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ABSTRACT Single-molecule force spectroscopy reveals
unfolding of domains in titin on stretching. We provide a
theoretical framework for these experiments by computing the
phase diagrams for force-induced unfolding of single-domain
proteins using lattice models. The results show that two-state
folders (at zero force) unravel cooperatively, whereas stretch-
ing of non-two-state folders occurs through intermediates.
The stretching rates of individual molecules show great vari-
ations ref lecting the heterogeneity of force-induced unfolding
pathways. The approach to the stretched state occurs in a
stepwise ‘‘quantized’’ manner. Unfolding dynamics and forces
required to stretch proteins depend sensitively on topology.
The unfolding rates increase exponentially with force f till an
optimum value, which is determined by the barrier to unfold-
ing when f 5 0. A mapping of these results to proteins shows
qualitative agreement with force-induced unfolding of Ig-like
domains in titin. We show that single-molecule force spec-
troscopy can be used to map the folding free energy landscape
of proteins in the absence of denaturants.

Titin, a giant protein molecule responsible for elasticity of
muscles, is comprised of a few hundred Ig and fibronectin-III
repeats aligned in tandem (1–3). Recently, through nanoma-
nipulation of single protein molecules, there has been direct
evidence for sequential unfolding of individual domains on
stretching (4–6). These remarkable experiments and others on
DNA (7–9) have made it possible to unearth the microscopic
underpinnings of the unusual elastic behavior in biological
molecules. In two experiments (4, 5), individual titin molecules
were tethered to a plastic bead and optical tweezers were used
to stretch the molecule. Direct measurement of the forces
required to stretch titin were used to infer that tension leads
to unfolding of individual Ig-like domains (4, 5). Perhaps the
clearest evidence for domain unraveling was presented by Rief
et al. (6), who used atomic force microscopy (AFM) to pull on
titin molecules adsorbed onto a gold surface. The AFM
experiments, on both the model recombinant titin molecules
consisting only of Ig (Ig4 and Ig8) domains and the native titin,
showed clear sawtooth patterns in the force–extension curves,
indicating sequential unfolding of domains. The constant
periodicity of the sawtooth pattern ('25 nm) is nearly coin-
cident with the dimensions of the fully unfolded Ig domain
('29 nm) and is very similar to the contour length inferred
from fitting the force–extension curves obtained from the
optical tweezer experiments (4, 5) [see also related experi-
ments on tenascin (10)]. All the experiments conclude that
sequential unraveling of the domains results on mechanically
stretching titin.

Inspired by these experiments, we report the results of
force-induced unfolding of single-domain proteins using sim-
ple lattice models that have been useful in the search for
general principles of protein folding (11). Because the primary

mechanism of stretching titin involves unraveling of individual
Ig-like domains, which fold spontaneously in the absence of
tension (12, 13), our calculations provide microscopic origins
of force-induced unfolding. We show that the response of
proteins to force depends primarily on their topology in the
absence of force. By computing the phase diagram and kinetics
of a number of model proteins subject to tension, we show that
the folding free-energy landscape (11, 14) in the absence of
force can be deciphered by using single molecule manipulation
techniques.

MATERIALS AND METHODS

The polypeptide chain is modeled as a sequence of N con-
nected beads on a cubic lattice. The energy of a conformation
(given by the vectors rBi with i 5 1, 2, 3, . . . N) is
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where d(x) is the Kronecker delta function, a is the lattice
spacing, and Bij is the contact energy between beads i and j.
The set of matrix elements Bij specifies a sequence. We use two
types of contact potentials, the statistical potentials derived by
Kolinski, Godzik, and Skolnick (KGS) (15) and the random
bond (RB) model (16). The applied force to the terminal beads
yields an additional energy

Ef 5 2 f z z, [2]

where z 5 urB12rBNu is the extension. Because the polypeptide
chain is on lattice, where continuous overall rotations are not
possible, we assume that on stretching there is alignment of the
protein along the force direction with zero torque. This is
equivalent to the assumption that the relaxation time for the
overall rotational degrees of freedom is much shorter than that
for structural relaxation that is responsible for unfolding or
folding processes. Thus we take the absolute value of z to
represent the energy caused by stretching. The total energy of
the chain conformation is given by the sum of Eqs. 1 and 2. We
use dimensionless units for energy whose typical value is in the
range (122) kBT; length is measured in units of a (5 0.38 nm),
and temperature is measured in units of energyykB. For
purposes of mapping these to physical values, we use 2kBT for
energy, which means force in our simulations is measured in
multiples of about 20 pN.

