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Abstract
Background: Gaining the ability to photosynthesize was a key event in eukaryotic evolution because algae and
plants form the base of the food chain on our planet. The eukaryotic machines of photosynthesis are plastids (e.g.,
chloroplast in plants) that evolved from cyanobacteria through primary endosymbiosis. Our knowledge of plastid
evolution, however, remains limited because the primary endosymbiosis occurred more than a billion years ago.
In this context, the thecate "green amoeba" Paulinella chromatophora is remarkable because it very recently (i.e.,
minimum age of ≈ 60 million years ago) acquired a photosynthetic organelle (termed a "chromatophore"; i.e.,
plastid) via an independent primary endosymbiosis involving a Prochlorococcus or Synechococcus-like
cyanobacterium. All data regarding P. chromatophora stem from a single isolate from Germany (strain M0880/a).
Here we brought into culture a novel photosynthetic Paulinella strain (FK01) and generated molecular sequence
data from these cells and from four different cell samples, all isolated from freshwater habitats in Japan. Our study
had two aims. The first was to compare and contrast cell ultrastructure of the M0880/a and FK01 strains using
scanning electron microscopy. The second was to assess the phylogenetic diversity of photosynthetic Paulinella to
test the hypothesis they share a vertically inherited plastid that originated in their common ancestor.

Results: Comparative morphological analyses show that Paulinella FK01 cells are smaller than M0880/a and differ
with respect to the number of scales per column. There are more distinctive, multiple fine pores on the external
surface of FK01 than in M0880/a. Molecular phylogenetic analyses using multiple gene markers demonstrate these
strains are genetically distinct and likely comprise separate species. The well-supported monophyly of the
Paulinella chromatophora strains analyzed here using plastid-encoded 16S rRNA suggests strongly that they all share
a common photosynthetic ancestor. The strain M0880/a is most closely related to Japanese isolates (Kanazawa-
1, -2, and Kaga), whereas FK01 groups closely with a Kawaguchi isolate.

Conclusion: Our results indicate that Paulinella chromatophora comprises at least two distinct evolutionary
lineages and likely encompasses a broader taxonomic diversity than previously thought. The finding of a single
plastid origin for both lineages shows these taxa to be valuable models for studying post-endosymbiotic cell and
genome evolution.
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Background
The origin of the first photosynthetic organelle (plastid) is
explained by primary endosymbiosis, whereby a non-
photosynthetic protist engulfed and retained a cyanobac-
terium as a cytoplasmic organelle [1,2]. A variety of plas-
tid-derived and some nuclear sequence data, as well as
plastid-associated traits such as the composition and evo-
lutionary history of the protein translocons [3], and solute
transporters embedded in the inner organelle membrane
suggest that descendants of this 'primary' photosynthetic
eukaryote were the ancestors of the putative supergroup
Plantae. The Plantae is comprised of the red, green
(including land plants), and glaucophyte algae [4,5]. Via
eukaryote-eukaryote (secondary and tertiary) endosymbi-
osis, photosynthesis and its associated genes spread there-
after into other eukaryotic groups (e.g., euglenoids,
diatoms, and dinoflagellates; [6-10]). Despite its impor-
tance to eukaryote evolution, our understanding of pri-
mary plastid origin remains limited because the
endosymbiosis occurred > 1 billion years ago [11,12].
This dilemma has, however, a potential solution given the
recently clarified evolutionary history of Paulinella chro-
matophora. This little-known testate, filose amoeba [13],
which is a cercomonad species (supergroup Rhizaria),
contains two blue-green photosynthetic inclusions
termed chromatophores [14]. There are no known fossils
of Paulinella, however, euglyphid-like testate amoebae
have a long fossil history, occurring in sediments dated
from 742 – 770 million years ago [15,16]. Importantly, P.
chromatophora is the only known case of an independent
primary photosynthetic organelle acquisition (from a
prey cell related to extant Prochlorococcus/Synechococcus-
like cyanobacteria), putatively recapitulating the process
that gave rise to the Plantae plastid [17-20]. This makes P.
chromatophora an outstanding model for elucidating plas-
tid acquisition and post-endosymbiotic genome evolu-
tion. Two key reasons why it is believed the

