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Abstract
Statins are potent inhibitors of cholesterol biosynthesis and exert beneficial effects in the primary
and secondary prevention of coronary artery disease. However, the overall benefits observed with
statins appear to occur much earlier and to be greater than what might be expected from changes in
lipid levels alone, suggesting effects beyond cholesterol lowering. Indeed, recent studies indicate
that some of the cholesterol-independent or “pleiotropic” effects of statins involve improving
endothelial function, enhancing the stability of atherosclerotic plaques, decreasing oxidative stress
and inflammation, and inhibiting the thrombogenic response. Many of these pleiotropic effects are
mediated by inhibition of isoprenoids, which serve as lipid attachments for intracellular signaling
molecules. In particular, inhibition of the small guanosine triphosphate–binding proteins Rho, Ras,
and Rac, whose proper membrane localization and function are dependent on isoprenylation, may
play an important role in mediating the pleiotropic effects of statins.

Each of the statins is unique with regard to tissue permeability and metabolism, a characteristic
that results in different potencies for extrahepatic 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA) reductase inhibition. These variations in tissue permeability and metabolism may
account for some of the observed differences in peripheral side effects.1 Lipophilic statins,
such as atorvastatin and simvastatin, are more likely to enter endothelial cells by passive
diffusion than are hydrophilic statins, such as pravastatin and rosuvastatin, which are primarily
targeted to the liver. However, because lipophilicity does not entirely predict the ability of
statins to exert extrahepatic effects in animal models and human studies, it is likely that other
unidentified factors may play a role. For example, there may be specific mechanisms for
hydrophilic statins to enter extrahepatic cells, such as endothelial cells. Such a mechanism is
present in the liver, where the hepatic organic anion transporter OATP-C enables hydrophilic
statins to enter hepatocytes.2

Until recently, all cholesterol-independent, or “pleiotropic,” effects of statins were believed to
be mediated by inhibition of mevalonate synthesis. However, a recent report suggests that
statins bind to a novel allosteric site within the β2-integrin leukocyte function–associated
antigen–1 (LFA-1), which is independent of mevalonate production.3 LFA-1 belongs to the
integrin family and plays an important role in leukocyte trafficking and T-cell activation.
Random screening of chemical libraries identified the HMG-CoA reductase inhibitor lovastatin
as an inhibitor of the LFA-1–intercellular adhesion molecule–1 interaction. This article reviews
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new data on the different pleiotropic properties of the statins and discusses the clinical
implications of these findings (Figure 1).4 Additionally, a comprehensive review of the
pleiotropic effects of statins has recently been published4a for readers interested in more
information on the topic.

Statins and Isoprenylated Proteins
By inhibiting L-mevalonic acid synthesis, statins also prevent the synthesis of other important
isoprenoid intermediates of the cholesterol biosynthetic pathway, such as farnesyl
pyrophosphate and geranylgeranylpyrophosphate (GGPP)5 (Figure 2).4a These intermediates
serve as important lipid attachments for the posttranslational modification of a variety of
proteins, including the γ-subunit of heterotrimeric G-proteins, heme-a, nuclear lamins, and
small guanosine triphosphate–binding protein Ras and Ras-like proteins, such as Rho, Rab,
Rac, Ral, or Rap.6 Protein isoprenylation (Ras and Rho guanosine triphosphatase family)
permits the covalent attachment, subcellular localization, and intracellular trafficking of
membrane-associated proteins,6,7 which are relevant in cell-signaling pathways. Thus, by
inhibiting mevalonic acid, the downstream effects of statins include reduction of inflammation,
improved vasodilation, and reduced thrombogenicity.