The thermodynamics as a function of force ( f ) and temper-
ature (T) is obtained by using a variant of the multiple
histogram method (17) in conjunction with standard Metrop-
olis Monte Carlo simulations (18). When f . 0, the collection
of histograms at different temperatures and zero force be-
comes unreliable because highly stretched conformations are
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almost never sampled. Such states, which have negligible
Boltzmann weight in the absence of force, become thermody-
namically important on stretching. It proves more convenient
to collect histograms at a fixed value of T and at various values
of f so that all relevant states across the entire ( f, T) plane are
adequately sampled.

To characterize the degree of similarity of an arbitrary
sequence conformation with the native structure, we use the
overlap function (19) defined as

x 5 1 2
1

N2 2 3N 1 2 O
i°j, j61

d~rij 2 rij
0!, [3]

where rij is the distance between the beads i and j, ri
0

j is the
corresponding distance in the native conformation, and d(x) is
the Kronecker delta function.

The kinetic simulations of force-induced unfolding were
performed at a constant temperature Ts (below TF, the folding
temperature) that satisfies the condition ,x( f 5 0, Ts). 5
0.15. Starting from the native conformation, the force was
suddenly increased to fs so that at ( fs, Ts), stretched rod-like
conformations are stable. The unfolding kinetics is monitored
by computing the distribution of stretch times, ts,1i, which is the
first instance a trajectory i reaches a stretched state with no
contacts. Typically M 5 800 trajectories have been generated
for the calculation of unfolding rate. From the distribution of
stretch times, the mean unfolding time and the fraction of
folded molecules at time t can be calculated (16). These probes,
together with the dynamics of rupture of tertiary contacts and
the time dependence of extension, are used to obtain the
unfolding pathways. The mean unfolding time is tu 5 1

M
(i51

M ts,1i
the inverse of which is taken to be the unfolding rate ku.

To obtain the general characteristics of force-induced un-
folding, we computed the phase diagram and kinetics for five
sequences (four 27-mers and one 36-mer) and differing inter-
action potentials. We chose four 27-mer and one 36-mer
sequences, whose thermodynamic and kinetic characteristics in
the absence of force are documented elsewhere (16, 20), to
investigate unfolding transitions caused by stretching. Three of
the 27-mer and 36-mer sequences fold kinetically and ther-
modynamically by two-state mechanism. These sequences have
small values of s 5 (Tu 2 TF)yTu, where Tu and TF are the
collapse and folding transition temperatures, respectively,
when f 5 0 (16, 20). The fourth 27-mer sequence with Bij given
by RB potentials has s 5 0.11, and its folding (thermodynamics
and kinetics) reveals intermediates (16). Thus, with these
sequences, we can investigate the effect of stretching for
protein-like models that display distinct folding mechanisms in
the absence of force. For purposes of illustration, we present
results for a 36-mer sequence with the KGS potentials (s ' 0)
and the 27-mer RB model sequence with s ' 0.11.

RESULTS

The phase diagram for the 36-mer, which exhibits two-state
cooperative thermal unfolding when f 5 0, is given in Fig. 1a.
The states of the polypeptide chain are represented by the
thermal average overlap function ,x( f, T)., where x gives the
degree of similarity to the native state. In particular, small
values of the overlap function correspond to conformations
that belong to the native basin of attraction (NBA). The color
codes in Fig. 1 are such that red corresponds to small ,x( f,
T). (high native content and folded states), whereas the blue
region has large ,x( f, T)., representing unfolded states. We
see from Fig. 1a that the ( f, T) plane divides into predomi-
nantly red (folded states) and blue (unfolded states) regions.
In the red region, the overlap ,x(f, T). ( 0.1, and the
probability of being in the NBA is greater than 0.5 (20). In the
blue region, ,x( f, T). is typically greater than 0.8 and the

probability of being in the NBA is almost zero. There is only
a narrow band of the green region, which suggests that the
force-induced unfolding transition for this sequence is an
all-or-none process with no signature of intermediates.