chromatophores (= plastids) of P. chromatophora are bona
fide organelles rather than temporary photosynthetic
inclusions (for details, see [21]) are the apparent regula-
tion of plastid division by the amoeba and the loss of 2/3
of plastid coding potential through outright gene loss or
transfer to the nucleus (i.e., from ca. 3 Mb in free-living
Prochlorococcus/Synechococcus cyanobacteria to 1.02 Mb in
the P. chromatophora plastid, [22]). Paulinella plastid
genome size is, however, far greater than the ca. 100–200
Kb for typical plastid genomes from algae and plants sug-
gesting it is likely a "work in progress" (for details, see
[23]).

Since its discovery by Lauterborn [14], four different
Paulinella species have been reported – the photoau-
totrophic P. chromatophora, which contains two plastids, is
clearly separated from its three heterotrophic sister species
that lack a plastid (i.e., P. ovalis, P. intermedia, and P. inden-
tata), although all share a typical oval-shaped cell mor-
phology that consists of five rows of silicate scales (see
Table 1, [24-26]). The phylogenetic relationship between
these four Paulinella species is unknown because of a lack
of sequence data from heterotrophic Paulinella species.
However, it is obvious that P. chromatophora (as a repre-
sentative of the genus Paulinella) and Euglypha are closely
related based on nuclear SSU rDNA trees [13,27]. The
derived position of P. chromatophora among the Paulinel-
lidae and the known ability of P. ovalis to ingest cyanobac-
teria [25] make it a reasonable assumption that the
primary plastid endosymbiosis occurred in P. chromato-
phora after its split from heterotrophic ancestors.

The minimum age of the endosymbiosis is postulated to
be ca. 60 Ma based on the mode and tempo of plastid
genome reduction [22]. Given these data, it is of high
interest to isolate other photosynthetic Paulinella strains/
species to facilitate in-depth study of post-endosymbiotic

Table 1: Comparison of morphological characters among Paulinella species.

This study P. chromatophora P. ovalis P. intermedia P. indentata
FK01
(n = 17)

M0880/a
(n = 13)

Lauterborn 1895, 
Kies 1974

Johnson et al 1988 Vørs 1993 Hannah et al 1996

Plastid + + + - - -

Length (μm) 15 – 17 23 – 27 20 – 30 4.5 6.6 11 – 17
Width (μm) 10 – 11 16 – 20 15 – 20 3 2.9 8 – 10
No. of scales/
column

10 – 11 12 – 14 11 – 12 5 – 6 6 – 7 6 – 7

No. of columns 5 5 5 5 NA Staggered rows
Oral scales 5 3 3 3 3 2 – 4
Fine-pored 
external scales

+ (distinct) + (not distinct) NA + - + (3 – 4 rows of 
pores at the end of 
scales)

Scale feature "Sieve-plate" on the 
internal surface

"Sieve-plate" on the 
internal surface

"Sieve-plate" on the 
internal surface

One-ridges and 
hollow scales

Smooth scales Two-ridges and 
hollow scales
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genome evolution in distinct lineages that potentially
share a common ancestral endosymbiont. Paulinella chro-
matophora has been reported from around the world,
including sites in Switzerland [28], the United Kingdom
[29], and the United States [30,31], however these were
simple statements of occurrence without the deposition of
voucher samples. This depauperate history of collection
apparently reflects the rarity of P. chromatophora in nature
and difficulties in its culture. Therefore, all morphological
and ultrastructural studies stem from samples collected in
Germany [19,32]. Recent molecular phylogenetic and
genomic studies also relied on strain M0880/a that was
isolated in Germany [13,17,22,33,34]. Here, we isolated
photosynthetic Paulinella cells from several freshwater
sites in Japan and established a new strain in culture
(FK01). We then conducted comparative morphological
and molecular phylogenetic analysis of these taxa, focus-

ing on the Japanese FK01 and the German M0880/a
strains.

