
Summary Classification and regression tree (CART) analy-
sis was applied to genome-wide tetranucleotide frequencies
(genomic signatures) of 195 archaea and bacteria. Although
genomic signatures have typically been used to classify evolu-
tionary divergence, in this study, convergent evolution was the
focus. Temperature optima for most of the organisms exam-
ined could be distinguished by CART analyses of tetranu-
cleotide frequencies. This suggests that pervasive (nonlinear)
qualities of genomes may reflect certain environmental condi-
tions (such as temperature) in which those genomes evolved.
The predominant use of GAGA and AGGA as the discriminat-
ing tetramers in CART models suggests that purine-loading
and codon biases of thermophiles may explain some of the re-
sults.
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Introduction

It was Erwin Chargaff who first noticed the similarity in the
ratios of adenine and thymine and of cytosine and guanine in
DNA (Chargaff et al. 1949). Chargaff sustained a lifelong in-
terest in the complexities of genomes, in many cases speculat-
ing far ahead of the development of methods and instrumenta-
tion necessary to test his ideas. For example, in his Essays on
Nucleic Acids (1963), Chargaff predicted the significance of
frequencies of oligonucleotide motifs to perform linguistic
analyses of DNA “texts,” noting that “a great deal can be
learned about an unknown language through a study of its pho-
nemes, their frequency, distribution density and allophonic re-
lationships.”

A paucity of DNA sequences and constraints on computa-
tional methods limited the pace of research on motif frequen-
cies through the 1980s. Microbiologists were aware of the im-
portance of GC ratios in the characterization of archaea and
bacteria, but Chargaff’s initiative was not followed up until the

1990s when Samuel Karlin and others began to apply compu-
tational analyses to a growing suite of completely sequenced
genomes (Karlin et al. 1994, Fertil et al. 2005, Paz et al. 2006,
Vasilevskaya et al. 2006).

In 1992, with only partially sequenced bacterial, archaeal
and eukaryotic genomes, as well as some completed virus
genomes, Karlin and colleagues explored the relative abun-
dances of di-, tri- and tetra-nucleotides (Burge et al. 1992).
Karlin et al. (1994) focused on dinucleotide relative abun-
dances, which, they considered, constituted a “robust” genome
signature. In Karlin and Ladunga (1994) and Karlin and Burge
(1995), “genomic signature” was more formally defined as a
basis for discriminating among genomes.

Seven complete microbial genomes and a number of partial
genomes were available in 1997 for genomic signature analy-
sis using short oligonucleotides, which, as noted by Karlin et
al. (1997), may overcome some of the problems of inter-ge-
nome comparisons by alignment techniques. Because of the
close correlation that Karlin et al. found between di-, tri and
tetranucleotides, most subsequent studies have been confined
to the study of dinucleotide frequencies only. However, some
authors (Pride 2003, Teeling et al. 2004, Fertil et al. 2005)
have investigated tetramer frequencies on the assumption that
their study yields an advantageous trade-off between accuracy
and speed of analysis.

Since the initial work of Karlin and colleagues, numerous
studies have confirmed the efficacy of a non-alignment, geno-
mic signature approach to genome analysis. For example, van
Passel et al. (2006a) examined the dinucleotides of 334 bacte-
rial and archaeal genomes and noted a congruency between
genomic signatures and 16S RNA sequences. Confirming pre-
vious results (e.g., Karlin and Burge 1995, Pride et al. 2003),
these authors concluded that the genomic signature constitutes
a distinctive phylogenetic signal and may better reflect evolu-
tionary relationships than single gene comparisons. Confi-
dence in the technique resulted in the suggestion by van Passel
et al. (2006a) that, based on genomic signatures, certain en-
teric gamma proteobacterial species be combined, whereas
other species, such as Buchnera aphidocola, could be split.
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On a large scale, genomic signature analyses are relatively
unaffected by the heterogeneities that result from horizontal
gene transfers. Yet, the genome-wide pervasiveness of ge-
nomic signatures (Jernigan and Baran 2002) allows intra-
genomic analysis in search of local heterogeneities, thus giv-
ing rise to the possibility of identifying horizontal transfers
(Karlin 2001, Lio 2002, Dufraigne et al. 2005). The property
of pervasiveness may be the reason that studies of genomic
frequencies based only on partial genomes are so promising as
it allows for the analysis and classification of plasmids (van
Passel et al. 2006b) and short sequences, such as genome frag-
ments of 30,000–40,000 bp (Teeling et al. 2004), 5000 bp
(Woyke et al. 2006), and even as small as 400 bp (Sandberg et
al. 2001).

