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Abstract
The antibody microarray is a powerful chip-based technology for profiling hundreds of proteins
simultaneously and is used increasingly nowadays. To study humoral response in pancreatic cancers,
Patwa et al. (2007) developed a two-dimensional liquid separation technique and built a two-
dimensional antibody microarray. However, identifying differential expression regions on the
antibody microarray requires the use of appropriate statistical methods to fairly assess the large
amounts of data generated. In this paper, we propose a permutation-based test using spatial
information of the two-dimensional antibody microarray. By borrowing strength from the
neighboring differentially expressed spots, we are able to detect the differential expression region
with very high power controlling type I error at 0.05 in our simulation studies. We also apply the
proposed methodology to a real microarray dataset.
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1 Introduction
Microarray technologies have been utilized extensively in scientific and medical experiments
to assess the global expression patterns of multiple samples simultaneously. Most microarray
platforms assay for expression of transcript mRNA, copy number or single nucleotide
polymorphisms. However, in thinking of human diseases such as cancer, the major molecules
that are of interest are proteins. In this paper, we deal with a particular type of microarray
known as an antibody microarray.

Antibody microarrays are currently the method mostly adopted in studying cancer immune
responses on a protein level. A microarray consisting of antibodies is probed with serum from
normal or diseased patients to determine which set of samples differentially elicits an immune
response. Typically, such a method is used assuming that the proteins (antibodies) are known.
Here, we use a new technology, developed by (Patwa et al., 2007) in which proteins from a
pancreatic cancer cell line as well as pancreatic cancer tissue were separated by a two-
dimensional liquid separation technique after which they were arrayed on nitrocellulose slides.
The slides were then probed with serum from normal individuals as well as patients diagnosed
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with pancreatic cancer. Only after a fraction of the spots are selected are the proteins then
identified using a mass spectrometric-based technology.

The data can be summarized in the form of “Digital Western blots,” as given in Figure 1. Each
point corresponds to a two-statistic comparison between cases and controls for a protein at a
given pH level and isoelectric point. A common problem is to determine which spots are
differentially expressed between the cases and controls. The statistical analysis method of
choice in such studies typically involves the use of a two sample t-test to assess differences
between normal and diseased states. While many statistical methods exist for assessing
differential expression in gene expression data (e.g. Ge et al. (2003)), there is an element of
spatial correlation that we would like to exploit in differential expression analyses with
antibody arrays. This is evident from Figure 1. Thus, we wish to use spatial information in our
differential expression analyses, which renders this microarray analysis problem different from
most studied in the literature. In this article, we develop tests of differential expression in which
the goal is to find differentially expressed regions on the antibody microarray. We adapt an
approach developed by Tango (2007) for identifying differentially expressed spatial clusters.
A complication to direct application of this methodology involves choice of the appropriate
null distribution for assessing significance. We develop a new permutation-based procedure
for assessing the null distribution of the test statistics in this problem. The structure of this
paper is as follows. In Section 2, we describe the calculation of the test statistics in this problem;
further details of this can be found in Tango (2007). The development of the permutation
distribution occurs in Section 3. We report on the results of some simulation studies and data
analyses in Section 4. Finally, we conclude with some discussion in Section 5.

2 Proposed Methodology
We assume that there are two different experimental conditions that we wish to compare. Let
there be n1 samples from the first condition and n2 samples from the second. We denote the
spatial location as a two-dimensional parameter (g, h), g = 1, … , m; h = 1, …, l. There is a
total of m × l combinations of grid points.

We are interested in detecting if there are any significant differentially expressed clusters. The
null hypothesis can be expressed as the union of the following three hypotheses: H01: There
are no differential expressions for any points on the grid; H02: All m × l grid points are
differentially expressed; H03: Some grids are differentially expressed, but there is no cluster
of significant differential expressions. For simplicity, we combine these three null hypotheses
into one null hypothesis, H0: There are no differentially expressed points or there is no cluster
of differential expressions.

At each grid point, we have measurements on (n1 + n2) samples. We calculate a summary
statistic of differential expression between the two groups. It could be the t-statistic or a
Wilcoxon rank-sum statistic. Here and in the sequel, we use the latter, but the proposed
framework could easily handle the former as well. We then modify the approach of Tango
(Tango, 2007) and calculate the two-dimensional statistic vector for a cluster S

(1)

where δ is an m × l by 2 matrix of scoring function which will be defined in Section 3, and A
(θ) is an m × l by m × l matrix that denotes the closeness between any two locations, with θ
parametrizing the distance model used. Here As(θ) denotes the sth column of matrix A(θ). We
consider several choices for A:

1. The modified k nearest neighbors model: A = [aij], where
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In this model θ = k.

