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ABSTRACT

We report a pH-dependent conformational transi-
tion in short, defined homopolymeric deoxyadeno-
sines (dA15) from a single helical structure with
stacked nucleobases at neutral pH to a double-
helical, parallel-stranded duplex held together by
AH+-H+A base pairs at acidic pH. Using native
PAGE, 2D NMR, circular dichroism (CD) and fluores-
cence spectroscopy, we have characterized the two
different pH dependent forms of dA15. The pH-trig-
gered transition between the two defined helical
forms of dA15 is characterized by CD and fluores-
cence. The kinetics of this conformational switch
is found to occur on a millisecond time scale.
This robust, highly reversible, pH-induced transition
between the two well-defined structured states of
dA15 represents a new molecular building block for
the construction of quick-response, pH-switchable
architectures in structural DNA nanotechnology.

INTRODUCTION

Structural DNA nanotechnology is an emerging field that
uses DNA to create either rigid architectures or dynamic
switches (1–4). Dynamic, DNA-based nanodevices may
also be described as molecular switches. They are based
on structural transitions between two well-defined confor-
mations of DNA upon the application of a stimulus.
Several devices have been developed based on B-DNA
assemblies employing differential hybridization of comple-
mentary strands, metal ions and indeed protons (5–11).
Here we describe the poly dA helix as a new structural
motif that functions as a molecular switch, which at low
pH forms a parallel-stranded double helix and at neutral
pH exists as a structured, single helix.
Early studies on understanding the structure, base-

pairing scheme and base stacking properties of DNA
and RNA duplexes used synthetic homopolymeric
DNA and RNA as they were considered simplified
model systems. Eventually it was found that these

synthetic homopolymers actually formed different unusual
conformations involving non-Watson-Crick base pairing.
Poly rC and poly dC formed i-tetraplexes (12,13), while
poly rG and poly dG formed G-quadruplexes (14–16).
Interestingly, poly rA formed a parallel-stranded double
helix, called pi-helix at acidic pH due to N1 protonation of
the adenines at pH <5 (17–19). At neutral pH poly rA was
found to exist as a single, right-handed helix with nine
nucleotides per pitch of 25.4 Å (20,21). In fact, character-
istic of the distinct nature of this helix, there are proteins
called poly rA binding proteins (PABPs) that specifically
bind poly rA over any random ssRNA (22,23). At neutral
pH poly dA is known to exist as a structured single helix,
similar to poly rA (24–27), except that the nucleobases in
poly dA are more strongly stacked than in poly rA and are
in the C20-endo configuration. However, the behavior of
poly dA at acidic pH is still unknown. We were encour-
aged by the fact that poly rA could form these structures,
with no indication of any special role for the 20OH.
Further we also found a sprinkling of short DNA
sequences that had an over-representation of adenines
that formed parallel duplexes at acidic pH (28–30), all
of which contained A–A base pairs. But, these sequences
would be expected to exist as unstructured single strands
at neutral pH.

We have been interested in developing alternative,
non-B-DNA building blocks that rely on non-Watson-
Crick base pairing, for applications in structural DNA
nanotechnology (31–35). Given that poly rA exists as a
right-handed, parallel-stranded, double helix at acidic
pH (17) and a structured right-handed single helix at neu-
tral pH we reasoned that poly dA may have potential as a
new building block for DNA based pH-switches if is able
to recapitulate poly rA behavior. In order to see whether
poly dA alone could form a duplex at acidic pH and if so,
could it switch reversibly between its structured single heli-
cal state at pH 7 to a structured duplex at acidic pH, we
investigated a segment of poly dA. We chose a segment of
poly dA 15 nucleotides long, because this is within the
limits of the observed persistence length of the poly dA
single helix (36). Using gel electrophoresis, circular dichro-
ism (CD) spectroscopy and concentration dependent
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thermal melts we showed that poly dA15 existed in two
different structural forms at acidic pH and neutral pH.
1D 1H NMR studies on a short homopolymeric deoxya-
denosine sequence such as dTA6 at both pH values
showed that the acidic form of short homopolymeric
deoxyadenosines was a parallel duplex. The relative
strand polarity in the dA15 duplex was also confirmed
independently by fluorescence quenching experiments. In
order to delineate the molecular basis of duplex formation
by such poly dA sequences, the mode of base-pairing in
dTA6 was established by 2D NMR, which revealed that
the duplex was held by reverse Hoogsteen type AH+–
H+A base pairs. We also present an atomistic model of
the dA15 parallel duplex by molecular dynamics simula-
tion. Importantly, we show that poly dA sequences such as
dA15 undergo a pH-induced conformational transition
from the single helical form to the right-handed symmetric
parallel-stranded duplex form in a highly reversible
manner. The kinetics of this association was found to
occur on millisecond time scales. This fast association
time scale makes it an ideal system for use as a molecular
nanoswitch in structural DNA nanotechnology.