Genomic signatures as potential indicators of convergent
evolution of sequences

Genomic signature analysis seems applicable in classifying in-
stances of both divergent and convergent evolution. Several
genomic signature analyses, such as that of Foerstner et al.
(2005), have addressed convergent evolution of some se-
quences, resulting from selection driven by the same environ-
mental conditions, independent of phylogeny. Such selective
pressures include physical constraints on the functions of the
DNA molecule, as well as the structures of the proteins en-
coded. Thermophilic archaea and bacteria have been investi-
gated for evidence of genome convergence under the influence
of extreme temperatures. Consideration of this question dates
back to biochemical studies of AT/CG ratios and dinucleotide
compositions in the 1960–1970s (reviewed in Karlin and
Burge 1995).

Doolittle (1994) noted that sequence convergence (a sort of
“molecular mimicry”) can be difficult to distinguish from hor-
izontal transfers and from statistically insignificant short
matches. However, whole-genome signature analyses may
identify horizontal transfers as heterogeneities within the ge-
nome (Karlin 2001, Lio 2002, Dufraigne et al. 2005).

Campbell et al. (1999) compared signatures of five thermo-
philic archaea with signatures of 22 bacteria (mostly proteo-
bacteria and Gram positives). In contrast to other studies, they
concluded that thermophily in archaeal species was not evi-
dent from the genomic signatures. However, subsequent stud-
ies, including this one, suggest that, on the contrary, there are
genome-wide signatures for thermophilic and hypertherm-
ophilic microorganisms.

Trends in amino acid compositions of proteins have some
genome-wide influence on codons and, therefore, some effect
on a genomic signature. Amino acid use by thermophiles in-
cludes the replacement of polar non-charged amino acids with
charged amino acids such as lysine, arginine, aspartic acid and
glutamic acid (Cambillau and Claverie 2000, Suhre and
Claverie 2003). A similar analysis of two psychrophilic
archaea (Saunders et al. 2003) showed a bias for polar non-
charged amino acids. Carbone et al. (2005) (and others re-
viewed in Carbone et al. 2005) determined that a “codon bias
signature” separated thermophiles from mesophiles in a set of
16 archaea and 80 bacteria.

Karlin et al. (1994) and Karlin and Burge (1995) speculated
that environmental influences such as pH, temperature and sa-
linity might influence dinucleotide genomic signatures. In a
study of seven complete and several partial genomes, Karlin et
al. (1997) noted that the three thermophiles had significantly
lower proportions of the dinucleotide CG. Kawashima et al.
(2000) and Suhre and Claverie (2003) concluded that the
“dinucleotide statistical index,” computed from dinucleotide
frequencies, showed more pure pyrimidine dinucleotides (TC
combinations) and more pure purine dinucleotides (AG com-
binations) in hyperthermophiles. An in vitro investigation by
Xia et al. (2002) of Pasteurella multocida cultivated for ap-
proximately 14,400 generations at 45 °C (i.e., above the opti-
mum temperature of 37 °C) resulted in a decrease of GC% and
an increase of TA, TT and AA dimers. That both coding and
non-coding sequences show genomic signatures (e.g., Karlin
and Burge 1995, Karlin and Mrazek 1996, Campbell et al.
1999) supports hypotheses of sequence convergence. Conver-
gent sequence signatures in non-coding regions may reflect
similar environmental pressures on fundamental DNA activi-
ties such as replication and repair.

Archaea versus bacteria and hyperthermophily versus
mesophily?

Currently, most hyperthermophiles for which the genome has
been completely sequenced are archaeons. Therefore, it is im-
portant to consider whether divergence between thermophiles
and mesophiles reflects phylogeny or temperature preference.
For example, Carbone et al. (2005) found signature differ-
ences in hyperthermophiles and thermophiles, although the
initial goal of the study had been to separate archaea (all of
which, in the dataset they used, were hyperthermophiles) from
bacteria. Graham et al. (2000) used coding sequences of nine
archaea to find signature sets of genes, some pertaining to
unique archaeal functions and metabolisms such as
methanogenesis. However, all of the organisms in the study
were hyperthermophiles, a factor which might account, at least
in part, for the genes found to be in common. Fadiel et al.
(2003) probed for repeats of at least 25 bp in archaea and found
“remarkable” signatures in non-coding regions. However, the
investigated set of seven archaea consisted entirely of hyper-
thermophiles, whereas the comparison set of six bacteria con-
sisted solely of mesophiles. It is uncertain, therefore, whether
the 25 bp signatures identified are characteristic solely of
archaea or hyperthermophiles, or both.