Results and discussion
Morphology and ultrastructure of Paulinella
Morphological comparisons between Paulinella FK01 and
M0880/a strains were done using scanning electron
microscopy (SEM). The general morphological characters
we observed for M0880/a (Fig. 1D, E) are similar to the
original description [14] and a previous study [19]. The
test is ovoid (23 – 27 × 16 – 20 μm; n = 13) and covered
with silica scale plates. The anterior end has a narrow
aperture (3 – 5.6 μm) that is comprised of three oral scales
(see asterisks in Fig. 1D) extending from the cell body as a
"neck" (see N in Fig. 1D). Within this neck, two slightly
curved oral scales abut each other between a membranous
operculum with the third scale covering the edge of the
two oral scales (Fig. 1E). Below the oral scales, five

SEM images of photosynthetic Paulinella strains FK01 (A – C) and M0880/a (D, E)Figure 1
SEM images of photosynthetic Paulinella strains FK01 (A – C) and M0880/a (D, E). FK01 is smaller in cell size than 
M0880/a (i.e., the scale bar is the same in A and D). Distinctive, multiple fine pores are present on the surface of scales of FK01 
(B). The five (C) oral scales (asterisks) are shown from FK01, whereas only three (E) are found in M0880/a. The projecting oral 
scales (N), first row of body scales (arrow head), "sieve-plate" in internal surface (arrow), and pustules (double arrow) are indi-
cated. Scale bars (A, D, E = 2 μm; B, C = 1 μm).
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descending columns of scales cover the test. A total of 12
– 14 scales are found in each column with the first row
containing four scales instead of five (see arrow head in
Fig. 1D). The scales around the anterior and posterior cell
regions are smaller than in the middle. Three or four rows
of scales from the posterior end have dozens of pustules
on the surface of each scale. The external surface of the rest
of the body scales is smooth. The internal surface of the
scales that are shown in Fig. 1D (see arrows in inverted
scales) have 12 – 18 pores per scale which were reported
as "sieve-plates" in a previous study [19].

Cells of strain FK01 are clearly distinguished from the
original description of P. chromatophora (i.e., M0880/a).
These Paulinella cells are of a relatively smaller size (15 –
17 × 10 – 11 μm; n = 17) than in M0880/a (see, Fig. 1A–
C) and there are between 10 – 11 scales per column. There
are more distinctive, multiple fine pores on the external
surface of scales in FK01 than in M0880/a (see, Fig. 1B).
The fine-pored external surface was reported in newly
formed scales in the heterotrophic species P. ovalis [25].
Another heterotrophic species, P. indentata has a single
row of fine-pores along the scale but three or four rows on
the end of the scales [24]. There are five oral scales in the
aperture (2.4 – 3.6 μm), which is comprised of two main
scales between a membranous operculum and three thin-
ner scales that cover the main oral scales (see asterisks in
Fig. 1C). The oral scales of FK01 are not projected outward
to the same extent as in M0880/a (Fig. 1A vs. 1D, indi-
cated with N), and the first row of body scales consists of
five not four scales (see arrow head in Fig. 1A, C). Pustules
on the four rows of posterior scales (see double arrow in
Figs. 1A–B) are more distinct than those in the M0880/a
strain. The size of pustule-covered scales gradually
increases from the centre to the outside in a counter-clock-
wise direction. Around 10 – 20 internal "sieve-plate"
pores are also found in FK01 and are detectable in SEM
images taken from outside the cell, particularly in the pos-
terior region (see arrows in Fig. 1B).

Table 1 shows a comparison of key morphological charac-
ters from different Paulinella species. Traits such as cell
size, number of scales per column, and number of oral
scales have been used to define species. For example, P.
intermedia is similar to P. ovalis in size and the number of
scales per column but it differs from the latter species by
possessing flat scales and a wider oral aperture [26]. Due
to the presence of two plastids in the cytosol, the FK01
and M0880/a strains are clearly distinguished from other
Paulinella species. In turn, FK01 is distinct from M0880/a
with regard to cell size, number of scales, number of oral
scales, and by having distinct fine-pores in the body
scales.

