative bias is the bias
divided by the effect size. The odds ratio of disease with the SNP (i.e., eγ1) was varied from
1 to 1.5 with 0.1 increment. Each result is based on 1,000,000 simulated data sets. For
disease rate of 1%, least-squares methods based on controls only and cases only and the new
method all yield coverage probabilities of virtually 99% at all values of the odds ratio of
disease with the SNP, so the three curves are indistinguishable.
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Figure 2.
Type I error rates and power of association tests at the 1% nominal significance level for
four analysis methods: least-squares methods based on controls only, cases only and
combined sample of cases and controls versus the new method. The odds ratio of disease
with the SNP (i.e., eγ1) was varied from 1 to 1.5 with 0.1 increment. Each result is based on
1,000,000 simulated data sets. For disease rate of 1%, least-squares methods based on
controls only and cases only and the new method all yield type I error rates of virtually 1%
at all values of the odds ratio of disease with the SNP, so the three curves are
indistinguishable.
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Figure 3.
Type I error rates (×106) at the nominal significance level of 10−6 for five linear regression
methods: (1) controls only; (2) cases only; (3) combined sample of cases and controls; (4)
meta-analysis of cases and controls; (5) joint analysis of cases and controls with adjustment
for the disease status. The odds ratio of disease for the SNP (i.e., eγ1) was varied from 1 to
1.5 with 0.1 increment. Trait effect on disease (γ2) pertains to the change in the log odds
ratio of disease for one-standard derivation increase in the quantitative trait. Each result is
based on 100,000,000 simulated data sets. For γ2 of 0.25, the type I error rates are virtually
identical between methods (3) and (5), so the two curves are indistinguishable. The nominal
significance level of 10−6 is indicated by the black line in each panel.
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TABLE I

Probability distributions of disease status, genotype score and secondary trait in a case-control setting

General population

Genotype score Secondary trait

0 1

0 0.32 0.32

1 0.18 0.18

Odds ratio = 1

Cases

Genotype score Secondary trait

0 1

0 0.0192 0.0362

1 0.0157 0.0289

Odds ratio = 0.975

Controls

Genotype score Secondary trait

0 1

0 0.3008 0.2838

1 0.1643 0.1511

Odds ratio = 0.975

Case-control sample

Genotype score Secondary trait

0 1

0 0.2631 0.3387

1 0.1698 0.2285

Odds ratio = 1.045

Genet Epidemiol. Author manuscript; available in PMC 2010 April 1.