Classification and regression tree analyses indexing
pervasive genomic signatures

We investigated genomic signatures by classification and re-
gression tree (CART) analysis (Breiman et al. 1984), a power-
ful method for developing a classification scheme, categoriz-
ing an organismic characteristic on the basis of any number of
classifying (predictor) variables. Some studies have used lin-
ear discriminant analysis (Carbone et al. 2005) to classify mi-
crobes based on codon biases. Other techniques have been
used to classify fragments of DNA according to nucleotide
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composition. These include machine learning methods such as
the self-organizing map (SOM) (e.g., Kohonen 1990, Abe et
al. 2003, 2005, 2006) and the support-vector-machine (SVM)
(e.g., Tsirigos and Rigoutsos 2005, McHardy et al. 2007). In
other studies, e.g., Lin et al. 2003, CART has allowed efficient
use of large collections of classifying variables to identify non-
linear relationships among the classifiers, yielding a simple se-
quential set of classification rules.

Tree-based methods such as CART have been applied in
mining large datasets, such as microarrays, to detect discrimi-
nating factors for classification (Boulesteix et al. 2003). The
CART method (Hermanek 1994, Masic 1998) has also been
used to winnow phenotypes, symptoms and prognoses for di-
agnostic characteristics with which to create decision trees to
aid in medical diagnoses. As such, CART is a method of clas-
sifying organisms based on DNA sequences.

Genomic signature analysis is based on a significantly dif-
ferent paradigm (Karlin et al. 1997) to that of alignment meth-
ods, including synteny, and it therefore requires different
methods of comparison. It is the pervasive, linguistic quality
of genomic signatures (unlike sequence alignment) that lends
itself to classification schemes such as CART. The versatility
of genomic signatures, their ability to classify either conver-
gent groups or divergent groups, to be unaffected by horizontal
transfers on a global scale and yet to identify horizontal trans-
fers on a local level, is the reason that signatures are effectively
indexed by CART analysis.

Genomic sequences have most oftern been catalogued
phylogenetically, and the datasets are typically of genes, ex-
cluding non-coding regions. Much work remains to be done
with other sorts of cataloguing systems. Genomic signatures
as analyzed by CART afford such an alternative. In this study,
we found CART to be useful in building classification
schemes relating tetramer (or other oligomer) frequencies to
characteristics of interest. The method is successful in reveal-
ing short lists of discriminating tetramers, the frequencies of
which distinguished three temperature ranges, hyper-
thermophily, thermophily and mesophily. Short decision trees
were generated and shown to be effective predictors of the
temperature preferences of known organisms external to the
training data used to generate the trees.

Materials and methods

Sequence collection

One hundred and ninety-five fully sequenced microbial ge-
nomes (24 archaeal and 171 bacterial species), protein tables
and associated annotations were downloaded from NCBI
GenBank (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
on April 1, 2006). Only one strain of any organism was in-
cluded in the set, and organisms not identified to species level
were excluded. Of the 195 genomes meeting our criteria, 16
are classified by NCBI as hyperthermophiles, of which 12 are
archaeons, 14 are thermophiles, of which five are archaeons,

and 165 are mesophiles, of which seven are archaeons (Sup-
plementary Table S1).

Producing a virtual coding strand for each genome

A “virtual coding strand” for each genome was produced from
the positive strand. A virtual coding strand is comprised of the
entire positive strand, including all coding and non-coding re-
gions. It allows a more precisely controlled experimental sys-
tem by eliminating the extra variable of gene orientation. To
produce the virtual coding strand each incidence of a gene po-
sitioned on the complementary strand (as indicated by the as-
sociated protein table) was placed in the “correct” (sense) 5′ to
3′ orientation by replacing the “reversed” (antisense) gene
with its reverse complement. Coding regions with overlapping
start-stop locations were handled independently, and each re-
gion was concatenated onto the virtual coding strand. Any
“corrected” genes (reversed or overlapping) were flanked by
delimiting Ns at both ends to eliminate tetramer counts across
these virtual intergenic boundaries. In cases where organisms
have more than one chromosome, the chromosomes were con-
catenated, separated by an ‘N’. Thus a complete “sense”
strand, including all coding and non-coding regions with all
genes in 5′ to 3′ order, was constructed and used for subse-
quent steps in the analysis.