The sharp boundary between folded and unfolded states
resembles that of the type I superconductors in the (H, T)
plane, where H is the applied magnetic field. With this analogy,
the locus of points separating the NBA and the unfolded states
is given by

fc , f0S1 2 S T
TF
DaD , [4]

where fc is the critical force required to unfold the protein, f0
is the value of fc at T 5 0, and TF is the folding transition
temperature at zero force. Both f0 and a depend on the
sequence and the native state topology. The fit using Eq. 4
gives f0 . 0.98 and a . 6.0 for the 36-mer . An independent
estimate for f0 can be made by using uF0u ' f0DL, where E0 is
the energy of the native state and DL is the gain in the
end-to-end distance of the polypeptide chain on stretching to
a fully extended rod state. For the 36-mer E0 5 230.4 and
DL ' 30.9 that leads to f0 ' 0.98.

The phase diagram for a sequence whose folding (in the
absence of force) involves intermediates is shown in Fig. 1b.
Although the general appearance is similar to that shown in

FIG. 1. Phase diagrams in the ( f, T) plane for (a) the 36-mer
two-state KGS sequence and (b) 27-mer moderate folding RB se-
quence. The color code for ,x( f, T). is given on the right. The red
color corresponds to the states in the NBA, whereas the blue color
indicates the unfolded states. Green areas correspond to intermediate
partially folded states. For both the sequences the boundary of NBA
is given by Eq. 4.
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Fig. 1a, there are clear differences. The region of stability of
the NBA (red region) is confined to low temperatures and
small forces. Secondly, the boundary between the folded and
unfolded states is fuzzy and contains a broad green region.
This suggests that the force- (or temperature)-induced unfold-
ing is likely to be noncooperative involving intermediates. This
is reflected in the force–extension curves, which show signa-
tures of intermediates (D.K. and D.T., unpublished observa-
tions). In contrast, for two-state folders with s ' 0, the
force–extension curves show that at f ' f0, the chain abruptly
unfolds to a stretched conformation without populating any
detectable intermediates. In fact, the unfolding transition
occurs in an extremely narrow interval of force, which for the
36-mer is 0.01f0 (D.K. and D.T., unpublished observations).

We should point out that the contact interaction energies (or
more precisely the potential of mean force) are dependent on
temperature. It has been argued that the temperature depen-
dence of contact interactions has to be included to reproduce
certain experimental observations in proteins (21). However,
we expect the qualitative features of the phase diagrams seen
in Fig. 1 will be observed experimentally regardless of the
details of the interaction energies.

How is the completely stretched conformation kinetically
reached starting from the native conformation when f exceeds
fc? For the four sequences with small s (two-state folders in the
absence of force), we find that, when averaged over an
ensemble of initial molecules, unfolding occurs in a single
kinetic step. However, there is a great variation in the time
scales of stretching to the rod-like state. This is dramatically
illustrated in Fig. 2a, in which we plot, for the 36-mer,
extension z(t) as a function of t measured in Monte Carlo steps.
There is a large unexpected heterogeneity in the approach to
the stretched state. A striking feature in Fig. 2a is that there
is a large variability in the times taken to exhibit significant
stretching before reaching the rod-like conformation. Global
unraveling takes place cooperatively with the disruption of
local and nonlocal contacts occurring in an all-or-none man-
ner. These features are masked in the ensemble average
,z(t)., which is shown as a dashed line in Fig. 2a. There is a
remarkable similarity between the response of these protein-
like models to force and that exhibited by flexible polymers
subject to sudden elongational f low (22). Another interesting
feature of the unfolding dynamics is that, just as in experi-
ments, the force–extension curves show hysteresis during the
stretch–release cycles (D.K. and D.T., unpublished work).

The time evolution of the distribution of extension values z
for 400 trajectories is plotted in Fig. 2b. This plot shows that
on time scales less than the mean stretch time, the chain
explores a diverse manifold of states each with different z.
Certain z values have significantly larger probability P(z, t)
than others, which suggests that unfolding occurs in a step-wise
quantized manner. Similar observations have been made by
using unfolding molecular dynamics simulations of Ig-like
domain (23).