MATERIALS AND METHODS

Sample preparation

Desalted dA15, dTA6 and HPLC purified 50-TAMRA as
well as 30-TMR (attached via a C3 linker) labeled dA15

were obtained from Bioserve India. HPLC purified
30-DABCYL labeled dA15 was obtatined from Ocimum
Biosolutions, India and used without further purification.
Samples were prepared in buffer of desired pH by incubat-
ing them at 48C for 12 h prior to measurement. Heating
was avoided to decrease the pH-induced depurination.

Native gel electrophoresis

dA15 was phosphorylated at 50 end with P32 by T4 PNK
forward reaction and g-P32 labeled ATP. Labeled DNA
was doped with unlabeled dA15. The labeled and unla-
beled dA15 mixture was incubated at different pH in
2 mM and then electrophoresed in 15% polyacrylamide
gel buffered at different pH with Robinson Britton
Buffer [(CH3COOH)= (H3PO4)= (H3BO3)=0.04M;
pH adjusted with NaOH) at 10V/cm for 3 h. The gels
were dried in slab gel drier and exposed to Fujifilm
BAS-IP MS 2025 imaging plate and plates were imaged
in Fujifilm FLA-2000 phosphoraimager.

CD spectroscopy

All the CD experiments were done using a Jasco J-815
CD spectropolarimeter equipped with Peltier temperature
controller. All the data were collected from 300 to 200 nm
at a scan rate of 50 nm/min at 0.2 nm data intervals and
are presented as an average of three successive scans unless
specified. Samples were made at desired concentrations in
phosphate buffer at pH 3 and 7 with desired ionic
strength. For acidic pH, we used NaH2PO4/H3PO4

buffer and at neutral pH, Na2HPO4/NaH2PO4 buffer.
Samples were annealed as described before. pH titrations

were done using 0.01N HCl or 0.01N NaOH. Samples
were used only once. Reproducibility was ensured on
multiple samples prepared similarly.

Fluorescence spectroscopy

Fluorescence experiments were done on a JASCO J-815
CD Spectropolarimeter equipped with fluorescence detec-
tor or on FLUOROLOG-SPEX spectrofluorimeter using
either 520 or 550 nm excitation wavelength and emission
spectra were recorded from 540/560 to 700 nm. Emission
spectra, presented as an average of two successive scans.
Kinetics of association and dissociation of poly dA was
done using a custom built single molecule tracking
(Olympus IX 70) inverted microscope equipped with
photon counting APD. pH jumps were performed by
addition of desired strong buffer to a weakly buffered
solution of 50-TAMRA-dA15. For distance calcula-
tion experiments, samples of 1:50 30-TMR-dA15:
30-DABCYL-dA15 or 1:50 30-TMR-dA15:dA15 at 5 mM
were used (see Supplementary Data for details).

Molecular dynamics simulations

All the models of poly dA duplex and single strands
are made using NAMOT 2 software and simulated using
PMEMD (37) program of AMBER9 (38) software suite
with all-atom AMBER03 force field. The equilibration
protocols were followed as described previously (39,40).
Structures were visualized by PyMOL and UCSF
Chimera software (41,42).