Collecting overlapping tetramers (and other oligomers)

Counts of tetramers across each virtual coding strand were re-
corded by moving a four-base window through the strand one
base at a time. Only tetramers containing A, C, G and T were
counted. Dimers, trimers and pentamers were also collected
and analyzed to determine the optimal size for the subsequent
CART analyses.

Randomized control sequences

Two variations of random sequences were constructed and
used as controls for testing the external validity of each deci-
sion tree. First, for each of the 195 organisms, independent
draws from a multinomial distribution, with probabilities set
to the empirical proportions of A, C, G, T and N within that or-
ganism’s sequence, were made at each nucleotide site to gen-
erate a simulated genome of the same length as the original ge-
nome. This is analogous to rolling a five-sided die for each nu-
cleotide to produce a pseudorandom strand with approxi-
mately the same nucleotide ratio as the original organism.
Second, a first-order Markov chain model was used. Here,
conditional on the value of the previous nucleotide, one of five
different multinomial distributions were used to generate the
simulated strand. Figuratively, we have five different five-
sided dice, one each for the A, C, G, T or N that occupies the
position of the previous nucleotide. If the previous nucleotide
is an A, then the computer selects the five-sided die corre-
sponding to A and “rolls it” to generate the current nucleotide,
where the proportions of A, C, G, T and N on A’s die are the
empirical proportions of AA, AC, AG, AT, and AN on the orig-
inal genome. In this way, a pseudorandom strand is created
with a first-order Markov model using the original genome’s
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empirical, one-step transition probabilities (e.g., Ewens and
Grant 2001).

Classification and regression trees

Classification and regression trees are decision trees for
determining a set of logical conditions that provide classifica-
tion of cases based on the values of a set of classifier variables.
One advantage of classification trees is that they are non-para-
metric, assuming neither a linear, nor even a continuous, non-
linear relationship between the classifiers and the dependent
variable. An important advantage is their simplicity. Classifi-
cation trees often yield simpler models than their parametric
counterparts, as well as straightforward classification of new
cases. In this paper, archaeal and bacterial genomes are classi-
fied on the basis of the intra-genomic relative frequencies of
tetramers. We use the freely available rpart implementation of
CART (Breiman et al. 1984) in the R statistical package De-
velopment Core Team (http://www.R-project.org). All trees
were generated so that any node with nine or fewer observa-
tions was left as a leaf (i.e., not split) and each leaf contained at
least three observations.

To begin, the intra-genomic tetranucleotide or tetramer fre-
quencies of all 195 genomes were used to build a CART model
classifying the genomes according to temperature range:
hyperthermophile versus non-hyperthermophile (thermophile
and mesophile) and mesophile versus non-mesophile (hyper-
thermophile and thermophile). The validity of these CART
models for predicting temperature ranges of genomes omitted
from the model was then tested by leaving out one genome at a
time and building a decision tree using the other 194 genomes.
The omitted genome was then classified with the resulting
model. The process of predicting the omitted genome, hereaf-
ter referred to as “leave-one-out,” was repeated for all of the
195 genomes. As a third test of the external predictive validity
of the CART models, 50 randomly selected genomes were set
aside and a classification tree was built using the remaining
145 genomes. The temperature ranges for each of the 50 omit-
ted genomes was then predicted. Building a model with 145
genomes and predicting 50 randomly selected genomes (here-
after referred to as "50-randomly-selescted-genomes") was re-
peated over 40 iterations.

Additional controls

Four additional controls were included to highlight the limits
and versatility of CART analyses. First, the intra-genomic
tetramer frequencies of all 195 original genomes were used to
build a CART model classifying genomes according to tem-
perature range, which was used to classify the temperature
range of the randomly generated genomes (both multinomial
distribution and first-order Markov). Second, the temperature
ranges for all 195 original genomes were randomly permuted
and reassigned to all 195 organisms. Then using all 195 organ-
isms with randomly reassigned temperature ranges, a full
leave-one-out analysis was performed counting the number of
temperature range misclassifications. This process of ran-
domly permuting the temperature ranges and performing a full

leave-one-out analysis was carried out 100 times, computing
the average number of temperature range misclassifications
over all 100 iterations. Third, we used the GC ratios of each
genome (Table 1) as the sole classifier in a CART analysis to
classify microbial temperature regimes. Finally, the intra-ge-
nomic relative frequencies of tetramers were used to discrimi-
nate archaea from bacteria to demonstrate the versatility of
this technique as applied to a pervasive genomic signature.