Molecular phylogenetic analysis
Given the obvious morphological differences described
above, we used gene sequences to test the evolutionary
relationship between the two strains. Multiple markers
were used for this purpose and we first present maximum
likelihood (ML) trees inferred from nuclear 18S rDNA
and a concatenated data set of plastid 16S + 23S rDNA
(Figs. 2A, B). Given that filose amoebae such as P. chro-
matophora and Euglypha are consistently recovered as
members of the Rhizaria (e.g., [13,27]), we chose to
include only 18S rDNA sequences from members of this
putative supergroup [35]. The 18S rDNA tree shows a
monophyletic grouping of the two Paulinella strains, sug-
gesting they share a common photosynthetic 'host' ances-
tor. This hypothesis is substantiated by the plastid rDNA
tree (Fig. 2B), that shows a monophyletic grouping of
M0880/a and FK01 as sister to Synechococcus- and Prochlo-
rococcus-type cyanobacteria as previously described for
M0880/a [22,34]. The 18S rDNA tree provides high boot-
strap and Bayesian support (posterior probability > 0.95
for all thick nodes in the trees; 100% bootstrap support in
both RAxML [RML] and PhyML [PML] analyses) for a
clade that unites both P. chromatophora strains with a
group of uncultured marine environmental samples (i.e.,
GenBank accession numbers; AB275059, EF526891, see
[36]). Because there are no sequence data available from
heterotrophic Paulinella species with a taxonomic identifi-
cation, we could not provisionally identify the source of
the environmental samples. However, given that all
described photosynthetic P. chromatophora are derived
from freshwater environments [14,19] and the present
work], these environmental sequences likely represent a
marine sister group within the Paulinellidae (e.g., P. ovalis,
P. indentata [24,25]). The Paulinellidae is closely related
(90% RML, PML) to other euglyphids such as Tracheoeug-
lypha, Cyphoderia, and Euglypha species.

Trees inferred from actin and ftsZ protein sequences are
shown in Figures 3 and 4, respectively. The actin tree pro-
vides both bootstrap and Bayesian support for the exist-
ence of a branch that unites M0880/a and FK01 (89%
RML, 95% PML), which in turn is sister to other euglyphid
taxa (57% RML, absence of Bayesian support) within the
Rhizaria. The overall topology for Rhizaria actins (Fig. 3)
is consistent with previous analyses [37]. This mono-
phyletic clade, although surrounded by many internal
nodes that are only weakly supported, shows unequivocal
sequence divergence between M0880/a and FK01. Pair-
wise analysis of synonymous (Ks) and non-synonymous
(Ka) substitution rates between the Paulinella actin coding
regions are 1.0023 and 0.0181, respectively (Ka/Ks =
0.0181). This ratio is comparable to actin sequence differ-
ences between two green algal Ostreococcus species (i.e., O.
tauri vs. O. lucimarinus; Ks = 1.2489, Ka = 0.0085, Ka/Ks =
0.0068), two multicelluar liverworts (Pellia endiviifolia vs.
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P. borealis; Ks = 0.8396, Ka = 0.0037, Ka/Ks = 0.0044), and
different genera of yeasts (Saccharomyces vs. Kluyveromyces,
Ks = 0.4541, Ka = 0.0178, Ka/Ks = 0.0300; Saccharomyces
cerevisiae vs. Pichia stipitis, Ks = 0.7798, Ka = 0.0221, Ka/Ks
= 0.0283). These results suggest that M0880/a and FK01
are significantly diverged from each other and likely con-
stitute distinct species. This hypothesis is consistent with
the plastid-derived gene data for rDNA (Fig. 2B) and ftsZ
(Fig. 4). Interestingly, the estimated Ks value between ftsZ
sequences from M0880/a and FK01 exceed the expected
confidence limits (i.e., >> 1.0) likely indicating these plas-
tid-encoded genes are undergoing a high nucleotide sub-
stitution rate possibly as a result of the genome reduction
process. Taken together, our results indicate that after the
single acquisition of the photosynthetic organelle, the P.

chromatophora ancestor gave rise to at least two distinct lin-
eages.