NMR experiments

All NMR spectra were recorded on Bruker Avance-500
and �800MHz spectrometer. A total of 1mM strand con-
centration in 50mM Na-acetate-d3 buffer at pH 4.0 was
used to prepare samples for all 1D experiments. 10% D2O
was added before taking the spectra. Whereas, for proton
exchange experiments, samples in Na-acetate-d3 buffer
was lyophilized overnight and reconstitute in D2O. pH
of this solution was adjusted to 4 by addition of 4–5 ml
of DCl and incubated at 48C overnight. pH 8 spectra was
taken after quickly elevating the pH by addition of 15 ml of
1M NaOH to 500ml sample. Water suppression was
achieved using an excitation Sculpting solvent suppression
programme (43). For 1D experiment 1024 scans were
taken, the spectral width was maintained at 10 KHz, the
thymine methyl chemical shift at 1.8 dppm was used as the
internal standard. For NOESY experiments, (512� 2048)
complex points were collected, a 2 kHz spectral width was
employed in both dimensions with acquisition times
of 0.3 s in t2 and 0.3 s in t1, using a 200ms mixing time
for seeing H10-Adenine H8 and 100ms for H20/H200-
Adenine H8.

RESULTS AND DISCUSSION

Table 1 shows the poly dA sequences with the relevant
modifications that were used in this study.
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Native PAGE evidences duplex formation

In order to see whether dA15 could self associate like
its RNA analogue at acidic pH, we analyzed its electro-
phoretic mobility at a range of pH values from pH 3 to pH
7 by native polyacrylamide gel electrophoresis (PAGE)
(Figure 1A). Samples of 2 mM 50 P-32 labeled dA15 was
equilibrated in phosphate buffer of the desired pH and
electrophoresed on 15% native PAGE of the correspond-
ing pH. At pH 3, dA15 shows a band of lower mobility,
which increasingly disproportionates into a band of higher
mobility with progressively increasing pH (Figure 1A).
Thus, at pH 6 and above only a single band of higher
mobility is observed. This clearly indicates that at acidic
pH, dA15 forms a secondary structure of lower mobility
and above pH 6, adopts a structure of higher mobility,
with both forms being differently populated at intermedi-
ate pH values. This suggests that dA15 adopts two differ-
ent forms at acidic and neutral pH values.

pH-induced structural change probed by CD spectroscopy

Having established that dA15 exists in two differently
migrating forms that are pH dependent, we analyzed
these forms further using CD spectroscopy (Figure 1B).
Samples of 1 mM dA15 were prepared at pH 3.0 and 7.0 as
described in the ‘Materials and Methods’ section. At 208C,
dA15 at pH 7.0 showed a characteristic CD trace with a
strong positive maximum at 217 nm with a shoulder at
232 nm, a weak positive band at 275 nm and negative
bands centered at 250 nm and 206 nm. This spectrum is
characteristic of single-stranded poly dA which is well
documented (44). Upon heating to 958C, this trace
changed to one where the maximum at 275 nm was abol-
ished and the minimum at 206 nm shifted to 210 nm. The
CD spectrum of 1 mM dA15 at pH 3.0, on the other hand,
was completely different from that at pH 7.0. At 208C, the
217 nm positive band characteristic of the single helix was
absent. Instead, only an intense, positive band maximum
at 262 nm with a shoulder at 275 nm and a weak minimum
at 245 nm was observed. On heating to 958C, these bands
completely disappear, flattening out to comparatively neg-
ligible CD characteristic of ssDNA. The structure of poly
dA15 at acidic pH evidenced a thermal transition by CD as
well as UV, where the stability of the structure was con-
centration dependent further supporting its intermolecular
nature (see Supplementary Data). Poly dA15 at acidic pH,
thus assumes a structure entirely different from the single-
stranded helix, as seen clearly from their completely dif-
ferent CD signatures and melting behavior.

1D and 2DNMR establish structure of the duplex in solution

In order to get more structural detail on such short, homo
A-tracts in DNA at acidic pH, high resolution NMR stu-
dies were performed on a truncated form of dA15, desym-
metrized by a thymine at the 50 end to enable complete
assignment by NMR. We chose dTA6 based on literature
evidence that affirmed six adenines to be the minimum
length that structurally and functionally represented the
poly rA helix (45). One millimolar dTA6 in 10% D2O/H2O
at 108C on a Bruker 800MHz NMR spectrometer showed