Rho is the major target of GGPP; thus, inhibition of Rho and its downstream target Rho kinase
is a likely mechanism mediating some of the pleiotropic effects of statins on the vascular wall.
8,9 Each member of the Rho family serves specific functions in cell shape, motility, secretion,
and proliferation, although overlapping functions among the members could be observed in
overexpressed systems. Activation of Rho in Swiss 3T3 fibroblasts by extracellular ligands,
such as platelet-derived lysophosphatidic acid, leads to myosin light chain phosphorylation
and formation of focal adhesion complexes.6,7,10 Indeed, Rho kinase increases the sensitivity
of vascular smooth muscle to calcium in hypertension11 and coronary spasm.12 In contrast,
activation of Rac leads to the formation of lamellipodia, membrane ruffles, and oxidative stress,
whereas activation of Cdc42 induces actin-rich surface protrusions called filopodia.

Statins and Endothelial Function
Hypercholesterolemia impairs endothelial function. As an early manifestation of
atherosclerosis, endothelial dysfunction occurs even in the absence of angiographic evidence
of disease.13,14 An important characteristic of endothelial dysfunction is the impaired
synthesis, release, and activity of endothelial-derived nitric oxide (NO). Endothelial NO
inhibits several components of the atherogenic process. For example, endothelial-derived NO
mediates vascular relaxation15 and inhibits platelet aggregation,16 vascular smooth muscle
proliferation,17 and endothelial–leukocyte interactions.18,19 Inactivation of NO by the
superoxide anion (O2·−) limits bioavailability of NO and leads to nitrate tolerance,
vasoconstriction, and hypertension.20,21

Acute plasma low-density lipoprotein (LDL) cholesterol apheresis improves endothelium-
dependent vasodilatation,22 which indicates that statins could restore endothelial function, in
part, by lowering serum cholesterol levels. However, in some studies with statins, restoration
of endothelial function occurs before significant reduction in serum cholesterol levels,23–25
suggesting that there are additional effects on endothelial function beyond cholesterol
reduction. Indeed, statins increase endothelial NO production by stimulating and upregulating
endothelial NO synthase.26,27 Furthermore, statins restore endothelial NO synthase activity
in the presence of hypoxia28 and oxidized LDL cholesterol,26 which are conditions that lead
to endothelial dysfunction. Statins also increase the expression of tissue-type plasminogen
activator29 and inhibit the expression of endothelin-1, a potent vasoconstrictor and mitogen.
30 Statins, therefore, exert many favorable effects on the endothelium and attenuate endothelial
dysfunction in the presence of atherosclerotic risk factors.

Liao Page 2

Am J Cardiol. Author manuscript; available in PMC 2009 May 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Another important effect of statin treatment on endothelial NO synthase function is inhibition
of caveolin.31,32 Statins also increase endothelial NO synthase activity via posttranslational
activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway.27 Phosphorylation
of Akt is an important event in several cellular activities. Indeed, endothelial production of NO
can be regulated by phosphorylation and activation of endothelial NO synthase by Akt, which
is increased in the presence of statins.33,34 Caveolin-1 binds to endothelial NO synthase in
caveolae, thereby negatively regulating the enzyme.35 Exposure of cultured endothelial cells
to hypercholesterolemic serum upregulates caveolin-1 and promotes association of caveolin-1
and endothelial NO synthase into inhibitory complexes, thereby decreasing NO production.
36 Statins have been shown to reduce caveolin-1 abundance and decrease its inhibitory action
on both basal and agonist-stimulated endothelial NO synthase activity.

Statins may also improve endothelial function through their antioxidant effects. For example,
statins enhance endothelium-dependent relaxation by inhibiting production of reactive oxygen
species, such as superoxide and hydroxy radicals, from aortas of cholesterol-fed rabbits.37
Although lipid lowering by itself can lower vascular oxidative stress,38 some of these
antioxidant effects of statins appear to be cholesterol independent. For example, statins
attenuate angiotensin II–induced free radical production in vascular smooth muscle cells
(SMCs) by inhibiting Rac1-mediated nicotinamide adenine dinucleotide oxidase activity and
downregulating angiotensin-1 receptor expression.39 Because NO is scavenged by reactive
oxygen species, these findings indicate that the antioxidant properties of statins may also
contribute to their ability to improve endothelial function.20,21

