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Abstract
Multielectrode neurophysiological recording and high-resolution neuroimaging generate
multivariate data that are the basis for understanding the patterns of neural interactions. How to
extract directions of information flow in brain networks from these data remains a key challenge.
Research over the last few years has identified Granger causality as a statistically principled technique
to furnish this capability. The estimation of Granger causality currently requires autoregressive
modeling of neural data. Here, we propose a nonparametric approach based on widely used Fourier
and wavelet transforms to estimate Granger causality, eliminating the need of explicit autoregressive
data modeling. We demonstrate the effectiveness of this approach by applying it to synthetic data
generated by network models with known connectivity and to local field potentials recorded from
monkeys performing a sensorimotor task.

Introduction
Multivariate neural recordings are becoming commonplace. Such recordings promise to offer
unparalleled insights into how different brain areas work together to achieve thought and
behavior, and how such coordinated brain activity breaks down in disease. While the
accumulation of data from all signal modalities, including electroencephalography (EEG),
magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and
positron emission tomography (PET), continues at an astonishing rate, how to effectively
analyze these data to extract understandings of brain functions presents a key challenge.
Analytically, cross correlations and ordinary coherence spectra have remained the main
measures for assessing statistical interdependence and functional connectivity among the
participating areas of a brain network. These measures, however, have not played a significant
role in providing reliable information on effective connectivity (Friston, 1994) which is
primarily concerned with the directions of neural interactions and how one neural system exerts
influence over another. Structural equation modeling (SEM) has been used for this purpose in
fMRI and PET. SEM theoretically hypothesizes the directions of interactions among the set of
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measured variables and quantifies the interaction strength via correlation analysis. The
shortcoming of SEM is that it depends critically on a preexisting theoretical framework.

Granger causality (Granger, 1969; Geweke, 1982) has emerged in recent years as a leading
technique for inferring directions of neural interactions and information flow directly from
data. The basic idea can be traced back to Wiener who is the first to recognize the importance
of temporal ordering in the inference of causal relations (Wiener, 1956). Granger formalized
Wiener’s idea in terms of autoregressive (AR) models of time series (Granger, 1969) and the
technique now bears his name. Consider two simultaneously acquired time series. If the
autoregressive prediction of the first time series at present time could be improved by including
the past information of the second time series we say that the second time series has a causal
influence on the first. The role of the two time series can be reversed to address the causal
influence in the opposite direction. This pairwise time domain approach was later generalized
in two important directions. First, the spectral decomposition of Granger’s time domain
causality was proposed by Geweke in 1982 (Geweke, 1982). The resultant Granger causality
spectra are important for the analysis of EEG and MEG data as these data are rich in oscillatory
content. Second, for a system with more than two simultaneously acquired time series,
conditional Granger causality, both in the time domain and in the frequency domain (Granger,
1980; Geweke, 1984), were developed for distinguishing direct from indirect causal influences.
Recent work has demonstrated that this measure plays an indispensable role in linking neural
network dynamics with the underlying neural network anatomy (Chen et al., 2006; Ding et al.,
2006). Neuroscience applications of Granger causality have begun to appear with increasing
frequency in recent years (Bernasconi and Konig, 1999; Liang et al., 2000; Brovelli et al.,
2004; Hesse et al., 2003; Kaminski et al., 2001; Harrison et al., 2003; Goebel et al., 2003; Sato
et al., 2006; Chen et al., 2006), revealing insights not possible with traditional methods such
as cross correlation and ordinary coherence.

Autoregressive modeling, the basis of the current parametric Granger causality techniques, has
proven effective for data modeled by low-order AR processes. However, AR methods
sometimes fail to capture complex spectral features in data that require higher order AR models
(Mitra and Pesaran, 1999). Additionally, the proper determination of model order remains a
concern, although this concern may be mitigated by the recently proposed Bayesian framework
(Harrison et al., 2003). Widely used Fourier and wavelet-transform based nonparametric
spectral methods have the advantage of fewer assumptions and are free from the
aforementioned shortcomings (Mitra and Pesaran, 1999; Percival and Walden, 1993). But,
presently, these nonparametric methods are mainly used for spectral power and coherence, and
do not have the capability for estimating Granger causality.