exactly six Adenine H8 protons and only one type of
Thymine CH3 and H6 protons (see Supplementary Data
and Figure 3A) confirming that this sequence forms
a single population of dimer in bulk, precluding any
slipped structures for at least six contiguous adenine
tracts. Importantly, the 1D spectrum of dTA6 showed
hydrogen-bonded N6 aminos that were downfield shifted
to 8.4–9 dppm from the usual 6–7 dppm for these protons
(see Figure 3A), characteristic of hydrogen bonding seen
in A–A base pairing (Figure 2B) (30). These were not seen
in either the D2O exchanged spectrum at pH 4 or the
single helical, monomeric structure at pH 8 in 5% D2O
[Figure 3A (2 and 3)]. Furthermore, these H-bonded
amino protons also showed the characteristic dramatically
reduced intensity observed for A–A base pairs bonded on
their Hoogsteen faces (28–30) as indicated in Scheme 1B.
Furthermore, 2D NOESY of dTA6 showed a set of eleven
H8–H10 NOEs (Figure 3B) characteristic of six A–A base
pairs found in A-containing duplexes that form a parallel-
stranded �-DNA helix (29). Importantly the absence
of NOEs between Adenine NH2 protons and the
Adenine H2 protons are consistent with the reverse
Hoogsteen base-pairing scheme seen in the dA containing
parallel duplex (30).

Salt dependence studies

In order to investigate the effect of salt on the stability of
the duplex, samples were made at 5 mM strand concentra-
tion in unbuffered solution, pH 3 and CD measured with
incremental additions of NaCl. As evident from the CD

Figure 1. (A) Gel electrophoresis of dA15 showing two forms with dif-
ferent electrophoretic mobility. P32 labeled dA15 was incubated at the
indicated pH at 48C and then electrophoresed on 15% native PAGE in
Robinson–Britton buffer of corresponding pH at 208C and visualized
using PhosphorImager. pH values are indicated above each lane
(Na+=30mM). (B) CD spectra of 1 mM dA15 at pH 3.0 and pH 7.0
in 10mM phosphate recorded at both 208C and 958C (Na+=10mM).
Inset: CD at 217 nm of 5 mM dA15 in 10mM Na+ cation as a function
of buffer pH.

Table 1. Poly dA sequences used in this study

Name Sequence

Poly dA15 50-d(AAAAAAAAAAAAAAA)-30

dTA6 50-d(TAAAAAA)-30

30-Dabcyl-dA15 50-d(AAAAAAAAAAAAAAA)-Dabcyl-30

30-TMR-dA15 50-d(AAAAAAAAAAAAAAA)-TMR-30

50-TAMRA-dA15 50-TAMRA-d(AAAAAAAAAAAAAAA)-30
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profile in inset Figure 5B, with increasing salt, the intensity
at 262 nm which is a clear diagnostic of the duplex,
decreases (see also Supplementary Data Figure 2). It can
be seen that the signal decreases sharply and tapers off at
�250mM NaCl. Such dependence has been observed also
for the poly rA duplex which is stabilized by electrostatic
interaction between N1–H+ of adenosine and phosphate
oxygen (17). That such dependence is recapitulated in the
poly dA duplex indicates that such an electrostatic inter-
action is also present here, further supporting the base
pairing mode observed by NMR.

Molecular dynamics (MD) study

MD simulations (see Supplementary Data for details)
of the single-stranded unprotonated dA15 indeed revealed
a robust helical structure primarily driven by efficient
stacking of the adenine nucleobases (Figure 4A) (19).
Importantly, MD simulations on the parallel-stranded
N1 protonated poly dA15 duplex yielded a structure
which is similar to the �-DNA helix (Figure 4B) (29).
The AH+–H+A base pairs in this duplex adopted a 128
tilt from the horizontal to the helical axis. This tilting is
characteristic of the AH+–H+A base pairs previously
described (17). Interestingly, MD also reveals an extra
strong interaction resembling an H-bond of �2.9 Å dis-
tance between the phosphate and the N1 protonated site
on adenines shown in dashed line in Figure 2B (also see
Supplementary Data). If this is true it would imply almost
six hydrogen bonds per AH+–H+A base pair which is in
line with UV melting studies and kinetics that evidence
unusually high stability of the poly dA15 duplex (see
Supplementary Data and next section).