Statins and Endothelial Progenitor Cells
Recently, statins have also been found to increase the number of circulating endothelial
progenitor cells.40 These cells augment ischemia-induced neovascularization,41 accelerate
reendothelialization after carotid balloon injury,42,43 and improve postischemic cardiac
function.44 Indeed, statins induce angiogenesis by promoting proliferation, migration, and
survival of circulating endothelial progenitor cells.45 In patients with stable coronary artery
disease (CAD), administration of atorvastatin for 4 weeks augmented the number of circulating
endothelial progenitor cells and enhanced functional capacity.46 These findings are in
concordance with earlier data showing that statins rapidly mobilize endothelial progenitor cells
from the bone marrow and accelerate vascular structure formation via activation of
phosphatidylinositol 3-kinase/protein kinase Akt and endothelial NO synthase.27,45,47 These
angiogenic effects were observed at lower statin concentrations and were cholesterol
independent. At higher concentrations, statins appear to have an antiangiogenic effect,48,49
suggesting a biphasic effect of statins on angiogenesis.50 However, this suggestion remains
controversial because higher doses of statins also have been shown to be angiogenic.51

Statins and Smooth Muscle Proliferation
Proliferation of vascular SMCs is a central event in the pathogenesis of vascular lesions,
including postangioplasty restenosis, transplant arteriosclerosis, and venous graft occlusion.
52 Recent studies have shown that statins attenuate vascular proliferative disease, such as
transplant-associated arteriosclerosis.52 In contrast to atherosclerosis, transplantassociated
arteriosclerosis is more dependent on immunologic mechanisms as opposed to lipid disorders,
although hypercholesterolemia exacerbates the immunologic process.53 Inhibition of
isoprenoid synthesis, but not cholesterol synthesis, by statins decreased platelet-derived growth
factor (PDGF)-induced DNA synthesis in vascular SMCs.54,55 Treatment with statins
decreased PDGF-induced Rb hyperphosphorylation and cyclin-dependent kinase (CDK)-2,
CDK-4, and CDK-6 activities. This correlated with increases in the level of the CDK inhibitor
p27Kip1, without concomitant changes in p16INK4, p21Waf1, or p53 levels. These findings
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indicate that statins inhibit vascular SMC proliferation by arresting the cell cycle between the
G1/S phase transition. It remains to be determined whether the upregulation of p27Kip1 is
responsible for the cell-cycle arrest and whether there are differences among statins in terms
of p27Kip1.

Because the small guanosine triphosphate–binding proteins Ras and Rho require
posttranslational modification for membrane localization and activity and are implicated in
cell-cycle regulation, they are likely targets for the direct antiproliferative vascular effects of
statins. Ras can promote cell-cycle progression via activation of the mitogen-activated protein
kinase pathway,56 whereas Rho causes cellular proliferation through destabilizing the
p27Kip1 protein.57 Interestingly, inhibition of vascular SMC proliferation by statins was
reversed by GGPP, but not by farnesyl pyrophosphate or LDL cholesterol.54 Indeed, direct
inhibition of Rho by Clostridium botulinum C3 transferase or by a dominant-negative Rho
mutant increased p27Kip1 and inhibited SMC proliferation after PDGF stimulation. Taken
together, these findings indicate that Rho mediates PDGF-induced SMC proliferation and that
inhibition of Rho by statins is the predominant mechanism by which statins inhibit vascular
SMC proliferation.

Statins and Platelet Function
Platelets play a critical role in the development of acute coronary syndromes (ACS).58
Circulating platelets are associated with mural thrombus formation at the site of plaque rupture
and vascular injury,59,60 and hypercholesterolemia is associated with increases in platelet
reactivity.61 These abnormalities are linked to increases in the cholesterol/phospholipid ratio
in platelets. Other potential mechanisms include increases in thromboxane A2 biosynthesis,
62 platelet α2-adrenergic receptor density,63 and platelet cytosolic calcium.64