In this paper we propose a nonparametric approach to Granger causality analysis. Combining
spectral density matrix factorization with Geweke’s time series decomposition, the new
approach estimates both pairwise and conditional Granger causality directly from Fourier and
wavelet transforms, bypassing the step of parametric data modeling. We validate the new
approach by applying it first to simulated data generated by networks with known connectivity
and temporal dynamics, and then to local field potential data from monkeys performing a
sensorimotor task. It is expected that, by basing the estimation of Granger causality on simple
and widely used data transformations, the nonparametric approach will provide an alternative
to the parametric approach, enabling a wider practice of effective connectivity analysis, and
eventually become a significant addition to the repertoire of analytical tools for multivariate
neural data processing.
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Materials and Methods
In multivariate spectral analysis, the key quantity is the spectral matrix from which one derives
measures such as power, coherence, multiple coherence and partial coherence. There are two
ways to arrive at the spectral matrix: parametric and nonparametric. In the parametric approach,
autoregressive models are fit to the data. One obtains the spectral matrix from the model transfer
function and the noise covariance matrix which are also used in the spectral formulation of
Granger causality. In the nonparametric approach, one obtains the spectral matrix directly from
Fourier or wavelet transforms of data. The spectral matrix needs to be factorized to yield the
transfer function and the noise covariance matrix. This step is the basis for the nonparametric
Granger causality method proposed in this work.

Experiment
The experiment was conducted in the Laboratory of Neuropsychology at the National Institute
of Mental Health during 1984–1988 and animal care was in accordance with the institutional
guidelines at that time. The monkey initiated each trial by pressing a lever with its hand and
keeping it pressed. After a random interval (uniformly distributed between 120 and 2200 ms)
from the time the lever was pressed, a visual stimulus, either for a GO response (to release the
lever) or for a NO-GO response (to continue holding the lever), was presented for 100 ms and
the monkey made the required response within 500 ms from the stimulus onset. Local field
potential data were acquired at a sampling rate of 200 Hz simultaneously from up to 15
distributed cortical sites of one hemisphere in two macaque monkeys (right hemisphere for
subject GE and left hemisphere for subject LU) using transcortical bipolar electrodes. The
recording took place over many sessions with each session comprising around 1000 trials (for
further experimental details, see Bressler et al., 1993; Brovelli et al., 2004; Ledberg et al.,
2007). For the ensemble of trials selected for this work, the ensemble mean time series from
each record site was subtracted from the individual single-trial time series to ensure that the
resulting data could be treated as coming from a zero-mean stochastic process (Ding et al.,
2006). Physiologically, the data recorded from −90ms to 500 ms could be considered as
reflecting several distinct cognitive states. From −90 ms to 35 ms (0 ms being the stimulus
onset) the monkey held the lever steady while attending the screen and anticipating the
imminent onset of visuomotor processing. The visual information presented at 0 ms arrived at
various recording sites between 50 to 100 ms. The monkeys made GO or NOGO decisions
before 200 ms (Ledberg et al., 2007). The average reaction time for a correct go response was
around 270 ms (Ledberg et al., 2007).

Multitaper Spectral Estimation
The multitaper spectral and cross-spectral method introduced by Thompson (Thompson,
1982) is known to provide smooth spectral density function estimates (Percival and Walden,
1993; Percival and Walden, 2000;Mitra and Pesaran, 2001). It involves the utilization of the
discrete prolate spheroidal sequences (DPSS) (Slepian and Pollak, 1961) known as tapers. To
obtain average spectral and cross-spectral estimates, the time series from each trial is multiplied
by a pre-selected number of orthogonal tapers, the products are Fourier-transformed, and the
resulting transforms are cross-multiplied and averaged over individual tapers. Multiple
realizations or trials (experimental repetitions) further give rise to an ensemble over which the
expectation (averaging) is taken. Specifically, consider simultaneously acquired multiple time
series: {xrt}(r=1,…, p; t=1,…, n), where r is the channel index and t is the discrete time index.
Then, for a single trial, the multi-taper cross-spectrum estimator between channels l and m at
frequency f is
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(1)

where w(k) (k = 1, 2,…, K) are K orthogonal tapers of length n and Δ is the sampling interval.
For l = m we obtain the auto-spectrum. The spectral density matrix

 is obtained by averaging the cross-spectrum estimators for all
pairs of channels over individual trials. The diagonal terms of this matrix S(f) represent auto-
spectra whereas the off-diagonal terms cross-spectra.