Thermal stability studies

To investigate the thermal stability of dA15, at both acidic
and neutral pH, both samples were thermally denatured
following the UV absorbance at 260 nm or CD at 262 nm.
Two micromolar dA15 at pH 7.0 evidences a weakly struc-
tured form as seen from the broad and noncooperative
melt centered at 468C (see Supplementary Data for
details). This is in line with previous findings on single
helices of poly dA that suggest that stacking interactions

are probably the only stabilizing forces in the poly dA
single helix (25). For the duplex melting, freshly prepared
samples of dA15 at pH 3.0 were used which evidenced a
cooperative dissociation centered at �808C at 1 mM dA15

(see Figure 5B). Melting temperature was found to vary
with strand concentration indicating intermolecular
nature of the dA15-duplex (see Supplementary Data).
In all cases, regardless of strand concentration, the
transitions were sharp, taking place over <128C as seen
in well-formed B-DNA duplexes indicating that the dA15

duplex is also likely to be as homogenous. Importantly,
thermodynamic parameters cannot be extracted from
these thermal melting profiles at acidic pH, as they could
be complicated by depurination that prevents reversibility
of the melts. For this reason, in this case, thermal

Figure 3. (A) 1D NMR spectrum 1mM dTA6 at 58C establishing NH2

involved in H bonding at pH 3. (1) Spectra taken in 50mM Na-acetate-
d3 buffer pH 4.0 in 10% D2O. (2) Spectra taken in Na-acetate-d3
buffer pH 4.0 in D2O. (3) Spectra taken in pH 8 water
(Na+=50mM) (B) Partial NOESY spectrum showing sugar
H10-Adenine H8 contacts of dTA6 at pH 4 Na-acetate-d3 buffer. All
Spectra were recorded in Avence-500 Bruker NMR spectrometer. The
NOE cross peaks a–l are assigned as follows. (a) A2(H8)-T1(CH3);
(b) A2(H8)-A2(H10); (c) A3(H8)-A2(H10); (d) A3(H8)-A3(H10); (e)
A4(H8)-A3(H10); (f) A4(H8)-A4(H10); (g) A5(H8)-A4(H10); (h)
A5(H8)-A5(H10); (i) A6(H8)-A5(H10); (j) A6(H8)-A6(H10); (k)
A7(H8)-A6(H10); (l) A7(H8)-A7(H10). �Spectra acquired on a Bruker
800MHz spectrometer.

Figure 2. (A) Schematic showing poly dA15 changing between single
helix to duplex conformations induced by alternate addition of
acid and base respectively. (B) Shown in black is the base pairing
scheme in AH+–H+A base pairs comprising protonated adenosines.
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denaturation cannot be used to establish a two-state tran-
sition. Thus, this is not a ‘melting’ experiment character-
istic of a two-state transition, but the characterization of
the thermal response of such dA15 duplexes. However, in
order to establish whether this duplex denaturation is two
state, we carried out a pH denaturation of the dA15

duplexes (see pH-induced structural transition probed
by CD section).
The sharpness of the thermal melting transitions

observed for the dA15 duplexes is indicative of negligible
slipped intermediates (45,46). Furthermore, literature
studies on the poly rA duplexes of varying lengths have
shown that slipped structures and intermediates occur
only when the A-tracts approach lengths greater than

rA30 (45). However, in order to confirm that this is
indeed the case, we performed fluorescence quenching
experiments to measure the distance between two 30 ter-
mini in the dA15 duplex, by a previously described method
(31,33). Samples were prepared by mixing 1:50 30-TMR-
dA15:3

0-Dabcyl-dA15 (100 nm:5 mM), 30mM phosphate
buffer, pH 3 such that every TMR-labeled dA15 strand is
incorporated into a duplex containing Dabcyl-labeled
dA15 strand. Any change in TMR fluorescence intensity
will be due to quenching by Dabcyl-dA15 strand present in
the duplex. The quenching efficiency in these dually
labeled complexes was found to be 50% as compared to
similarly prepared 1:50 30-TMR-dA15:unlabeled dA15

(100 nm:5 mM) complexes (see Figure 5A). Readings
were normalized to the fluorescence value of each of the
samples, when they were taken to pH 7. This accounts for
fluorescence changes due to both environmental effects of
structure formation as well as pH effects. This quenching
efficiency translates to an interfluorophore distance of
26� 5 Å, incorporating the distance resolution due to
fluorophore linker lengths (31,33,47). Given that the diam-
eter of the pi-helix is �22 Å, this translates to a maximum
slippage of not more than one base in the dA15 duplex.
This is consistent with the melting studies that show at
these segment lengths, the dA15 duplex does not undergo
any significant slipped structure formation. An equivalent
of one-base slippage is seen even in the 50E and 30E inter-
calation topologies in i-motifs.