Statins influence platelet function, although the precise mechanisms involved are not fully
understood.65,66 Among the well-characterized effects of endothelial NO is the inhibition of
platelet aggregation.16 Statin-mediated upregulation of endothelial NO synthase is associated
with downregulation of markers of platelet reactivity.67 Potential additional mechanisms
include a reduction in the production of thromboxane A2 and modifications in the cholesterol
content of platelet membranes.68,69 The cholesterol content of platelet and erythrocyte
membranes is reduced in patients receiving statin therapy, which may lead to a decrease in the
thrombogenic potential of these cells. Indeed, animal studies suggest statin therapy inhibits
platelet deposition on damaged vessels and reduces platelet thrombus formation.59,70
Furthermore, in vitro experiments have demonstrated that statins inhibit tissue factor
expression by macrophages, thereby potentially reducing thrombotic events in the vascular
wall.71

Statins and Plaque Stability
Plaque rupture is a major cause of ACS.14,72,73 Lipid lowering by statins may contribute to
plaque stability by reducing plaque size or by modifying the physiochemical properties of the
lipid core.74,75 However, changes in plaque size by lipid lowering tend to occur over extended
time and are quite minimal as assessed by angiography. Instead, the clinical benefits from lipid
lowering are probably because of decreases in macrophage accumulation in atherosclerotic
lesions and inhibition of matrix metalloproteinase production by activated macrophages.71
Indeed, statins inhibit expression of matrix metalloproteinases and tissue factor by cholesterol-
dependent and cholesterol-independent mechanisms,71,74,76 with the cholesterol-
independent or direct macrophage effects occurring much earlier. The plaque-stabilizing
properties of statins, therefore, are mediated through a combined reduction in lipids,
macrophages, and matrix metalloproteinases.77 These properties of statins may reduce the
incidence of ACS by decreasing the propensity for plaque to rupture and may explain the rapid
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time course of event reduction in patients at high risk for recurrent coronary ischemia in the
Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL)78 and the
Pravastatin or Atorvastatin Evaluation and Infection Therapy (PROVE-IT) trials.79

Statins and Vascular Inflammation
Activation of T lymphocytes and control of the immune response are mediated by the major
histocompatibility complex class II (MHC-II) and CD40/CD40L. Under physiologic
conditions, mostly antigen-presenting cells express MHC-II constitutively, whereas induction
of interferon-γ leads to an increase of MHC-II expression in numerous cells, including human
endothelial cells and monocytes. An important regulatory complex in this pathway is the class
II transactivator (CIITA). Statins inhibit MHC-II expression on endothelial cells and
monocyte-macrophages via inhibition of the promotor IV of the class II transactivator, and
thereby repress MHC-II–mediated T-cell activation.80 In addition, statins decrease CD40
expression and CD40-related activation of vascular cells.81

A clinical marker of inflammation is high-sensitivity C-reactive protein (hs-CRP).82 hs-CRP
is an acute-phase reactant that is produced by the liver in response to proinflammatory
cytokines, such as interleukin-6, and reflects low-grade systemic inflammation.83 Elevated
levels of hsCRP are predictive of increased risk for CAD in apparently healthy men and women.
84,85 hs-CRP is elevated in patients with CAD, coronary ischemia, and myocardial infarction
(MI) compared with healthy subjects.86

Statin therapy lowers hs-CRP levels in patients with hypercholesterolemia.82,87,88 In the
Cholesterol and Recurrent Events (CARE) trial, statins significantly decreased plasma hs-CRP
levels over a 5-year period in patients who did not have recurrent coronary events.89,90
Similarly, an analysis of baseline and 1-year follow-up from the Air Force/Texas Coronary
Atherosclerosis Prevention Study (AFCAPS/TexCAPS) demonstrated that hs-CRP levels were
reduced in statin-treated patients who did not have acute major coronary events.82
Furthermore, preliminary data from the Pravastatin Inflammation/CRP Evaluation (PRINCE)
study confirm that statin therapy can significantly reduce serum hs-CRP levels in primary and
secondary prevention populations.91 After 24 weeks of statin therapy, hs-CRP levels were
reduced by approximately 13% in primary and secondary prevention populations, whereas
placebo treatment of subjects in the primary prevention arm of the study had no effect. These
findings indicate that statins are effective in decreasing systemic and vascular inflammation.
However, any potential clinical benefits conferred by lowering hs-CRP levels are difficult to
separate from those of the lipid-lowering effects of statins without performing further clinical
studies. Perhaps the ongoing randomized, placebo-controlled JUPITER trial, which is enrolling
patients with modest LDL cholesterol (<3.4 mmol/L [130 mg/dL]) and elevated hs-CRP (>2
mg/dL) levels, will help address the question of whether hs-CRP is an additional non–lipid-
associated cardiovascular risk factor that can be modified by statin therapy.

