Skip to main content
. 2009 May 29;4(5):e5738. doi: 10.1371/journal.pone.0005738

Table 3. Inverse variance-weighted regression on admission rates.

Variable B±SE P Stand. Coeff. Model R2
Base Model Constant −4.53±0.81 <0.0001 0 0.82
Self-/Non-self −3.02±0.38 <0.0001 −1.04
Mailed/Handed −1.17±0.4 0.0032 −0.33
“Fabricated, Falsified”/“Modified” −1.02±0.39 0.0086 −0.34
Candidate co-variables Year −0.03±0.03 0.3 −0.14 0.83
USA/other −0.71±0.4 0.08 −0.2 0.85
Researcher/other −0.33±0.33 0.32 −0.11 0.83
Biomedical/other 0.17±0.39 0.66 0.06 0.82
Medical/other 0.85±0.28 0.0022 0.29 0.89
Social Sc./other −0.03±0.37 0.94 −0.01 0.82

The table shows model parameters of an initial model including three methodological factors (top four rows) and the parameter values for each sample characteristic, entered one at a time in the basic model. All variables are binary. Regression slopes measure the change in admission rates when respondents fall in the first category.