Despite the large variability in the stretch times ts,1i, the
mechanism of approaching the rod-like conformation may be
qualitatively described as occurring in roughly three stages. On
the time scale '(0.1–0.5)ts,1 i , after the application of a sudden
force there is a loss of a number of native contacts. There is a
concomitant increase in the extension of the chain z(t)yzs .
(0.1–0.5), where zs 5 N 2 1. In the second stage, the sequence
searches for the equilibrium rod-like conformation. There is
great variation in the time scale for this search. This stage is
characterized by one or several plateaus in z(t) (see Fig. 2a).
Finally, the chain explosively and cooperatively makes a tran-
sition to the rod state with z(t)yzs . 1. Naturally, there are
several exceptions to this generic scenario. For example, curve
(d) in Fig. 2a shows that z(t) reaches its equilibrium value
monotonically in an extremely short time.

The dependence of the unfolding mechanisms on topology
is illustrated by computing the dynamical evolution of all the
topologically permissible contacts. We describe the results for
two 27-mer RB two-state folders labeled A and B (these are
the sequences 61 and 63, respectively, in ref. 16). The native
state of each sequence is maximally compact. However, the key
topological distinction between them is that in the native
conformation for A, the terminal beads are on the same facet
of the cube, whereas for B they are placed directly on opposite
facets. By tracking the time evolution of the loss of the 156
topological contacts, of which 28 are native, we computed the
breaking times tb

k for contact k. The times tb
k are determined

by (iyN)(N 2 j)yN, which measures how close the contact k,
formed between beads i and j, is to the sequence ends. For
sequence A, we find that the time scales for the rupture of
contacts are similar for groups of contacts that are close to one
or the other end of the sequence. In contrast, for sequence B
the disruption of contacts from the amino terminus (bead 1)
occurs fast, whereas the contacts located near the carboxyl
terminus break up later in the unfolding process. Thus, topol-
ogy determines details of the force-induced unfolding path-
ways. Because in Ig-like domain the amino and carboxyl
termini are at opposite ends, we expect that the underlying
mechanism by which this domain unfolds may be similar to that
for sequence B.

In Fig. 3a, we present the force-induced unfolding rate ku as
a function of f for the 36-mer at Ts 5 0.49. Qualitatively similar

FIG. 2. (a) The time dependence of extension z(t)yzs for 201
individual trajectories of 36-mer sequence at Ts 5 0.49 and fs 5 4.0.
Three generic trajectories [curves (a)2(c)], the fastest (d), and the
slowest (e) trajectories are shown in black. The rest are given in grey.
The average ,z(t). obtained from 400 individual trajectories is
represented by a thick dashed curve. (b) The probability distribution
P(zyzs, t) for 36-mer sequence under the same unfolding conditions as
in Fig. 2a. P(zyzs, t) gives the kinetic probability of occurrence of the
extension value z at the time t. In both plots the extension values are
normalized by zs 5 N 2 1.

6168 Biophysics: Klimov and Thirumalai Proc. Natl. Acad. Sci. USA 96 (1999)



results were obtained for the 27-mers as well. The unfolding
rates were computed from the distribution of stretch times for
800 trajectories. It is expected that ku should increase with
increasing f because the activation- free energy is lowered upon
application of force (24, 25). The free energy profiles as a
function of the number of native contacts (Q), which is an
approximate reaction coordinate for two-state folders (26),
are given in Fig. 3b for the 36-mer at various force values.
The decrease in the unfolding barrier explains the observed
dependence of ku on f for f , fopt. The unfolding rate is
well described by ku . k0exp( fDxykBT) for f , fopt, which is
given by

fopt , DF‡~Ts, f 5 0!yDx, [5]

where DF‡(Ts, f 5 0) is the unfolding free energy barrier at T 5
Ts and zero force, Dx is an approximate width of the unfolding
potential, and k0(Ts) is the unfolding rate in the absence of
force. For the 36-mer, DF‡ is 2.26 at Ts 5 0.49 (see Fig. 3b), fopt
' 3.2, and therefore Dx ' 0.02L, where L is the contour length
of the chain. The small value of Dx implies that the transition
region is quite narrow. When f $ fopt, the unfolding rate starts
to decrease because sudden (corresponding to large pulling
speed) application of relatively large forces traps the polypep-

tide chain in conformations, whose unfolding requires tran-
sient shortening of the end-to-end distance. The transition
from such conformations, which requires local annealing of the
chain, slows down the unfolding process. For f . 7 (see Fig. 3a),
there is a free energy barrier associated with the breakup of
contacts in the conformations acting as transient kinetic traps.
In this force regime, the fraction of molecules that are folded
at a time t is best fit using a sum of two exponentials, with the
slow phase signaling the onset of local trapping. It should be
emphasized that the decrease in unfolding rates at large forces
(see Fig. 3a) is expected to depend on the topology of the
native state and pulling speeds. In the context of lattice models,
it may also be caused by the move sets used in the simulations.