Statins and Ischemic Stroke
Although MI is closely associated with serum cholesterol levels, neither the Framingham Heart
Study nor the Multiple Risk Factor Intervention Trial (MRFIT) demonstrated significant
correlation between ischemic stroke and serum cholesterol levels.92,93 An intriguing result of
large clinical trials with statins is the reduction in ischemic stroke.94 For example, the recent
Heart Protection Study (HPS) showed a 28% reduction in ischemic strokes in >20,000 people
with cerebrovascular disease or other high-risk conditions.95 The proportional reductions in
stroke were about 25% in all subcategories studied, including individuals >70 years at entry
and those presenting with different levels of blood pressure or lipids, even when the
pretreatment LDL cholesterol was <3.0 mmol/L (116 mg/dL). Thus, the findings of these large
statin trials raise the interesting question of how a class of cholesterol-lowering agents can
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reduce ischemic stroke when ischemic stroke is not related to cholesterol levels. It appears
likely that there are cholesterol-independent effects of statins that are beneficial for ischemic
stroke. Some of these beneficial effects are attributed to the effects of statins on endothelial
and platelet function.

In addition to the beneficial effects of statins on endothelium and platelets, other effects of
statins may reduce the severity of ischemic stroke. For example, statins attenuate P-selectin
expression and leukocyte adhesion via increases in NO production in a model of cardiac
ischemia and reperfusion.96,97 Others have reported that statins upregulate tissue-type
plasminogen activator and downregulate plasminogen activator inhibitor–1 expression through
a similar mechanism involving inhibition of Rho geranylgeranylation.29 Thus, the absence of
neuroprotection in endothelial NO synthase–deficient mice emphasizes the importance of
endothelium-derived NO in augmenting cerebral blood flow but also, potentially, in limiting
the impact of platelet and white blood cell accumulation on tissue viability after ischemia. In
humans, atherosclerosis of precerebral arteries causes stroke through plaque disruption and
artery-to-artery thromboembolism, and—in contrast to the mouse models—statins exert
additional stroke-protective effects in humans through their antiatherosclerotic and plaque-
stabilizing effects. Furthermore, the anti-inflammatory actions and mobilization of endothelial
progenitor cells of statins may also contribute to neuroprotection. Therefore, it is possible that
statins contributed to the decrease in the incidence of ischemic strokes in clinical trials, in part,
by reducing the size of cerebral infarcts to clinically unappreciated levels.

Clinical Trials with Statins: Evidence for Pleiotropy
Because serum cholesterol level is strongly associated with CAD, it has been generally assumed
that cholesterol reduction by statins is the predominant, if not the only, mechanism underlying
their beneficial effects. Data from an analysis of lipid-lowering trials suggest lipid modification
alone cannot account for all of the clinical benefits associated with statin therapy.4a Indeed,
the slope of the relation between cholesterol reduction and mortality risk reduction was the
same for statins and nonstatins, whereas the mortality risk reductions realized during statin
treatment periods ≥2 years were found to be a consequence of cholesterol reduction alone
(Figure 3, left). However, this type of analysis does not account for differences in the length
of the individual trials with respect to cardiovascular benefits. Some of the nonstatin lipid-
lowering trials—such as the Lipid Research Clinics–Coronary Primary Prevention Trial (LRC-
CPPT), which used the bile acid resin, cholestyramine,98 and the Program on the Surgical
Control of the Hyperlipidemias (POSCH) trial, which used partial ileal bypass surgery99—
reported benefits after 7.4 and 9.7 years, respectively, whereas most of the statin trials showed
benefits at much earlier time points (within 5 years). Thus, when benefits after 5 years for all
lipid-lowering trials are compared, it is evident that the nonstatin trials are no longer on the
same slope of cholesterol-to-mortality risk reduction as are all of the statin trials (Figure 3). In
fact, the benefits of cholesterol lowering after ileal bypass surgery in the POSCH study were
not realized at 4.5 years, despite a significant reduction in LDL cholesterol of 34% within the
first 3 months after the surgical procedure. These results suggest that the beneficial effects of
statins occur more rapidly and may not be entirely dependent on cholesterol reduction.