To advance our understanding of photosynthetic
Paulinella, we generated plastid-encoded 16S rDNA
sequences from environmental samples from four differ-
ent sites in Japan. We amplified the gene directly using a
small number of cells that were manually isolated from
materials collected at each site (see Methods and Materi-
als). The expanded rDNA tree of photosynthetic Paulinella
(Fig. 5) shows that all of the isolates cluster together with
robust bootstrap and Bayesian support (99% RML, 98%
PML) with a sister-group relationship to Synechococcus/
Prochlorococcus, confirming the single origin of the plastid
in these Paulinella. The phylogeny also indicates that the

(A) RAxML phylogenetic tree of nuclear 18S rDNA from Rhizaria with the root placed on the branch leading to the Foraminif-eraFigure 2
(A) RAxML phylogenetic tree of nuclear 18S rDNA from Rhizaria with the root placed on the branch leading 
to the Foraminifera. (B) RAxML phylogenetic tree of a concatenated data set of plastid-encoded 16S + 23S rDNA with the 
root placed on the branch leading to Plantae plastids. The numbers at the nodes of both trees show support values derived 
from a RAxML bootstrap analysis followed by those from a PhyML analysis. When both values are the same, then this is 
marked with an asterisk and when a node is not resolved with a method than this is denoted with dashes. Only bootstrap val-
ues ≥ 50% are shown. The thick branches have a Bayesian posterior probability > 0.95. Branch lengths are proportional to the 
number of substitutions per site (see scale bar).
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RAxML phylogenetic tree of actin sequences from photosynthetic Paulinella spp. with the root placed on the branch leading to chromalveolate taxa (i.e., stramenopiles + alveolates)Figure 3
RAxML phylogenetic tree of actin sequences from photosynthetic Paulinella spp. with the root placed on the 
branch leading to chromalveolate taxa (i.e., stramenopiles + alveolates). The numbers at the nodes show support 
values derived from a RAxML bootstrap analysis followed by those from a PhyML analysis. When both values are the same, 
then this is marked with an asterisk and when a node is not resolved with a method than this is denoted with dashes. Only 
bootstrap values ≥ 50% are shown. The thick branches have a Bayesian posterior probability > 0.95. Branch lengths are pro-
portional to the number of substitutions per site (see scale bar).
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RAxML phylogenetic tree of plastid-encoded ftsZ from photosynthetic Paulinella spp. with the root placed on the branch lead-ing to ClostridiaFigure 4
RAxML phylogenetic tree of plastid-encoded ftsZ from photosynthetic Paulinella spp. with the root placed on 
the branch leading to Clostridia. The numbers at the nodes show support values derived from a RAxML bootstrap analysis 
followed by those from a PhyML analysis. When both values are the same, then this is marked with an asterisk and when a 
node is not resolved with a method than this is denoted with dashes. Only bootstrap values ≥ 50% are shown. The thick 
branches have a Bayesian posterior probability > 0.95. Branch lengths are proportional to the number of substitutions per site 
(see scale bar).
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Paulinella isolates are split into two distinct clades. One
clade includes the M0880/a strain that is closely related to
isolates from Kaga and Kanazawa-1 and -2, whereas the
second includes the newly isolated FK01strain and a field
isolate from Lake Kawaguchi (HSY et al. unpublished
data). This topology is surprising because it does not pro-
vide evidence for geographic separation (i.e., Germany vs.
Japan), but rather shows the German strain M0880/a
might share a most recent common ancestor with Japa-
nese isolates (i.e., from Kanazawa and Kaga). It is possi-

ble, however, that photosynthetic Paulinella species are
globally distributed and we simply lack data from other
sites to demonstrate this result. In any case, our results
suggest these fascinating organisms are unlikely to be a
relict branch of filose amoebal evolution but may be
broadly distributed with many more living taxa than pre-
viously thought. Assessing further the biodiversity of this
group and providing a taxonomic description of species
are key next steps in understanding the biology of
Paulinella (HSY et al., work underway).