Wavelet Spectral Estimation
The wavelet transform provides time-frequency representation of a signal and is useful to
analyze time-varying (nonstationary) processes (Daubechies, 1990; 1992; Percival and
Walden, 2000). Convolution of a given signal x(t) with a scaled and translated version of a

prototype wavelet function ψ(η), which satisfies zero-mean ( ) and unity square-

norm ( ) conditions, results in the continuous wavelet transform at time t and
scale s:

(2)

where (*) indicates the complex conjugate. Scale s is related with frequency f. By varying s
and translating along time t, one can construct a form of time-frequency representation of the
signal. In this work, we chose a complex Morlet wavelet, consisting of a plane wave modulated
by a Gaussian: ψ(η)=π−1/4eiωη e−η2/2, as the prototype wavelet with ω ≥ 6 (Torrence and
Compo, 1998). The Gaussian envelope e−η2/2 localizes the wavelet in time and ω determines
time/scale resolution. Higher values of ω provide better scale or frequency resolution but poorer
time resolution. The wavelet cross spectrum between the signals recorded at channels l and
m at time t and scale s is then

(3)

where the expectation (denoted by < >) is taken over all the trials recorded. Setting l = m, one
obtains auto-wavelet spectra. The full wavelet spectral matrix WS(t, s) is computed by using
all pairs of channels. Using the relationship between Fourier frequency f and wavelet scale s
for the prototype wavelet used (see Torrence and Compo, 1998 for the complex Morlet
wavelet), we obtained the full wavelet spectral matrix WS(t, f) at time t and frequency f.

Spectral Matrix Factorization
Spectral matrix factorization is a procedure for constructing a sequence of unique generating
functions (or minimum-phase spectral factors) out of spectral density matrices (Sayed and
Kailath, 2001). It was introduced by Wiener in 1949 (Wiener, 1949) for a single time series
and was later extended to multiple time series by Wiener and Masani in 1957 (Wiener and
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Masani, 1957) and Youla in 1961 (Youla, 1961). Since then, it has found extensive applications
in the analysis and design of linear systems. It has been applied in the fields of digital signal
processing (Anderson and Moore, 1979), control theory (Balakrishnan and Boyd, 1992),
communications (Fischer, 2005), geophysics (Fomel and Claerbout, 2003), and
helioseismology (Rickett and Claerbout, 2000).

The spectral density matrix, such as Fourier transform-based S(f) or wavelet transform-based

WS(ti, s) at any time point ti that satisfies , can be factored into a set of
unique minimum-phase functions:

(5)

where Ψ is the minimum-phase, spectral density matrix (left) factor which has a Fourier series

expansion in nonnegative powers of ei2πf: , and Ψ* is its complex conjugate
transpose. There are several algorithms available for spectral matrix factorization (see, for
review, Sayed and Kailath, 2001). For this work, we implemented Wilson’s algorithm (Wilson,
1972), which is noted for its superb numerical efficiency (Goodman et al., 1997). A
convergence theorem for an iterative method used in this algorithm guarantees the existence
of factorization of rational spectral density matrices (Wilson, 1978).

From the minimum-phase spectral factor Ψ, noise covariance matrix Σ and minimum-phase
transfer function H(f) can be obtained as

(6)

and

(7)

such that ΨΨ*=HΣH*. Here, T stands for matrix transposition. As indicated earlier, spectral
matrix factorization is thus a key step in the estimation of Granger causality as it provides the
quantities H and Σ that are readily available from the parametric data modeling but not so from
the traditional nonparametric spectral analysis.

Granger Causality Measures
The measures of Granger causality are based on the notion that the causal (driving) variable
can help forecast the effect (driven) variable (Granger, 1969; Geweke, 1982). The reduction
in the unexplained variance of the effect variable (say X: x1, x2,…, xn) as a result of inclusion
of the causal variable (say Y: y1, y2,…, yn) in linear autoregressive modeling

( ), that is, , marks the existence
of a causal influence from Y to X in time domain. In the frequency domain, the total spectral
power (auto-spectrum) of the effect variable (X) is decomposed into its intrinsic power and the
causal contribution from Y and the ratio of the total power to the intrinsic power indicates the
presence of causal influence (Geweke, 1982; see Ding et al., 2006 for a review).
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Pairwise Granger causality—In the time domain, , where Σ1 is X’s
unexplained variance in its autoregression, whereas Σ2 is X’s unexplained variance in the joint

(X and Y) regression. In the frequency domain, , where Sxx (f) is the total
power and S̃xx (f) is the intrinsic power. Using S(f)= H (f) ΣH*(f), where the transfer function
H(f) and the noise covariance matrix Σ are derived either from spectral matrix factorization
(nonparametric approach) or AR data modeling (parametric approach, the causality from Y to
X at frequency f becomes:

(8)

where the term in the denominator is the total power minus the causal contribution representing
the intrinsic power.