Despite the rapidity of benefits of statin therapy compared with other nonstatin lipid-lowering
therapies, it is still difficult to prove that pleiotropic effects of statins translate into clinically
meaningful outcomes. First, patients receiving statin therapy invariably will have reduced lipid
levels, and it is often difficult to separate the lipid-lowering from the non–lipid-lowering effects
of statins in clinical trials. Second, many effects of statins, such as improved endothelial
function, decreased inflammation, increased plaque stability, and reduced thrombogenic
response, could all be accounted for, to some extent, by lipid lowering. Third, concentrations
used to demonstrate the biologic effects of statins in cell culture and animal experiments,
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especially in inhibition of Rho geranylgeranylation, but not phosphatidylinositol 3-kinase/Akt
activation, appear to be much higher than what is prescribed clinically.100 Finally, both
hydrophilic and lipophilic statins, which inhibit hepatic HMG-CoA reductase, appear to exert
cholesterol-independent effects, despite the relative impermeability of hydrophilic statins in
vascular tissues.2

Recently, in HPS and the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT), relative risk
reduction conferred by statin treatment was independent of pretreatment lipid levels.101,102
These large, prospective trials raise the question of whether individuals with CAD can benefit
from statin drugs independently of cholesterol levels. Interestingly, subgroup analyses of
previous clinical trials suggested that the beneficial effects of statins could extend to
mechanisms beyond cholesterol reduction. For example, subgroup analyses of the West of
Scotland Coronary Prevention Study (WOSCOPS) and CARE trial indicate that despite
comparable serum cholesterol levels among the statin-treated and placebo groups, statin-
treated individuals had significantly lower risks for CAD compared with agematched placebo-
controlled individuals.103,104 Indeed, when the statin treatment group was divided into
quintiles of percentage of LDL cholesterol reduction, there was no difference in the 4.4-year
coronary event rate for quintiles 2 through 5 (LDL cholesterol reductions of 23% to 41%).
Hence, there was no apparent association between coronary event rate and the level of LDL
cholesterol reduction. Furthermore, analyses of cholesterol-lowering trials suggest that the risk
of myocardial infarction in individuals treated with statins is significantly lower compared with
individuals treated with other cholesterol-lowering agents or modalities, despite comparable
reduction in serum cholesterol levels in both groups.2,4a,105 For example, application of the
Framingham risk score to WOSCOPS produced a coincidence between predicted and observed
risk in the placebo group but underestimated the benefit of the pravastatin group by 31%.106

Finally, the lipophilic statins lovastatin, fluvastatin, simvastatin, and atorvastatin would be
expected to penetrate cell membranes more effectively than the more hydrophilic statins,
eliciting more pleiotropic effects. However, the observation that hydrophilic statins also have
pleiotropic effects raises an important question on the role of solubility in any of the cholesterol-
independent effects of statins and also on the magnitude of these effects. Indeed, recent
evidence suggests that some of the cholesterol-independent effects of these agents may be
mediated by inhibition of hepatic HMG-CoA reductase, leading to subsequent reduction in
circulating isoprenoid levels.2 This hypothesis may help explain why hydrophilic statins, such
as pravastatin and rosuvastatin, are clinically still able to demonstrate cholesterol-independent
benefits2 while being less efficient at directly entering vascular wall cells.2 In this respect, the
word pleiotropic probably does not reflect the hepatic versus nonhepatic effects of these agents.
The clinical relevance of hepatic versus nonhepatic isoprenoid inhibition to cardiovascular
outcomes is currently unclear, and future studies could explore the role of statin solubility on
the differences between these cholesterol-independent effects.