Results and discussion

CART with genomic signatures: an accurate discrimination
of temperature classifications

There were relatively few misclassifications from the CART
models and from tests of those models. As discussed below,
many misclassifications may represent inconsistent reporting
of temperature optima rather than errors in the CART analy-
ses. This parallels the experience of van Passel et al. (2006a),
who speculated that some bacteria apparently misclassified in
their study may actually have been correctly classified by their
method, but incorrectly classified in the literature. Here, the
criteria for classifying organisms by temperature optima are
those of the latest edition of The Prokaryotes (Dworkin 1999):
hyperthermophile > 80 °C, thermophile 60–80 °C, mesophile
15–60 °C and psychrophile < 15 °C.

The classification tree of hyperthermophiles versus non-
hyperthermophiles (the set of thermophiles and mesophiles)
was almost error-free. Two of 16 hyperthermophiles, Carb-
oxydothermus hydrogenoformans and Thermotoga maritima,
appeared at first to be misclassified by a tree designed to dis-
tinguish them from non-hyperthermophiles (Figure 1); how-
ever, these species may not be true hyperthermophiles. Ac-
cording to the NCBI database, C. hydrogenoformans with a
temperature optimum of 78 °C is a hyperthermophile; where-
as, by Dworkin’s (1999) definition, it should be considered a
thermophile, as confirmed in this CART analysis. Thermotoga
maritima is listed with a temperature optimum of 80 °C, which
places it on the boundary between temperature classifications.
All 179 non-hyperthermophiles were correctly classified (Fig-
ure 1).

The classification tree based on the tetramer frequencies
over the virtual coding strands of all 195 genomes for meso-
philes versus non-mesophiles (the set of hyperthermophiles
and thermophiles) resulted in a total of nine misclassifications:
only two out of 165 mesophiles, Geobacter metallireducens
and G. sulfurreducens were misclassified (Figure 2). Seven
out of 30 non-mesophiles were misclassified. This included
the hyperthermophile Nanoarchaeum equitans, an exception-
ally small organism with a tiny genome and an extreme AT
bias of 32%. Neoarchaeum equitans is the only known para-
sitic or symbiotic archaeon with another archaeon (Ignicocc-
us) as a host and is the sole member of its own phylum.

Five of the organisms classified in the NCBI database as
hyperthermophiles or thermophiles were classified as meso-
philes on the mesophile versus non-mesophile tree (see aster-
isks (*) in Figure 2). However, with the exception of Geo-
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bacillus kaustophilus, their reported temperature optima of
45 °C (Methylococcus capsulatus and Streptococcus thermo-
philus), 48 °C (Chlorobium tepidum) and 55 °C (Thermo-
synechococcus elongatus) fall well below the temperature
range for thermophily.

A leave-one-out analysis was performed to test the external
validity of these models. Misclassified organisms and their
temperature optima are indicated in Table 1. In many cases, the
CART analysis revealed temperature optima that are inconsis-
tent with the NCBI-reported temperature classifications. In the
195 tests of models for hyperthermophiles versus non-hyper-
thermophiles, only eight organisms were misclassified, in-
cluding three incorrectly classified in the original models dis-
cussed above, namely, Carboxydothermus hydrogenoformans
and Thermatoga maritima, which may not be true hypertherm-
ophiles, and Nanoarchaeum equitans, an atypical archaeon.
The other five apparently misclassified organisms included the
hyperthermophile Sulfolobus tokadaii with a borderline tem-

perature optimum of 80°C. It also included Sulfolobus acido-
caldarius with a temperature optimum of 70–75 °C according
to the NCBI database, but of 80 °C according to Chen et al.
(2005), indicating that its status remains uncertain (Table 1).

In the leave-one-out testing of 195 mesophile versus non-
mesophile models, there were 14 misclassifications. However,
on close scrutiny, several more ambiguities in temperature
classifications became apparent including N. equitans, which
may be a true outlier in any dataset. In addition, Picrophilus
torridus, with a borderline optimum of 60 °C, may be mis-
classified as a thermophile.

When testing the predictive ability of the CART 50-ran-
domly-selected-genomes model, an average of 2.6 out of 50
genomes (5.2%) were misclassified on the hyperthermophile
versus non-hyperthermophile trees. An average of 5.1 out of
50 genomes (10.2%) were misclassified on the mesophile ver-
sus non-mesophile trees.