RAxML phylogenetic tree of plastid 16S rDNA from photosynthetic Paulinella spp. with the larger tree (available upon request from HSY) removed at the branch leading to cyanobacteriaFigure 5
RAxML phylogenetic tree of plastid 16S rDNA from photosynthetic Paulinella spp. with the larger tree (availa-
ble upon request from HSY) removed at the branch leading to cyanobacteria. The numbers at the nodes show sup-
port values derived from a RAxML bootstrap analysis followed by those from a PhyML analysis. When both values are the 
same, then this is marked with an asterisk and when a node is not resolved with a method than this is denoted with dashes. 
Only bootstrap values ≥ 50% are shown. The thick branches have a Bayesian posterior probability > 0.95. Branch lengths are 
proportional to the number of substitutions per site (see scale bar).
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Conclusion
Our results provide sufficient data to address the major
aims of this study. The morphological and molecular data
show that M0880/a and the newly isolated FK01 are dis-
tinct species (see Table 1), whereas phylogenetic analyses
of these strains and other cells collected in nature demon-
strate that all of the photosynthetic Paulinella share a plas-
tid derived from a single primary endosymbiosis. This is
an important finding because the genus Paulinella pro-
vides a set of diverged lineages that can be used to study
the process of post-endosymbiotic plastid evolution using
genomic and proteomic methods. One keystone process
in this regard is endosymbiotic gene transfer (EGT),
driven by a gene transfer ratchet (e.g., [38,39]) that relo-
cates endosymbiont genes to the host nucleus. This is fol-
lowed in some cases by endosymbiont gene activation
and import of the encoded proteins into the plastid. How
this occurs in related lineages and which genes are the pri-
mary targets for EGT can now be explored in detail by
studying the nuclear genome of different photosynthetic
Paulinella. Nowack and colleagues [22] reported that
many cyanobacterial transporters were lost in the endo-
symbiont genome but the question remains whether they
vanished or have been transferred to the nucleus for co-
option in other host functions or retargeting to the
organelle. A recent study by Nakayama and Ishida [40]
described for the first time a nuclear encoded photosyn-
thetic gene in FK01 of cyanobacterial origin. The cDNA
encoding psaE contains a putative polyadenylation signal
(AGTAAA) and a poly(A) sequence at the 3' terminus,
whereas the nuclear locus contains two putative spliceo-
somal introns. These data provide strong evidence for EGT
of the psaE gene and we expect to find many more exam-
ples of this phenomenon when the nuclear genome of
Paulinella species is completed (HSY, DB work underway).
In this regard, the current tree provides at least two distinct
clades in which such questions about post-endosymbiotic
EGT can be studied using genomic methods. Preliminary
sequence data from the FK01 plastid genome, for exam-
ple, show that it differs both with respect to gene content
and gene order when compared to the published [22]
M0880/a genome (ARP, DB, HSY unpublished data).

Methods
Sampling and Establishment of the FK01 Strain
Paulinella chromatophora strain (FK01) was collected from
Daigo, Ibaraki Prefecture, Japan, and cells were isolated
into culture by Takeshi Nakayama at the University of Tsu-
kuba. The FK01 strain was then transferred to the Prova-
soli-Guillard National Center for Culture of Marine
Phytoplankton (CCMP). Michael Melkonian from the
University of Cologne, Germany kindly provided the Ger-
man strain M0880/a to the CCMP. Both strains were
maintained at the CCMP using DY-V medium at 20°C in
flat plastic culture flasks with a 14/10 hr light/dark cycle.

Light Microscopy
General cell morphology, including the pseudopodia, was
examined using a Zeiss Axioimager M1 light microscope.

Scanning Electron Microscopy
Cells were harvested with centrifugation, fixed (4%
osmium tetroxide, 8% glutaraldehyde in TE buffer) and
dehydrated (35, 50, 75, 95, and 100% EtOH), mounted
on stubs and carbon coated a Denton Vacuum sputter-
coater/evaporator (Desk IV, with Carbon Accessory). Cells
were observed in a Zeiss Supra 25 field emission SEM.