Conclusion
Statins exert many pleiotropic effects in addition to lowering serum cholesterol levels. These
additional properties include having beneficial effects on endothelial function and blood flow,
decreasing LDL cholesterol oxidation, enhancing the stability of atherosclerotic plaques,
inhibiting vascular smooth muscle proliferation and platelet aggregation, and reducing vascular
inflammation (Figure 1). Recent evidence suggests that most of these effects are mediated by
the inhibitory effect of statins on isoprenoid synthesis. In particular, inhibition of Rho
guanosine triphosphatases in vascular wall cells by statins leads to increased expression of
atheroprotective genes and inhibition of vascular SMC proliferation. It remains to be
determined which and to what extent pleiotropic effects account for the early clinical benefits
of statin therapy that are beyond cholesterol lowering.
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Figure 1.
Cholesterol-independent effects of statins. Plus sign = enhanced/activated; minus sign =
inhibited; AT1 = angiotensin 1; ET-1 = endothelin 1; hs-CRP = high-sensitivity C-reactive
protein; MMPs = matrix metalloproteinases; NO = nitric oxide; PAI-1 = plasminogen activator
inhibitor-1; ROS = reactive oxygen species; SMC = smooth muscle cell; TF = tissue factor; t-
PA = tissue-type plasminogen activator; TXA2 = thromboxane A2. (Adapted with permission
from Arterioscler Thromb Vasc Biol.)4
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Figure 2.
Biologic actions of isoprenoids. Cholesterol biosynthesis pathway shows effects of inhibition
of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase by statins. Decrease in
isoprenylation of signaling molecules, such as Ras, Rho, and Rac, leads to modulation of
various signaling pathways. BMP-2 = bone morphogenetic protein–2; CoA = coenzyme A;
eNOS = endothelial nitric oxide synthase; ET-1 = endothelin-1; HMG-CoA = 3-hydroxy-3-
methylglutaryl–CoA reductase inhibitor; PAI-1 = plasminogen activator inhibitor–1; PP =
pyrophosphate; t-PA = tissue-type plasminogen activator. (Reprinted with permission from
Annu Rev Pharmacol Toxicol.4a)
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Figure 3.
Relation between low-density lipoprotein cholesterol (LDL-C) reduction and risk of
cardiovascular events. (Left) Decrease in LDL-C (% reduction) is correlated with reduction in
risk of nonfatal myocardial infarction (MI) or coronary artery disease (CAD) among statin (the
West of Scotland Coronary Prevention Study [WOSCOPS], the Cholesterol and Recurrent
Events [CARE] study, and the Scandinavian Simvastatin Survival Study [4S]) and nonstatin
(the Lipid Research Clinics–Coronary Primary Prevention Trial [LRC-CPPT] and Program on
the Surgical Control of the Hyperlipidemias [POSCH]) trials. Note that the relation (slope)
holds between statin and nonstatin trials, suggesting that the beneficial effects of statins are
likely due only to cholesterol lowering. (Right) Decrease in LDL-C (% reduction) is correlated
with reduction in risk of nonfatal infarctions MI or CAD among statin (WOSCOPS, CARE,
and 4S) and nonstatin (LRC-CPPT and POSCH) trials after 4.5 years of treatment. Note that
the nonstatin trials (LRC-CPPT and POSCH; dashed lines) show fewer cardiovascular benefits
than statin trials (WOSCOPS, CARE, and 4S) and are no longer on the same slope (solid
lines). (Reprinted with permission from Annu Rev Pharmacol Toxicol.4a)

Liao Page 16

Am J Cardiol. Author manuscript; available in PMC 2009 May 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