The total number of misclassifications when building mod-
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Table 1. The NCBI-reported temperature optima and GC% of 16 hyperthermophilic (12 archaea and 4 bacteria) and 14 thermophilic (5 archaea
and 9 bacteria) species. An additional 165 mesophilic (7 archaea, 158 bacteria) species were also included in our analysis (data not shown).
Leave-one-out mispredictions shows the type of misprediction when classifying the temperature optimum of an organism (hyperthermphile ver-
sus non-hyperthermophile (hyper) or mesophile versus non-mesophile (meso)) based on a model from the genomes of the other 194 organisms,
using tetramer frequencies as the sole classifier.

Temperature optima (°C) Kingdom Species GC% Leave-one-out mispredictions

Hyperthermophilic
103 Archaea Pyrococcus abyssi 42.0
100 Archaea Pyrobaculum aerophilum 52.0
100 Archaea Pyrococcus furiosus 42.0

98 Archaea Methanopyrus kandleri 60.0 Hyper
98 Archaea Pyrococcus horikoshii 42.0
96 Archaea Aquifex aeolicus 43.0
93 Archaea Aeropyrum pernix 67.0
90 Archaea Nanoarchaeum equitans 31.6 Hyper and meso
85 Archaea Methanococcus jannaschii 31.3
85 Archaea Sulfolobus solfataricus 35.8
85 Archaea Thermococcus kodakaraensis KOD1 52.0
83 Archaea Archaeoglobus fulgidus 46.0
80 Archaea Sulfolobus tokodaii 32.8 Hyper
80 Bacteria Thermotoga maritima 45.0 Hyper
78 Bacteria Carboxydothermus hydrogenoformans 42.0 Hyper and meso
75 Bacteria Thermoanaerobacter tengcongensis 37.6 Meso

Thermophilic
72 Archaea Sulfolobus acidocaldarius DSM 639 36.7 Hyper
68 Bacteria Thermus thermophilus HB27 69.4
65 Archaea Methanobacterium thermoautotrophicum 49.5
60 Bacteria Geobacillus kaustophilus HTA426 52.0 Meso
60 Archaea Picrophilus torridus DSM 9790 36.0 Meso
60 Bacteria Symbiobacterium thermophilum IAM14863 68.7
60 Archaea Thermoplasma volcanium 50.0
59 Archaea Thermoplasma acidophilum 50.0
58 Bacteria Moorella thermoacetica ATCC 39073 55.8
55 Bacteria Thermosynechococcus elongatus 53.9 Meso
52 Bacteria Thermobifida fusca YX 67.5
48 Bacteria Chlorobium tepidum TLS 56.0 Meso
45 Bacteria Methylococcus capsulatus Bath 63.6 Meso
45 Bacteria Streptococcus thermophilus CNRZ1066 40.0 Meso



els using all the genomes (hereafter referred to as the “model-
with-all”) and the total number of missed predictions in the
leave-one-out and 50-randomly-selected-genomes analyses
are shown in Table 2. For the leave-one-out analysis, there
were eight misclassifications in the hyperthermophiles versus
non-hyperthermophile grouping (five hyperthermophiles, one
thermophile and two mesophiles) and 14 misclassifications in
the mesophile versus non-mesophile grouping (three hyper-
thermophiles, six thermophiles and five mesophiles).

When genome sequences were randomized by a single mul-
tinomial at each nucleotide, the classifications had at least
twice the number of misclassifications as the original experi-

ments (Table 3). Misclassifications in genomes generated by a
first order Markov method were much closer to the original ex-
periments. In the hyperthermophile versus non-hyperthermo-
phile model, the error rate was identical, although different or-
ganisms were misclassified. This suggests that a considerable
amount of information exists in the dimer frequencies that
comprise the tetramers, a hypothesis that was confirmed by ex-
periments with dimers, which yielded slightly less accurate
predictions than tetramers (see Supplementary Table S2).