pH-induced structural transition probed by CD

The existence of two differently structured forms of dA15

as a function of pH prompted us to investigate the poten-
tial of dA15 as a nanoscale transducer, converting a proton
input, into a conformational change of the poly dA single
helix. For this it was essential to determine whether dA15

showed a pH induced structural transition in solution
as well. Five micromolar dA15 was incubated in buffers
of different pH ranging from pH 3 to 7 with a �0.2 pH
unit increment and the CD value at 217 nm was plotted as
a function of pH (inset: Figure 1B). A well-defined sharp
transition centred at pH 4.8 was observed, indicating that
the transition was two-state.

Figure 5. (A) Fluorescence quenching experiments on the dual labeled poly dA15 duplex of 1:50 30-TMR-dA15:3
0-Dabcyl-dA15 (filled circles) and 1:50

30-TMR-dA15: 30-unlabeled dA15 (open circles) at 100 nM TMR- dA15 in 30mM Na–phosphate buffer, pH 3 (Na+=30mM). (B) UV thermal
melting of dA15 duplex at 10mM buffer, pH 3 (Na+=10mM). Inset: CD spectra of 5 mM dA15 at 0mM, 15mM, 30mM, 75mM, 150mM, 200mM
and 250mM NaCl solution, pH 3.

Figure 4. (A) Equilibrium snapshot of the single-stranded dA15 after
20 ns long MD simulation using AMBER revealing highly stacked
adenine nucleobases. (B) Instantaneous snapshot of N1-protonated
adenosine mediated parallel duplex of dA15 after 20 ns long MD
simulation revealing a �-helical structure with tilted base.
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Reversible pH-induced structural transition in poly dA

Next we investigated whether poly dA15 was capable of
undergoing a reversible pH induced conformational
switch from structured single helix to parallel duplex at
pH 3.0. To an unbuffered solution of 5 mM dA15 at pH 7,
we added acid (HCl) and base (NaOH) alternately to
accordingly switch the pH of the solution from 7 to 3
reversibly. Molecular switching was visualized by moni-
toring CD at 262 nm where signals were very different
for the single and double helical forms. As evident from
Figure 6A, dA15 can switch efficiently and reversibly
between the two different states with change in pH with-
out any significant loss in efficiency. This demonstrated
that poly dA15 was able to respond to a proton input,
by changing its structure as evident from the changes in
its CD properties.

Dimerization may also be followed by fluorescence
self quenching

In a parallel-stranded �-helical configuration we would
expect like termini in [50-TAMRA-dA15]2 to have an inter-
fluorophore distance of �22 Å. Given that TAMRA has
been shown to self-quench with a Ro of 44 Å due to exci-
ton coupling, that has been used to determine strand
polarities in unusual nucleic acid motifs at low pH
(47,48), we wanted to see if this change in fluorescence
property could report on dA15 duplexation. 50-TAMRA
labeled dA15 was allowed to dimerize at pH 3 and the
extent of quenching, relative to 50-TAMRA-dA15 at
pH 7.0, determined. We found that the self quench-
ing efficiency is greater than 80% consistent with
the predicted strand polarity, and revealing that self-
quenching could be used to follow dimerization (see
Supplementary Figure 3A and Supplementary Data for
details). In order to measure the response times of dA15

to this pH stimulus, kinetics experiments were
performed using the fluorescence of 50-TAMRA-dA15

which self-quenches due to duplex formation. To 20 ml
solution of 0.5mM 50-TAMRA-dA15 in 100mM phosphate
buffer at pH 7, 5 ml of 50mM pH 3 phosphate buffer was
added to cause a pH jump to 3. Fluorescence of TAMRA-
dA15 quenches due to duplex formation as shown in
Figure 6B. The time scales of duplex formation at this