DNA Amplification and Sequencing
Total genomic DNA from Paulinella cultures was extracted
using the DNeasy Plant Mini Kit (Qiagen). PCR was done
with degenerate primers for actin (Ac245F: AACTGGGAY-
GAYATGGARAAGAT; AC1500R: AYCCACATCTGCT-
GRAANGTG), 18S rDNA (EukA:
AACCTGGTTGATCCTGCCAG; EukB: TGATCCTTCT-
GCAGGTTCACCTAC, [38]) FtsZ (ftsZ150F: AGYAATGC-
NGTSAAYCGVATGAT; ftsZ1000R:
CACGTSACBGTGATYGCCACVGG), and specific primers
for the Paulinella plastid genes 16S rDNA (16Snt5F:
CTTAACACATGCAAGTGCAACG; 16Snt725F: CCAT-
AACTGACGCTCATGGACG; 16Snt725F: CGTCCAT-
GAGCGTCAGTTATGG; 16Snt1500R:
GTACGGCTACCTTGTTACGAC) and 23S rDNA
(23Snt27F: GATACCTTGGCACACAGAGG; 23Snt1224F:
GCAGCTTCGGTAAAACGCTTAG) genes. We amplified
and determined partial actin sequences from both
Paulinella FK01 and M0880/a strains, and we determined
partial sequences for the 18S rDNA, 16S rDNA, 23S rDNA,
and ftsZ genes from the FK01 strain. All reactions were
done with an initial denaturation step at 94°C for 10 min,
followed by 35 cycles of 94°C for 1 min, 50°C for 1 min,
and 72°C for 2 min, concluding with a 10 min extension
at 72°C. P. chromatophora plastid-encoded 16S rDNA
sequences were amplified using PCR from four additional
isolates from different sites in Japan. The cells were col-
lected from two ponds located in Kanazawa (Kanazawa-1
and -2), from a pond located in Kaga Ishikawa Prefecture,
and from Lake Kawaguchi in Yamanashi Prefecture, Japan.
Because P. chromatophora is difficult to culture in the labo-
ratory, we amplified 16S rDNA fragments directly from
isolated cells. To avoid contamination, isolated cells were
washed 10 times with sterilized water before mechanical
disruption of the scaly cover and the cell membrane. Cell
breakage was corroborated by light microscopy. The cell
homogenate was transferred directly to microfuge tubes to
be used as DNA template for PCR amplification using uni-
versal primers (U16F1: AGAGTTTGATCCTGGCTCAG,
U16R1: ACGGCTACCTTGTTACGACTT). PCR products
were purified (QIAquick PCR Purification kit, Qiagen)
and either directly sequenced (BigDye™ Terminator Cycle
Sequencing Kit, PE-Applied Biosystems) or cloned (TOPO
Page 9 of 11
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4 PCR vector, Invitrogen) prior to sequencing. All
sequences are available in GenBank (accession numbers
from FJ456915 – FJ456920 and FJ184058 – FJ184061).

Phylogenetic Analysis
Sequence sets (protein or nucleotide) were aligned with
Muscle [41], and manually refined (alignments are avail-
able upon request). The ML trees were inferred with
RAxML (VI-HPC, v2.2.1, [42]) using the WAG substitu-
tion model, gamma distribution ('PROTGAMMAWAG'
implementation), with 4 discrete rate categories, and
starting from a random tree. Branch support was evalu-
ated with 100 bootstrap replicates using both RAxML
(WAG substitution model and the 'PROTCATWAG'
implementation) and PhyML [43] (WAG + Γ substitution
model, and parameters estimated during the tree search).
We also did Bayesian analyses with each data set using
MrBayes 3.1.1 [44] and the WAG + I + Γ model of
sequence evolution for the protein alignments and GTR I
+ Γ for the rDNA data. For each alignment, Metropolis-
coupled Markov chain Monte Carlo from a random start-
ing tree and 2 runs were started simultaneously. The Baye-
sian analyses were run for 1,000,000 generations with
trees sampled each 100 cycles. Four chains were run
simultaneously of which three were heated and one was
cold, with the initial 250,000 cycles (2,500 trees) being
discarded as the 'burn in'. A consensus tree was made with
the remaining phylogenies to determine the posterior
probabilities at each node.

Nucleotide Substitution Rate Calculation
Actin sequences at both protein and nucleotide levels of
Ostreococcus tauri (jgi, Ostta4 29599), Ostreococcus lucima-
rinus (gi, 144581780), Saccharomyces cerevisiae (gi,
42742172), Pichia stipitis (gi, 126257874), and Kluivero-
myces lactis (gi, 50306650) were obtained from JGI and
GenBank. Paired protein sequences were aligned with
Muscle [41], thereafter, protein pairwise alignments were
used as a reference to align the corresponding coding
nucleotide sequences to identify the correct reading
frame. The rate of synonymous (Ks) and non-synony-
mous (Ka) substitutions were estimated from the result-
ing nucleotide alignments using PAML [45].
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