When temperature ranges for the 195 genomes were per-
muted and randomly reassigned to the 195 organisms, the re-
sulting models in the leave-one-out analyses yielded a sub-
stantial increase in the misclassification rate. When differenti-
ating between hyperthermophiles and non-hyperthermo-
philes, the average misclassification rate was 14.4% (28.1 of
195 over 100 iterations). This yields about the same misclassi-
fication rate one would expect when ignoring all concomitant
information and blindly classifying organisms with probabili-
ties equal to their relative frequency in the sample. In this case,
randomly classifying an organism as non-hyperthermophile
with probability 0.918 (179/195) or a hyperthermophile with
probability 0.082 (16/195) yields an expected misclassific-
ation rate of 16.4%, 8.2% in the two categories, respectively.
Similarly, permuting the temperature ranges and randomly re-
assigning them to the 195 organisms yields an average mis-
classification rate of 27% (52.8 of 195 over 100 iterations),
whereas random classification based solely on relative fre-
quency yields an expected misclassification rate of 30.8%. In
both cases, the misclassification rates are substantially higher
than achieved by the original leave-one-out CART analysis.
For hyperthermophile versus non-hyperthermophile, the mis-
classification rate more than tripled (4.1% using the classifica-
tion tree, 14.4% using random assignment) and for mesophile

164 DYER, KAHN AND LEBLANC

ARCHAEA VOLUME 2, 2007

Figure 1. Classification tree of hyperthermophile (hyper) versus non-
hyperthermophile (non-hyper) based on tetramer relative frequencies
of 195 genomes. Each split shows the tetramer selected by CART for
each level of classification and the relative frequencies for each direc-
tion. Nodes show the classified temperature range and number of or-
ganisms classified in each temperature category according to NCBI
(non-hyper/hyper). Organisms misclassified in this model are listed
under the appropriate nodes.

Figure 2. Classification tree of mesophile (meso) versus non-mesophile (non-meso) based on tetramer relative frequencies of 195 genomes. Each
split shows the tetramer selected by CART for each level of classification and the relative frequencies for each direction. Nodes show the classified
temperature range and number of organisms classified in each temperature category according to NCBI (non-meso/meso). Organisms
misclassified in this model are listed under the appropriate nodes. Asterisks (*) indicate organisms that may not be misclassified given current un-
derstanding of temperature optima (see Discussion).



versus non-mesophile, the misclassification rate nearly qua-
drupled (7.2% using the classification tree, 27% using random
assignment). The GC% was not an accurate predictor of tem-
perature optimum. This is confirmed by the poor performance
(similar to “Multinomial” in Table 3) of CART in differentiat-
ing temperature optima (Table 4). However, genomic signa-
tures have proved useful in showing divergent relationships.
As expected, a CART analysis of tetramers performed well in
separating archaea from bacteria. The model-with-all had 5
(2.6%) misclassifications all of which were archaea. Whereas
the leave-one-out prediction missed 15 (7.7%): 9 archaea and
6 bacteria. Using the CART analysis, about 21% (5/24) of
archaea were misclassified and no bacteria (0/171) were mis-
classified. Using a random classification scheme based on the
relative frequencies of archaea and bacteria in the sample, we
would expect about 87.7% (21/24) of archaea to be misclass-
ified and about 12.3% (21/171) of bacteria to be misclassified.

Tetramers were chosen as the classifier after parallel sets of
experiments run with dimers, trimers and pentamers con-
firmed a slightly higher correct overall classification using
tetramers (Table S2). In addition, for each motif size of length
L = {2, 3, 4, 5}, each genome was cross-validated using a
model built with the other 194 genomes. The number of tested
organisms that were incorrectly classified was recorded for
each experimental classification (hyperthermophile versus
non-hyperthermophile and mesophile versus non-mesophile;
Table S2). Further, a tree was built based on both trimers and
tetramers, simultaneously, as potential classifiers, yielding re-

sults similar to those from a tree fitted with tetramers alone. In
particular, GAGA continued to be chosen as the best first-deci-
sion classifier, even when trimers were considered with tetra-
mers. Based on these experimental trials, we found that tetra-
mers provided the most effective classification scheme.

There were just a few discriminating tetramers in nearly ev-
ery one of the 195 CART models generated for each of the
temperature comparisons. The predominant tetramer in the
models of hyperthermophile versus non-hyperthermophile
was GAGA, used as the initial split parameter in 192 out of
195 trees; the remaining three models used the tetramer
AGAG. In all cases, a higher proportion of these tetramers was
associated with the hyperthermophilic classification. In the
models of mesophiles versus non-mesophiles, AGGA was the
primary split parameter in 193 cases; the remaining two were
split on GAGA. In this case, a higher proportion of these
tetramers was associated with the non-mesophilic classifica-
tion. The most commonly used tetramers in secondary splits
were ATCA (for the hyperthermophile versus non-hyper-
thermophile) and GGGA and AACC (for mesophile versus
non-mesophile). As noted by other authors (e.g. Lao and
Forsdyke 2000, Lambros et al. 2003, and Paz et al. 2004), the
coding regions of many thermophilic genomes are purine-
loaded and possess codon biases that reflect that loading. Our
method of using a “virtual coding strand” eliminated the vari-
able of gene orientation. This may accentuate the signal from
such codon biases in nucleotide composition by insuring that
all genic regions (and therefore all codons) are counted in the
sense direction.
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Table 2. Number of misclassifications for two temperature optimum ranges, hyperthermophiles versus non-hyperthermophiles (hyper vs. non-hy-
per) and mesophiles versus non-mesophiles (meso vs. non-meso), using all tetramer frequencies over the entire virtual coding strand.
Model-with-all is the number of misclassifications when building a model using all 195 genomes. Leave-one-out is the number of mispredictions
when classifying an organism against a model built using the other 194 genomes. 50-randomly-selected-genomes is the average number (over 40
iterations) of misclassifications when building a model on 145 genomes and attempting to classify the other 50 randomly selected genomes.