Conditional Granger causality—In a system of three or more time series, it is often
desirable to find out whether a causal influence between any pair of time series is direct or
mediated by others, which cannot be identified by the bivariate (or pairwise) measure of
causality. An example of this scenario is illustrated in Figure 1, where Y exerts a causal
influence on X only via Z. A pairwise analysis will reveal a nonzero causality from Y to X
(dashed arrow). This is clearly an incorrect inference and was called a ‘prima facia
cause’ (causality on its first appearance) by Granger (Granger, 1980). To resolve such
ambiguity has led to the development of conditional Granger causality (Granger,
1980;Geweke, 1984). In the time domain, the Granger causality from Y to X conditional on Z

is defined as: , where Σxx (X, Z) is the variance of the noise in the joint
regression of X and Z, and Σxx (X, Y, Z) the variance in the regression of X, Y and Z, both
variances being associated with X variable. In the frequency domain,

(9)

where the quantities in the denominator inside the logarithm are functions of the transfer
function and the noise covariance matrix (see Ding et al., 2006).

Mathematically, the spectral measures are related to the time-domain measures through:

(10)

and

(11)
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where fs is the data sampling rate.

Using the nonparametric approach, one can first compute IY→X (f) and IY→X|Z (f) at all
frequencies and perform the required integration to obtain the corresponding time domain
quantities.

Results
The nonparametric approach for estimating Granger causality consists of the following steps:
(i) construct spectral density matrix S from Fourier transforms or wavelet transforms of multi-
channel time series data, (ii) factorize spectral density matrix: S = ΨΨ* where Ψ is the
minimum-phase spectral factor, (iii) derive noise covariance matrix Σ and transfer function H
from Ψ according to Eqs. (6) and (7), and (iv) use S, H, Σ in Geweke’s formulae (Geweke,
1982;1984) to arrive at Granger causality spectra. The time domain Granger causality can be
obtained by integrating the spectral representation over frequency. In our implementation of
the above steps, the multi-taper method (Mitra and Pesaran, 1999) is used to construct the
spectral density matrix in the Fourier transform-based approach and the Morlet wavelet (Morlet
et al., 1982;Torrence and Compo, 1998) is used in the wavelet transform-based approach.
Spectral density matrix factorization is achieved by Wilson’s algorithm (Wilson, 1972;1978).

Below, we first demonstrate the excellent performance of the nonparametric Granger causality
techniques on simulated data generated from stationary and non-stationary network models
where the interaction patterns are known. We then apply the techniques to local field potentials
recorded from monkeys performing a sensorimotor task for which a Granger causality analysis
has been published in the past with the parametric approach (Brovelli et al., 2004; Chen et al.,
2006; Ding et al., 2006). We stress that both the parametric and the nonparametric approaches
produce consistent findings that are physiologically interpretable and yield new insights not
possible with other methods.

The simulation models
Two models are considered for generating simulated time series. The first model is a 3-node
network where X, Y, and Z are jointly stationary stochastic processes described by the
following autoregressive (AR) process: X(t) = 0.8 X(t−1) −0.5 X(t−2) + 0.4*Z(t−1)+ η (t), Y
(t) = 0.53 Y(t−1) −0.8 Y(t−2) + ξ(t) and Z(t) = 0.5 Z(t−1) − 0.2 Z(t−2) + 0.5 Y(t−1) + ε(t). Here
t is a discrete time index, η (t), ξ(t) and ε(t) are independent white noise processes with zero
means and non-zero variances. As illustrated by the solid arrows in Fig. 1, Y has a causal
influence on Z, and Z, in turn, drives X. The dashed arrow implies that Y has an indirect
influence on X which is mediated by Z. The pairwise approach cannot distinguish direct from
indirect causal effects; the conditional Granger causality is required for unequivocal resolution.
The second model is a two-node network with nonstationary dynamics: Y1(t) = 0.53 Y1(t−1)
−0.8 Y1(t−2) + ε1(t) Y2(t−1)+ ξ(t) and Y2(t) = 0.53 Y2(t−1) −0.8 Y2(t−2) + ε2(t) Y1(t−1)+ η
(t), where ε1(t) and ε2(t) are time-varying coupling strengths.