2. The extended modified (k, r)nearest neighbors model:

3. Fixed area of (k, r)nearest neighbors model: This is the same as (2), with the constraint
that k + r = c, where c is a pre-defined constant.

3 Assessing significance
Recall that our goal is to test for the presence of differentially expressed clusters between two
conditions. To do this, we use an idea applied in a completely different setting by Efron and
Tibshirani (2007). For each cluster S with t grids, we calculate the following two-dimensional
scoring function:

where zi is the summary statistic obtained from t-test or Wilcoxon rank-sum test; s+(z) = max
(z, 0) and s-(z) = - min(z, 0). Define the “maxmean” test statistic:

where  and . Therefore, the maxmean statistic for a cluster
S in formula (1) is

Large values of the maxmean statistic indicate evidence against the null hypothesis.

While our object of inference are the clusters, note that the independent units are the samples.
Under the null hypothesis, if we permute the grid locations, then we will be underestimating
the true variability, since the grid locations are not statistically independent. If we permute the
sample labels, then we are not directly estimating the null distribution of the clusters.

To adjust the null distribution of the cluster statistics, we do a restandardization as in Efron
and Tibshirani (2007). The restandardization is applied separately to  and . Then, the two

statistics are combined to give . Note that the means and standard deviations
for maxmean statistic can be computed from the grid-wise means and standard deviations.

A permutation test is conducted for comparison of observed test statistic with test statistics
under null hypotheses. The labels of the (n1+n2) protein samples are permuted and the test
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statistics  are obtained by the same method described above. P-values are calculated for
each cluster S after 1000 permutations. Q-values (Storey (2002)) are obtained to adjust for
multiple testing of the m × l clusters.

In practice, there may be some situations in which the size parameter k is difficult to determine
beforehand. In that case, we may repeat the test using different k's (i.e. k can take values ranging
from 1 to a user-defined upper bound kU), and consequently, lead to multiple testing problems
again. In Tango (2007), he introduced an efficient robust test called the Max test to control for
this problem. The Max test is defined as the maximum of the test statistic considered, which
is equivalent to the minimum of p-values. As the value of k varies from 1 to kU, the test statistic
Pmin is defined as:

(2)

where  is the test statistic under null hypothesis;  is the observed test statistic
at k and k* is where we obtain the minimum p-values of . The minimum is chosen in
the parameter space {k : 1 ≤ k ≤ kU}. kU should be chosen such that the cluster sizes that will
be considered are reasonable in specific problem settings. For example, in proteomic studies,
proteins will only be expressed differentially for cancer and normal cells under certain pH and
isoelectric conditions. Thus, the cluster size will usually not be too large. In this case, we choose
the upper bound to be an appropriate value which ensures that a testing cluster size is at most
of 50% of total grids.

If the null hypothesis is rejected, local cluster is identified as the one having a significant p-
value after FDR adjustment as well as Max test. The best cluster size for that cluster is
determined by certain k value where the minimum p-value is attained.

4 Numerical Examples
4.1 Real Data Example

We analyzed 30 protein samples after a two-dimensional liquid separation. In that dataset, there
were 15 pancreatic cancer samples and 15 normal samples. Those protein samples were
separated by chromatofocusing (CF) from pH 9.2 to 4.3 and each CF fraction was further
separated by non-porous reversed-phase HPLC. The pH levels are denoted as 1, 2, 3, . 19, and
the fractions separated by NPS-RP-HPLC are labeled as 1, 2, 3..70. The data are cleaned by
an analysis of variance method, described in Patwa et al. (2007). Test statistic z is computed
by using Wilcoxon Rank-Sum test for each combination of fractions and pH conditions. The
location matrix and maxmean statistics are calculated as described in Section 2 and 3 by using
the modified k nearest neighbor's model for k from 1 to 12. B-H FDR method and Max test are
applied to control multiplicity testing problems. The results show that none of the p-values are
smaller than 0.05, which indicates that there are no differential expressed clusters identified.
If we fix one condition and try to identify potential clusters when the other condition varies
and apply the extended modified (k, r) nearest neighbor's model with r equal to 0, all the tests
still yield non-significant results. In fact, the smallest p value of the Wilcoxon Rank-Sum tests
between cancer and normal sera under 1012 combinations of two conditions (There are missing
data for the rest of 318 combinations of two conditions) is 0.00315, which will be considered
to be non-significant if we control the multiplicity testing problem by either conservative
method: Bonferroni correction or liberal method: B-H FDR method. This may explain the
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reason that we cannot find any significant clusters by using neither the modified k nearest
neighbor's model nor the extended modified (k, r) nearest neighbor's model.