Temperature range Model-with-all Leave-one-out 50-randomly-selected-genomes

Hyper vs. non-hyper 2 (1%) 8 (4.1%) 2.6 (5.2%)
Meso vs. non-meso 9 (4.6%) 14 (7.2%) 5.1 (10.2%)

Table 3. Number of leave-one-out mispredictions when classifying an
organism into two temperature optimum ranges, hyperthermophile
versus non-hyperthermophile (hyper vs. non-hyper) and mesophile
versus non-mesophile (meso vs. non-meso) using all tetramers fre-
quencies over the entire vitrual coding strand, based on a model from
the genomes of the other 194 organisms. The leave-one out classifica-
tions were made for the 195 original genomes (original) and two types
of randomly generated control sequences, multinomial (multi) and
Markov.

Temperature range Original Random control

Multi Markov

Hyper vs. non-hyper 8 (4.1%) 16 (8.2%) 8 (4.1%)
Meso vs. non-meso 14 (7.2%) 59 (30.3%) 21 (10.8%)

Table 4. Number of organisms misclassified using GC% to model and
predict temperature optimum range. Model-with-all is the number of
misclassifications when building a model using all 195 genomes.
Leave-one-out is the number of mispredictions when classifying an
organism against a model built using the other 194 genomes. Models
predicted the temperature optimum range of organisms: hypertherm-
ophile versus non-hyperthermophile (hyper vs. non-hyper), and
mesophile versus non-mesophile (meso vs. non-meso).

Temperature range Model-with-all Leave-one-out

Hyper vs. non-hyper 15 (7.7%) 23 (11.8%)
Meso vs. non-meso 27 (13.8%) 42 (21.5%)



Conclusion

Genomic signatures, as represented by intra-genomic relative
frequencies of tetramers, yielded effective discriminators of
temperature optima in archaea and bacteria when analyzed by
CART. The implication of these results extends beyond the ex-
amples examined in this study. CART analysis may be used to
explore a variety of hypotheses about genomic sequences.
There may be practical applications including the identifica-
tions of temperature optima of partial genomes such as in
some metagenomic analyses of communities. Furthermore,
this approach may yield information about the phylogenies of
high temperature organisms and may suggest explorations of
other pressures on genomic convergences such as high salt
conditions. Since CART uses a few signature oligonucleotides
to construct trees, it may lead to identification of particular
traits associated with those nucleotides. The method may be
seen as an in silico complement to genomic signature tags
(Dunn et al. 2002) by which genomes are sampled for a subset
of fragments reflecting the whole. CART queries may also re-
veal overrepresented sequences of some functional signifi-
cance as in binding sites of non-coding regions.
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Supplementary material

Supplementary Table S1. A list of the 195 organisms of which the genomes were used in this study (24 archaea and 171 bacteria). The complete
genome sequences were downloaded from GenBank ( http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi) on April 1, 2006.

http://archaea.ws/archive/supplementary/leblanc/LeBlanc.TableS1.pdf

Supplementary Table S2. Classification and regression tree analysis results using four oligonucleotide frequency lengths over the entire virtual
coding strand to classify organisms into two temperature optimum ranges, hyperthermophile versus non-hyperthermophile (hyper vs. non-hyper)
and mesophile versus non-mesophile (meso vs. non-meso). Tetramers provide the most effective classification scheme considering both models
built. Model-with-all is the number of misclassifications when building a model using all 195 genomes. Leave-one-out is the number of
mispredictions when classifying an organism against a model built using the other 194 genomes.

http://archaea.ws/archive/supplementary/leblanc/LeBlanc.TableS2.pdf