Analysis of simulated time series
Fourier transform-based methods—For the first 3-node network model, letting var(η)
= 0.25, var(ξ) = 1 and var(ε) = 0.25, we obtained a dataset of 4000 trials (i.e. realizations) with
each trial consisting of 4000 data points. The discrete time steps are assumed to be equivalent
to a sampling rate of 200 Hz. Figure 2(a) shows a comparison between the parametric (P) and
nonparametric (NP) calculations of pairwise Granger causality between Y and Z. It is clearly
seen that both approaches yield identical results, recovering the correct network connectivity
pattern of unidirectional Y→ Z driving. Since the data set consists of many realizations of long
time series, the parametric analysis results can be considered as the theoretical results (Ding
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et al. 2000). Figure 2(b) shows that there is significant pairwise Granger causal influence from
Y to X, but the conditional Granger causality measure Y→ X|Z (causal influence from Y to X
conditional on Z) confirmed that the causal influence from Y to X was completely mediated
by Z, since Y→ X|Z was zero at all frequencies. This is again consistent with the design of the
model network. Expected results were also found for other combinations of variables.

Wavelet transform-based methods—The simulated data above were also subjected to
the wavelet transform-based pairwise and conditional Granger causality analysis. Results
identical to that in Figure 2 were obtained (not shown), demonstrating that wavelet-based
methods are fully capable of uncovering network connectivity from multiple stationary time
series. Their ability to reveal temporal patterns of causal influences was tested by simulating
the second 2-node nonstationary network model consisting of interacting variables Y1 and Y2.
Letting variances be 0.25 and letting the coupling strengths ε1(t) and ε2(t) vary according to
the profiles given in Figure 3(a), we obtained 1000 trials of data with each trial containing 900
points. From the model design we see that Y1 drives Y2 (Y1→Y2) in the first half of the
simulation time interval, Y2 drives Y1 (Y2→Y1) in the second half, and the slow transitions
between the two modes of causal influences occur during 1.5 < t < 3 sec. As shown in Figure
3(b) and 3(c) , the wavelet-based Granger causality technique clearly recovers these predicted
patterns with high temporal precision.

Application to experimental data
Local field potentials (LFPs) were sampled at a rate of 200 Hz from up to 15 distributed sites
of one hemisphere in two macaque monkeys (right hemisphere in monkey GE and left
hemisphere in monkey LU) performing a GO/NOGO visual pattern discrimination task. The
sites chosen for analysis are located in the sensorimotor cortex, including primary
somatosensory area (S1), primary motor area (M1), posterior parietal areas 7a and 7b for
monkey GE, and S1, M1, and 7b for monkey LU. Our focus here is network activity during
the prestimulus stage when the monkey maintained steady pressure on a depressed hand lever
and anticipated the imminent onset of visuomotor processing. Parametric power, coherence,
and Granger causality analysis of these data (Brovelli et al., 2004; Chen et al., 2006; Ding et
al., 2006) has reported the following findings: (i) synchronized beta-frequency (15–30 Hz)
oscillations linked together diverse sensorimotor areas to form a large-scale cortical network,
(ii) strong Granger causal influences (information) flowed from S1 to M1 and to 7a and 7b,
(iii) 7b exerted further Granger causal influences on M1, and (iv) Granger causal influences
from the motor cortex into the post-central areas were small and statistically insignificant. The
causal influence from S1 to 7a was further subjected to a conditional Granger causality analysis
as anatomical considerations suggested that such influence could be mediated by area 7b and
this was found to be indeed the case.