4.2 Simulation Studies
To validate this method, data simulation analyses are performed and powers of this test are
calculated based on 100 data simulations. Assume all the data are generated under two
conditions with 20 levels of each. For alternative hypothesis, a pre-designed square cluster of
size 36 grids (i.e. pH 1 to 6 and fractions 1 to 6) is sampled with 15 cancer protein intensities
from N(1, 1) and 15 controls from N(0, 1). Among the rest of the 364 grids, 100 grids picked
randomly are included as noises with cancer sampled from N(1, 1) and normal sampled from
N(0, 1); the other 264 grids have 30 cancer and normal protein intensities all sampled from
standard normal distribution. The same methods are performed for k from 1 to 8. Since the true
signal matrix is 6 by 6, We choose the upper bound of k to be a little bit larger than 6. Controlling
type I error rate at 0.05, powers of this test are calculated for each of k's separately as well as
for all Ks combined using formula (2). When k is equal to 3, 4, or 5, our method performs the
best with very high powers detecting nearly all the differentially expressed clusters (Figure
2a-2c). For most of the simulated true clusters, the probabilities of identifying them range from
0.80 to 1.00. When all eight k values are considered together by using formula (2), the
probability of detecting differential expressed cluster of any size is even larger compared with
the power for any specific k value (Figure 2d).

However, our method does not show a satisfactory performance in terms of detecting clusters
close to and on the boundary of the true signal matrix (Figure 2a-2d). This may be explained
by small sample sizes of our simulation studies as well as a small signal-to-noise ratio (e.g. Of
400 grids total, 9% are signals and 25% are noises). Thus, we carry out further simulation
analyses by increasing either the sample size or the signal-to-noise ratio. Figure 3a-3b show
the results from the two simulation studies. By increasing the sample size 10 times larger, or
incorporating only 50 noises sampled from N(1,1), the performance of our method is improved
comparing with the simulation results in Figure 2a and it identifies true clusters more than 95%
of time with fewer poor detections near the boundary. In Figure 3c, we introduce 50 noises
sampled from N(-1, 1) and 50 noises sampled from N(1, 1) and the simulation results indicate
even better performance of our method as the case when we increase the signal-to-noise ratio
by 50% in Figure 3b.

For null hypotheses, data are simulated under three specific null hypotheses as previously
described. Under H01, 30 samples from all the 400 grids are sampled from standard normal
distribution. Under H02, 30 samples from all the 400 grids are sampled with 15 cancers from
N(1, 1) and 15 controls from N(0, 1). Under H03, of 36 randomly selected grids among all 400
grids, 15 cancers are sampled from N(1, 1) and 15 controls from N(0, 1). For k from 1 to 8, the
same methods are applied. After repeating 100 times for each of three null hypotheses, the
powers of all the tests are calculated for each k separately as well as for all eight Ks combined
and turn out to be less than 0.05 (There are only two exceptions with power equal to 0.06 for
testing H02 when all eight Ks are considered together; Figure 4a-4c).

The results of our simulation studies may be summarized as follows: (i) our method have very
high powers to detect differentially expressed regions controlling type I error rate at 0.05. (ii)
As the sample size or signal-to-noise ratio increases (the noises are sampled from the same
distribution as signals), our method shows much better performance in detecting both the
clusters in the center of the signal matrix and the clusters near the boundary of signal matrix.
(iii) Incoporating noises sampled from distributions in the opposite direction of signals'
improves the performance of our method comparing with increasing signal-to-noise ratio. (iv)
If the effect size of expression level of cancer versus normal proteins is small, we may need
large sample size to detect differentially expressed clusters.
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5 Discussion
We have developed tests of identifying differentially expressed regions on the two-dimensional
antibody microarray. By borrowing strength from neighboring differential grids, our method
shows very high powers in terms of detecting differentially expressed regions from our
simulation studies. We apply our method to the real data, but do not find any significant clusters
with k ranging from 1 to 12.

The simulation studies mainly focus on computing test statistics with spatial matrix A(θ)
defined by the k nearest neighbors model (model (1)), which only tests for clusters of square
shapes. But our methods can be easily extended to testing of clusters of rectangle shapes or
fixed sizes with model (2) and (3). The simulation results indicate good performance of these
modifications (results not shown). The k nearest neighbors model that we mainly used in this
article gives equal weight to all the nearest neighbors of each gird. We may also use a gradual
decline, which is described in Tango (2000), to define the spatial matrix so that we can
distinguish the adjacent grids from boundary grids and focus mainly on the center of the
clusters.