concentration was found to be �=90ms demonstrating
very fast duplexation. Association time scale was found to
depend on concentration of the poly dA15 strand used (see
Supplementary Figure 14 and associated discussion),
emphasizing the intermolecular nature of the duplex for-
mation. Similarly dissociation of duplex to single helix was
also followed in a similar way where addition of 1M
phosphate buffer, from pH 7 to 0.5mM dA15 in 5mM
phosphate buffer to cause a pH jump to 7. This relieved
the fluorescence of TAMRA from quenching which is
manifested by increase in fluorescence (Figure 6A). The
time scale of duplex dissociation was found to be slower
(�7 s) compared to its association. This is consistent with
the compactness of the duplex as revealed by MD and
high stability because of its electrically neutral character
and high number of H-bonds per base pair.

CONCLUSIONS

Poly dA15 exists as a structured single helix at neutral pH
(24–27). We have shown that at acidic pH, poly dA forms
a right-handed parallel-stranded double helix which we
term the A-motif. As evidenced by NMR, the poly dA15

duplex is held together by reverse Hoogsteen base-pairing
between protonated adenosines, with molecular dynamics
studies also suggesting electrostatic interactions between
the phosphate backbone and N1-H+ of the base. We have
delineated the structure of the poly dA15 duplex and from
MD simulations, also present an atomistic model of
such right-handed, parallel-stranded duplexes previously
referred to as �-DNA (29). The thermal stability of the
dA15A-motif was found to be �808C as probed by
both CD spectroscopy and UV spectrophotometry. The
melting temperature, T1/2 was found to be dependent on
concentration indicating the intermolecular nature of
the A-motif. Fluorescence quenching experiments on the
parallel dA15 duplex indicated that at these segment
lengths, slipped hybridizations were insignificant.
Importantly we have demonstrated that dA15 undergoes

a pH-induced molecular transition from its single helical
to duplex form efficiently and reversibly. The kinetics of
association to form the A-motif is complete within milli-
second time scale at sub-micromolar concentrations. We
have also shown that dA15 can be used as a proton driven

Figure 6. (A) CD of dA15 at 262 nm demonstrating switching between single helix and duplex upon alternately cycling between pH 7 and pH 3 (Na+

concentration at the end of 10th cycle �1.5mM) (B) Kinetics of transition of dA15 from single helical to double helical form (shown in magenta) and
vice versa (shown in black) probed by fluorescence from TAMRA.
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molecular switch that switches reproducibly between its
single helical and duplex forms with negligible loss of effi-
ciency. The switching is two-state and is highly processive.
As a switch, the A-motif has properties which would make
it a valuable addition to the structural DNA nanotechnol-
ogy toolkit. It has all the advantages of proton driven
switches, being ‘clean’, generating only water and salt as
by-products for each cycle of switching. Although slipped
hybridizations could occur, these happen only in longer
dA tracts, and may be avoided by employing shorter A-
tracts that include a CGA motif at the 50 end (29) to keep
the strands in register. Apart from its high stability, it is
simple to construct, composed of just one type of DNA
base, thus minimizing interference upon its incorporation
as part of a larger DNA assembly. Because it is a non-
Watson–Crick-based building block, it can be integrated
into Watson–Crick base-paired assemblies to realize
switches with more complex functionalities.
Thus we have outlined the molecular basis of a new

pH-sensitive DNA structural motif and shown its suc-
cessful working as a high-performance pH-triggered
molecular switch, undergoing a transition between two
well-defined states triggered by a change in pH. This
also represents a new mechanism by which two DNA
strands may hybridize and dissociate triggered by pH,
finding application as a unique method to site-specifically
glue DNA assemblies together on providing a pH cue.
It can thus be used to replace a critically positioned
Watson–Crick base-pairing site on a given DNA assembly
transforming it into a sticky or nonsticky state on the
application of an external pH stimulus. Thus, with the
A-motif, we can build pH responsive 1D, 2D and 3D
architectures because (i) the base-pairing here requires
only two strands, (ii) directionality is conferred by the
parallel-stranded nature of the A-motif (as opposed to
antiparallel B-DNA) and (iii) this mechanism is compati-
ble with and does not interfere with Watson–Crick base-
pairing in an assembly. The observation of millisecond
association timescales for the A-motif illustrates the
immense potential of non-B-DNA-based modules in
structural DNA nanotechnology.
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