The above results led to the hypothesis that the beta oscillation network in the sensorimotor
cortex facilitates the maintenance of steady pressure on the depressed hand lever. The
directionality provided by Granger causality is consistent with the known functional roles of
the involved cortical areas, and has played an instrumental role in the formulation of this
hypothesis. To further test this hypothesis, Zhang et al. (2005) studied the temporal evolution
of the beta oscillation network, employing a moving window parametric analysis. For GO
trials, as the monkey prepared and carried out the lever-releasing hand movement following
stimulus presentation, the need for pressure maintenance was removed and the beta oscillation
as well as the causal influences underlying the oscillation network vanished as a result. Below
we test the nonparametric Granger causality techniques on the same data with the goal of
validating these new techniques in the context of the previous parametric findings and a well-
established interpretational framework.
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All pairwise combinations were first analyzed for each monkey subject in the prestimulus time
period (−90 to 35 ms) by the Fourier-based methods. Figure 4 shows the Granger causality
spectra for one such pair, M1 and S1, in GE. A random permutation approach (Blair and
Karniski, 1993;Brovelli et al., 2004), which involved creating 1000 permutations of the local
field potential dataset by random shuffling of the trial order independently for each site, was
used to find thresholds for statistical significance. Significant S1→ M1 (solid) causal influence
is seen in the beta frequency range (~22 Hz) while M1→ S1 (dotted) is below significance
threshold. Figure 5 summarizes the pairwise analysis by displaying the Granger causality
graphs for the beta oscillation network in both monkey subjects. These graphs are identical to
the ones obtained by the parametric techniques reported in (Ding et al., 2006). The causal
influence from S1 to 7a is further analyzed with the conditional Granger causality and the result
is shown in Fig. 6. While pairwise S1→7a is statistically significant, the conditional causality
S1→ 7a|7b (dashed lines) are below the corresponding significance thresholds (dotted lines),
suggesting that the causal influence from S1 to 7a is most likely mediated by 7b. Figure 6(c)
shows a refined Granger causality graph involving S1, 7b and 7a. This graph is identical to the
one obtained by the parametric method and can be interpreted in terms of the known anatomical
pathways linking these areas (Felleman and van Essen, 1991;Ding et al. 2006). The wavelet-
based methods are also considered for the same data. The results are qualitatively the same as
those shown in Figs. 4–6. We next performed a time-frequency Granger causality analysis
based on wavelet transforms for the entire GO trial. The result revealed that the causal influence
from S1 to M1 in the beta frequency range disappeared during movement preparation and
execution (Fig 7). This is in agreement with the parametric results reported by Zhang et al.
(2005).

Discussion
Granger causality, structural equation modeling (SEM) (McIntosh and Gonzalez-Lima,
1994), and the recently proposed dynamic causal modeling (DCM) (Friston et al., 2003; Lee,
et al., 2006) are the main statistical methods for effective connectivity analysis. Other
techniques, including phase-dynamics approach (Rosenblum and Pikvosky, 2001) and transfer
entropy (Schreiber, 2000; Lungrella and Sporns, 2006), have also been attempted for the same
purpose. SEM and DCM rely on the existence of a neural theoretical framework and are often
limited by the lack of precise anatomical and physiological constraints. Since Granger causality
is a more data-driven method, it has witnessed rapid growth in recent years in applications to
neurophysiological and neuroimaging data. To date, parametric modeling remains the basis
for Granger causality inference in the frequency domain. While nonparametric Granger
causality tests have appeared in the past they are all formulated in the time domain (Bell et al.,
1996; Diks and Panchenko, 2006; Hiemstra and Jones, 1994). As the parametric spectral
approach requires the autoregressive models of data, concerns have been raised regarding the
strong underlying assumptions and its suitability for data with complex power spectral content
(Mitra and Pesaran, 1999; see Figure 1 in the Supplementary Material). In this paper, we
propose a nonparametric spectral approach in which Granger causality is estimated directly
from Fourier and wavelet transforms of data, removing the need for autoregressive models.
The mathematical basis of our method is a combination of spectral matrix factorization and
Geweke’s spectral formulation of Granger causality. Although there are other spectral
measures for inferring causal influences, including directed transfer function (DTF) (Kamiski
and Blinowska, 1991; Kaminski et al., 2001), partial directed coherence (PDC) (Bacala and
Sameshima, 2001), and directed DTF (Korzeniewska, et al. 2003), Geweke’s measure is
expressed in terms of variance explained and is thus more statistically interpretable.