Our results for unfolding triggered by force are consistent
with a number of experimental observations on the unraveling
of isolated Ig-like domains in titin (4–6, 10). (i) The ratio of
fcyf0 for Ig-like domains can be computed by using Eq. 4 with
T 5 25°C, the folding temperature TF ' 60°C (27), and a ' 6.0.
This gives fcyf0 ' 0.49. From the phase diagram in Fig. 1a, we
obtain a similar value for the 36-mer when the temperature
(measured in Kelvin) is approximately 0.89TF. Thus the gen-
eral shape of the phase boundary should be useful in calibrat-
ing the experimental measurements on proteins. (ii) The
typical values of the threshold force f0 required to induce
stretching in the two-state folders are in the range of (1–2.5).
By translating these into physical units, we obtain f0 ' (20–50)
pN. Using this range for f0, we would predict that the unfolding
force fc, which depends on the pulling speed, for Ig-like
domains in titin should be around (10–25) pN. These values are
not inconsistent with the experimental measurements (see Fig.
5 of ref. 6). (iii) The width of the unfolding potential Dx that
is obtained by using Eq. 5 and the computed values of fopt and
the activation-free energy DF‡ (see Fig. 3b) in the absence of
force for the 36-mer is 0.02L. Rief et al. (6) estimated that
DxyL ' 0.01 using Dx 5 0.3 nm and L 5 31 nm. If we use the
fact that the lattice constant a, which gives the distance
between a-carbon atoms, is '0.4 nm, then the value of Dx for
the 36-mer in physical units is roughly 0.3 nm. These numbers
are in very good accord with the experiments.

The theoretical findings can be used to map the underlying
folding free energy landscape for two-state proteins by using
data from force-induced unfolding experiments. This is illus-
trated by applying our results for the 36-mer to Ig-like domains.
An estimate of fopt for Ig domain can be made by using the
value of 3.2 for the 36-mer and by assuming that a fopt scales
linearly with N. For the 90-residue Ig-like domain, we find that
fopt ' 160 pN. The unfolding barrier is foptDx, which is
approximately 12 kBT, assuming that Dx 5 0.3 nm (6). From the
stability of Ig domain [DG ' 2.6 kcalymol (12)], we predict that
the refolding barrier is approximately 4.6 kcalymol. From
these, the folding and unfolding times are predicted to be 0.1
s and 400 s, respectively. These predictions are in fairly
reasonable agreement with experimental estimates (12). The
estimates of barriers to folding by force-induced unfolding
measurements are likely to be complement to the standard
method of measuring rates at finite denaturant concentration
and then extrapolating to the desired values in the absence of
denaturants.

CONCLUSIONS

This study has led to the following predictions: (i) The
unfolding time scales should decrease exponentially with force
only until an optimum value of force, whose magnitude is
determined by only the unfolding barrier in the absence of
force. (ii) The phase diagram, especially the boundary sepa-
rating the unfolded and folded states, has the characteristic
type seen in Fig. 1 and is quantitatively given by Eq. 4. (iii) The
nature of force-induced unfolding depends on the proximity of

FIG. 3. (a) The dependence of unfolding rate ku (filled circles) on
f for the 36-mer sequence at Ts5 0.49. For values of f less than 7.0, the
force-induced unfolding takes place by a two-state process. For f . 7.0,
unfolding trajectories separate into a fast pool (the fraction of which
is F) that reaches the stretch state with the rate 1yts,FAST (open circles)
and a slow pool trajectories characterized by the rate 1yts,SLOW (open
squares). At these f, the partition factor F , 1. (b) The free energy
F(Q)yTs for 36-mer sequence at Ts 5 0.49 and f 5 0.0 (diamonds), f 5
0.3 (full circles), f 5 0.54 (open circles), and f 5 0.7 (open squares).
It is seen that the free energy unfolding barrier DF‡yTs decreases as f
becomes stronger: DF‡yTs 5 4.6 at f 5 0.0, 4.0 at f 5 0.3, 3.3 at f 5
0.54, and 2.8 at f 5 0.7. The free energy of stability (in units of Ts) at
f 5 0.0 is 2.0.
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the amino and carboxyl termini in the native state. These
predictions are all amenable to experimental test. Because the
response to force depends sensitively on the characteristics of
the sequence when f is zero, it follows that the mechanisms of
protein folding (presence of intermediates, the nature of the
transition states, and barriers to folding) may be very directly
probed by single molecule force spectroscopy.