In this paper, we use maxmean statistic as the cluster statistic to identify differential expressed
spatial cluster. In the context of brain imaging, Bullmore et al. (1999) introduced two cluster
statistics: cluster area and cluster mass. The cluster area statistic calculates the two-dimensional
(2-D) area of a suprathreshold cluster and the cluster mass statistic sums up all the
suprathreshold statistics of a 2-D cluster. The three statistics capture different characteristics
of clusters. The maxmean statistic is more sensitive to clusters with high density of signals
(i.e., large maxmean statistic). By contrast, the cluster area statistic is sensitive when the cluster
size is significantly large and the cluster mass statistic combines the information of the density
of signals and the area of clusters. Therefore, a cluster will be identified as significant by cluster
area statistics if the cluster size is large enough even though the statistic density for that cluster
is moderately low. On the other hand, the cluster mass statistic has great sensitivity for a
combination of marginally significant cluster density and cluster extent, but may not be able
to detect signals when only one of them is highly significant. With the maxmean statistic, we
mainly focus on the densities of signals of clusters and allow the comparability of clusters with
different sizes.

Another important feature of the cluster area and cluster mass methods is that Bullmore et al.
(1999) obtain cluster statistics by arbitrarily thresholding maps of original statistics and
considering the properties of the spatial clusters of suprathresholded parts. By doing this, they
reduced the number of testing clusters and ease the computational burden. Our method can
also be extended by adopting their thresholding ideas and calculate the suprathresholded
maxmean statistics to test the clusters which are identified by thresholding rather than
determined by k nearest neighbors model. However, this brings up the issue that the
determination of threshold is sometimes very subjective and diffcult to be verified. Sensitivity
analysis may be required to provide a valid inference. Moreover, the identified clusters by
thresholding may be of special shapes besides regular square or rectangular shapes. This can
be regarded as one advantage of thresholding such that it allows the detection of clusters with
flexible shapes, but may also not be reasonable and interpretable in some biological scenarios
such as protein microarrys.

Our methods are permutation-based tests and the advantages of permutation testing have been
well recognized: it generally conditions on far fewer assumptions and can be readily devised
for any statistic of interest. However, the computational cost will increase as the dimension of
spatial matrix gets larger. It will not be efficient to deal with a fine grid large two-dimensional
matrix or even three-dimensional space with moderate size. In that case, we may treat the
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measurements of each protein under all combinations of two conditions as the two-dimensional
functional data and think of transforming this two-dimensional functional data into some
functional space (e.g. wavelet space) with the goal of reducing dimensions (e.g, see Mager et
al. (2007), Aston et al. (2006) for applications of wavelet space to imaging data). This area
merits further investigation.
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Fig. 1.
Wilcoxon rank sum statistics are calculated for each grid to assess differences between cancer
and normal sera. Each pH/fraction combination was tested and the p-values are plotted in the
above figure. The red/orange section at low fractions of pH 5.1 through 5.7 indicates a possible
region in which cancer is expressing above normal.
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Fig. 2.
(a). Heatmap of the powers of alternative hypothesis testing for k = 3controlling type I error
at 0.05. All the powers (the probability of identifying a cluster with ith grid as the center and
size determined by specific k = 3; i=1, 2, ⋯, 400) are shown in percentage in the plot. For
example, for k = 3, if the first grid is in dark red, that means the cluster with first grid as the
center and including grids within 3 units (row and column indexes) away from the center is
identified as differentially expressed region more than 95% of the times.(b). Heatmap of the
powers of alternative hypothesis testing for k = 4 controlling type I error at 0.05. (c). Heatmap
of the powers of alternative hypothesis testing for k = 5 controlling type I error at 0.05. (d).
Heatmap of the powers of alternative hypothesis testing for all k(1 - 8) considered together by
using formula (2), controlling type I error at 0.05. When all eight k values are considered
together, the probability of detecting differential expressed cluster of any size is even larger
compared with the power for any specific k value.
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Fig. 3.
(a). Heatmap of the powers of alternative hypothesis testing for k = 3with sample size 10 folds
larger, controlling type I error at 0.05. (b). Heatmap of the powers of alternative hypothesis
testing for k = 3with signal-to-noise ratio increased by 50%, controlling type I error at 0.05.
(c). Heatmap of the powers of alternative hypothesis testing for k = 3 with 50 noises sampled
from N(-1, 1)controlling type I error at 0.05.
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Fig. 4.
(a). Heatmap of the powers of null hypothesis I testing for all k(1 - 8) considered together by
using formula (2), controlling type I error at 0.05. (b). Heatmap of the powers of null hypothesis
II testing for all k(1 - 8) considered together by using formula (2), controlling type I error at
0.05. (c). Heatmap of the powers of null hypothesis III testing for all k(1 - 8) considered together
by using formula (2), controlling type I error at 0.05.
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