The new nonparametric approach was tested on simulated data. Two examples were
considered. In the first example, multiple realizations of time series were generated by a 3-
node network model. The pattern of network connectivity was correctly recovered by both the
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Fourier- and wavelet-based methods. The second example simulated a nonstationary process
in a 2-node network model. The wavelet-based methods were able to resolve the fine temporal
dynamics by capturing the rapid reversal of causal influences built into the model. The
nonparametric approach was further tested on recordings of local field potentials from monkeys
performing a sensorimotor task. The previously reported causal network dynamics in the beta
frequency range obtained with the parametric techniques (Brovelli et al., 2004; Chen et al.,
2006; Ding et al., 2006) were reproduced by both the Fourier- and wavelet-based methods.
This provides a validation for the new approach. Although, unlike simulations, the true answer
in an experimental situation is not a priori known, a strong support for such an assertion is that
the information flow patterns reported before are both physiologically and anatomically
interpretable, and have led to a testable hypothesis regarding the function of the beta oscillation
network in the sensorimotor cortex. In addition to electrophysiological signals, we also applied
the proposed nonparametric approach to fMRI time series obtained in a complex rhythmic
finger-tapping task (Dhamala et al., 2003; see Figure S2 in the Supplementary Material). There,
the causal influence pattern was found to be in agreement with the direction of information
flow postulated in the movement control literature.

Evaluating causal relations from multivariate neural data is an important problem and is
attracting increasing research interest. An important caveat that is applicable to any technique
in the area of multivariate data analysis concerns the issue of hidden variables. For two
measured variables, if their relationship is caused by a third variable that is not observed, the
analysis result will be ambiguous. This is a distinct possibility in systems as complex as the
brain and cannot be easily remedied. This hidden variable problem impacts not only Granger
causality analysis but also every other multivariate statistic used in neuroscience today. In this
regard, well thought-out experiments combined with strategic placements of electrodes hold
the key to avoid ambiguous analysis interpretations.

Although the nonparametric approach removes the need for extracting AR models from data,
it has its own initial choices of parameters, including the number of tapers, wavelet prototype
and the time-frequency resolution trade-off (ω for the Morlet wavelet). The number of tapers
determines the amount of smoothing necessary to reduce the variance of the spectral estimates.
The results included in this article were obtained by using 3 tapers. We varied the number of
tapers up to 12 and found that the results were not very sensitive to the number of tapers used.
However, at a very high number, the spectral peak gets distorted, e.g., a single peak splits into
two. The general guideline is that the number of tapers should be chosen to reduce the variance
while not overly distorting the spectrum (see Mitra and Pesaran, 1999). For the wavelet
applications, we used the complex Morlet wavelet with ω ≥ 6 in the form proposed by Torrence
and Compo (Torrence and Compo, 1998), where the higher ω ensures a good frequency
resolution at the cost of time resolution. This choice of wavelet is for convenience and our
wavelet-based techniques can be implemented for any wavelet base. The test of the
nonparametric Granger causality techniques are performed on simulated datasets with a large
number of long trials. These methods can also be used reliably with fewer trials. An increased
number of trials contribute to a smaller variance in the spectral estimates. A single, sufficiently
long stationary time series can be segmented into smaller epochs, each of which can be regarded
as an individual trial. The use of multitaper techniques can further reduce estimation bias in
case of a dataset with shorter length. However, when there is too little data (short length and
few trials), both parametric and nonparametric estimates may not be reliable.