We are happy to acknowledge several penetrating discussions with
Matthias Rief. We are grateful to Harmen Bussemaker for discussions
during the early stages of this work. This work was supported by a grant
from the National Science Foundation through grant no. CHE96-
29845.

1. Pan, K. M., Damodaran, S. & Greaser, M. L. (1994) Biochemistry
33, 8255–8261.

2. Labeit, S. & Kolmerer, B. (1995) Science 270, 293–296.
3. Erickson, H. (1994) Proc. Natl. Acad. Sci. USA 91, 10114–10118.
4. Kellermayer, M. S. F., Smith, S. B., Granzier, H. L. & Busta-

mante, C. (1997) Science 276, 1112–1116.
5. Tskhovrebova, L., Trinick, J., Sleep, J. A. & Simmons, R. M.

Nature (London) 387, 308–312.
6. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub,

H. E. (1997) Science 276, 1109–1112.
7. Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H. E. (1997)

Science 275, 1295–1297.
8. Smith, S. B., Cui, Y. & Bustamante, C. (1996) Science 271,

795–799.
9. Perkins, T. T., Smith, D. E., Larson, R. G. & Chu, S. (1995)

Science 268, 83–87.
10. Oberhauser, A. F., Marszalek, P. E., Erickson, H. P. & Fernan-

dez, J. M. (1998) Nature (London) 393, 181–185.

11. Dill, K. A. & Chan, H. S. (1997) Nat. Struct. Biol. 4, 10–19.
12. Fong, S., Hamill, S. J., Proctor, M., Freund, S. M. V., Benian,

G. M., Chothia, C., Bycroft, M. & Clarke, J. (1996) J. Mol. Biol.
264, 624–639.

13. Goto, Y. & Hamaguchi, K. (1982) J. Mol. Biol. 156, 911–926.
14. Wolynes, P. G., Onuchic, J. N. & Thirumalai, D. (1995) Science

267, 1619–1620.
15. Kolinski, A., Godzik, A. & Skolnick, J. (1993) J. Chem. Phys. 98,

7420–7433.
16. Klimov, D. K. & Thirumalai, D. (1996) Prot. Struct. Funct.

Genet. 26, 411–441.
17. Ferrenberg, A. M. & Swendsen, R. H. (1989) Phys. Rev. Lett. 63,

1195–1198.
18. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller,

A. H. & Teller, E. (1953) J. Chem. Phys. 21, 1087–1092.
19. Camacho, C. J. & Thirumalai, D. (1993) Proc. Natl. Acad. Sci.

USA 99, 6369–6372.
20. Klimov, D. K. & Thirumalai, D. (1998) J. Chem. Phys. 109,

4119–4125.
21. Chan, H. S. (1998) in Monte Carlo Approach to Biopolymers and

Protein Folding, eds. Grassberger, P., Barkema, G. T. & Nadler,
W. (World Scientific, Teaneck, NJ), pp. 29–44.

22. Perkins, T. T., Smith, D. E. & Chu, S. (1997) Science 276,
2016–2021.

23. Lu, H., Isralewitz, B., Kramner, A., Vogel, V. & Schulten, K.
(1998) Biophys. J. 75, 662–671.

24. Bell, G. I. (1978) Science 200, 618–627.
25. Evans, E. & Ritchie, K. (1997) Biophys. J. 72, 1541–1555.
26. Socci, N. D., Onuchic, J. N. & Wolynes, P. G. (1996) J. Chem.

Phys. 104, 5680–5868.
27. Politou, A. S, Gautel, M., Pfuhl, M., Labeit, S. & Pastore, A.

(1994) Biochemistry 33, 4730–4737.

6170 Biophysics: Klimov and Thirumalai Proc. Natl. Acad. Sci. USA 96 (1999)