The foregoing discussion suggests that the proposed nonparametric approach provides an
alternative way for estimating Granger causality that complements rather than replaces the
parametric approach. In the parametric methods, the model order parameter is often selected
based on standard criteria such as the Akaike information criterion (Akaike, 1974) or the
Bayesian information criterion (Schwarz, 1978). In case these criteria are not effective due to
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finite data length or other reasons, one can choose the model order which gives the best possible
match between the parametric and nonparametric power spectra. In addition, it is known that
for short time series, nonparametric spectral methods produce biased estimates. (A systematic
study of how data length influences Fourier-based Granger causality estimation is presented
in the appendix.) In this case the parametric methods hold a distinct advantage when multiple
realizations (trials) of the same process are available (Ding et al., 2000). However, for
reasonably long time series, which are usually available in most electrophysiological or
imaging experiments, the proposed nonparametric Granger causality techniques are robust and
yield excellent results.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix
In a typical cognitive neuroscience experiment, the brain undergoes rapid state change, from
anticipation to sensation to decision-making to movement execution, all within a few hundreds
milliseconds. This dynamical process can be captured on a fine time scale by performing
spectral analysis with short moving windows. When data of multiple trials are treated as coming
from the same underlying stochastic process the AR model based parametric approach yields
reliable spectral estimates for power and coherence within each short window. For very short
time series, spectral estimates with Fourier based nonparametric approach are biased (Ding et
al., 2000). To determine the reliability and asymptotic behaviors of the proposed Granger
causality methods, we compared nonparametric and parametric estimates using simulated time
series data of various trial lengths while keeping the number of trials fixed. The data came from
the Y and Z channels of the 3-node network model (Figure 1). Figure 8(a) shows nonparametric
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and parametric pairwise Granger causality spectra when each trial is 70 time points long. Figure
8(b) is the time-domain Granger causality by integrating parametric and nonparametric spectra
as a function of trial length. The number of trials for all cases was 4000. As indicated earlier,
parametric spectral estimates from a large number of trials are known to approach true
theoretical values [Ding et al., 2000], which is the basis for these comparisons. From Figure 8
(a) it is clear that even for relatively short segments of data, besides a slight underestimate of
the peak value, the nonparametric technique can recover the correct direction (Y→Z) and peak
location (40 Hz) of causal influences. The nonparametric estimate rapidly approaches the
parametric or true value as the data length is increased (Fig 8(b)).
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Figure 1. Three-node network model system
X, Y, and Z are stationary stochastic processes interacting with each other in a network. Y has
a causal influence on Z and Z, in turn, has a causal influence on X (represented by solid arrows).
Y has an indirect influence on X via Z, as shown by a dashed arrow. Direct and indirect
directional influences can be distinguished by the conditional Granger causality.
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Figure 2. Comparison between Fourier-based nonparametric and parametric measures of Granger
causality
(a) spectra of pairwise causality between Y and Z, and (b) spectra of causality from Y to X,
both pairwise and conditional on Z. The parametric (P) and nonparametric (NP) measures
demonstrate excellent agreement.
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Figure 3. Wavelet-based Granger causality: a means for studying time-varying causal influences
The first panel shows the time course of coupling strengths in the model system consisting of
Y1 and Y2 interacting with each other. In the first half of the simulated time interval, Y1 exerts
causal influence on Y2, and, in the second half, it is the opposite. The slow transitions between
the two driving modes have been modeled by the tangent of hyperbolic functions in the time-
interval t = 1.5 to 3 sec. The coupling reversal occurs at t = 2.25. The second and third panels
of time-frequency Granger causality maps show that the wavelet-based Granger causality
technique is able to recover the temporal dynamics of the causal influences.

Dhamala et al. Page 17

Neuroimage. Author manuscript; available in PMC 2009 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Fourier-based pairwise Granger causality spectra for experimental data
nonparametric measures of Granger causality between primary somatosensory (S1) and
primary motor (M1) areas. There is a significant causal influence from S1 to M1 at about 22
Hz, which falls within the beta frequency range (14–30 Hz). The significance thresholds
(shown by dotted lines) have been numerically obtained under a null hypothesis of no
interdependence at a level p < 10−6.
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Figure 5. Granger causality graphs in the beta frequency range for monkeys GE and LU obtained
by the Fourier-based non-parametric approach
These significant pairwise connectivity patterns are identical to the ones obtained by the
parametric technique.
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Figure 6. Fourier-based pairwise and conditional Granger causality spectra for the network of
areas S1, 7a and 7b
(a) pairwise spectrum for S1→7a (solid line) and conditional Granger causality spectra S1→7a|
7b (dashed line) and (b) revised Granger causality network based on direct causal influences.
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Figure 7. Wavelet-based time-frequency analysis of Granger causality for GO trials
The causal influence from S1 to M1 in the GO condition disappeared during movement
preparation and execution, supporting the hypothesis that the beta oscillations exist to facilitate
motor maintenance behavior. The plot on the right side shows the average causal influence
over time (solid curve) and the significance threshold at p < 10−6 (dotted line) computed from
the time period −90 to 35 ms.
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Figure 8. Effect of data length
(a) nonparametric and parametric pairwise Granger causality spectra and (b) integrated
parametric and nonparametric Granger causality as a function of data length. Even for a short
segment of data, nonparametric measure provides the correct direction of causal influences.
The nonparametric estimate can rapidly approach the true value as the data length is increased.
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