
LETTER TO THE EDITOR

Real-Time Quantitative RT-PCR: Design, Calculations,
and Statistics

Two recent letters to the editor of The Plant

Cell (Gutierrez et al., 2008; Udvardi et al.,

2008) highlighted the importance of follow-

ing correct experimental protocol in quan-

titative RT-PCR (qRT-PCR). In these letters,

the authors outlined measures to allow

precise estimation of gene expression by

ensuring the quality of material, refining

laboratory practice, and using a normaliza-

tion of relative quantities of transcripts of

genes of interest (GOI; also called target

genes) where multiple reference genes

have been analyzed appropriately. In this

letter, we build on the issues raised

by considering the statistical design of

qRT-PCR experiments, the calculation of

normalized gene expression, and the sta-

tistical analysis of the subsequent data.

This letter comprises advice for taking

account of, in particular, the first and the

last of these three vital issues. We concen-

trate on the situation of comparing tran-

script levels in different sample types

(treatments) using relative quantification,

but many of the concerns, particularly

those with respect to design, are equally

applicable to absolute quantification.

STATISTICAL DESIGN

As mentioned by Udvardi et al. (2008), an

experiment ideally should encompass at

least three independent biological repli-

cates of each treatment. For each biolog-

ical replicate, it is common to run at least

two technical replicates of each PCR

reaction. Each sample provides material

for both GOI and reference gene reactions,

so these are paired for each biological

replicate. Ideally, a full experiment (i.e., all

primer pairs for the GOI and reference

genes on all samples) would be analyzed

on a single (typically 96-well) plate. How-

ever, an experiment with many treatments

and/or GOIs and reference genes requires

a design strategy for multiple plates. Such

a design was investigated by Hellemans

et al. (2007) where they compared gene

maximization to sample maximization; but

to enable effective statistical comparison of

treatments, a strategy that may be termed

‘‘treatment maximization’’ is required. As a

plate can be viewed as a statistical block,

the best option would be to separate

complete biological replicates (i.e., one

biological sample of each treatment) on

each plate, so that the design is then a

randomized block (see, for example, Mead,

1988). Larger experiments may necessitate

an unbalanced design (i.e., without a com-

plete replicate of all the treatments on a

given plate), which must be constructed so

that treatment comparisons of greatest

interest are seen most frequently together

on the same plate. It is then beneficial to

use inter-run calibrators (IRCs) on each

plate to improve the assessment of plate-

to-plate variation (described in Hellemans

et al., 2007). When many GOIs and refer-

ence genes are analyzed using the same

samples, it will be more economical to

analyze different genes on different plates

(sample maximization). Although this is

common practice and even supported by

qPCR software packages, from a statistical

point of view, it is not correct to separate

the paired reactions of the samples. Which-

ever of the above setups is chosen, it is, in

principle, advisable to use a full randomi-

zation of the reactions within each plate to

counteract the effects of systematic varia-

tions occurring within a plate as introduced

during the PCR setup or PCR run. How-

ever, because within-plate variation intro-

duced during the PCR run should be

minimal in the current generation of real-

time PCR cyclers, it may now be less of a

problem to use a more practical, nonran-

dom plate setup.

CALCULATIONS

The reaction (amplification) curve formed

during the PCR run is exponential in its

early phase, the progress of this curve

being determined by the amplification effi-

ciency, E. The basic formula applying to

qRT-PCR aims to convert the number of

cycles at a threshold level of fluorescence

(more generally termed the quantification

cycle or Cq; Hellemans et al., 2007) into a

relative quantity of input template present

at the start of the PCR. If we take the

relative amount of fragments at the Cq as 1,

then the relative quantity of template in the

original sample (RQ) can be calculated as

follows:

RQ ¼ 1

E
Cq

In the optimal situation, E equals 2, and, in

many studies, E is taken arbitrarily as 2.

However, in reality, E may vary consider-

ably between primer pairs and between

plates. Hence, it is more accurate to esti-

mate E for each primer pair through anal-

ysis of a dilution curve or, more commonly,

by analyzing the amplification curves of all

reactions (e.g., Ramakers et al., 2003;

Ruijter et al., 2009). Usually the error in E

estimation from a single reaction will be

greater than the real difference in E values

between samples for a given primer pair on

the same plate. Accordingly, it has been

shown that the most precise results are

obtained by assuming the same E for all

reactions with the same primer pair on the

same plate (Cook et al., 2004), calculated

as the mean of E values. Nevertheless,

variation in E values should be inspected to

check for obvious and systematic outliers.

Currently, it is advisable to discard such

outliers, although progress is being made

to improve E estimation for individual reac-

tions (e.g., Alvarez et al., 2007; Durtschi

et al., 2007; Spiess et al., 2008). The

variation in Cq for technical replicates

also should be assessed, and the mean

Cq of technical replicates then can be used

in subsequent calculations. After calculat-

ing the RQ of a GOI, this needs to be

normalized for the total amount of cDNAwww.plantcell.org/cgi/doi/10.1105/tpc.109.066001
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that was used in the reaction, as discussed

by Gutierrez et al. (2008). This provides the

normalized RQ (NRQ) of the GOI for each

biological replicate.

STATISTICS

Before meaningful statistical analysis can

be performed, the NRQ data need trans-

formation. Specifically, on the RQ and NRQ

scale, qPCR data are nonlinear and typi-

cally suffer from heterogeneity of variance

across biological replicates within treat-

ments and across treatments. This usually

can be accounted for by applying a log

transformation (Gomez and Gomez, 1984)

to the NRQ data, the result of which may be

termed Cq# (as it brings the data back to

the Cq scale):

Cq# ¼ log2ðNRQÞ
Following a single-plate experiment or a

balanced-design experiment across a

number of plates, analysis of variance

(ANOVA) can be used to compare treat-

ments using the Cq# values calculated

above. This reduces to a t test if there are

only two treatments run on a single plate.

One benefit of applying ANOVA is that if the

treatment structure consists of two or more

treatment factors (for example, three geno-

types as one factor by two environmental

conditions as the other factor), the method

can assess the variation due to each of

these (as main effects) and then the inter-

action between them. Also, ANOVA auto-

matically accounts for block effects such

as interplate variation. Performed on the

Cq# values of the biological replicates, the

mean for each treatment is output and

used to make a statistical comparison of

the treatments based on the standard error

of the difference (SED) between means

using the estimate of random variation at

the level of biological replication. Hence,

from the SED, the least significant differ-

ence (LSD) can be calculated at a particular

level of significance (e.g., 5%) and used to

compare treatments of a priori biological

importance from the full set of possible

comparisons.

Data (Cq# values) from an unbalanced

design where not all treatments may occur

together on plates precludes the use of

ANOVA and requires modeling to estimate

the means one would have expected if the

design had been balanced. Such modeling

employs the method of residual maximum

likelihood (Patterson and Thompson, 1971)

to provide the means and appropriate

SEDs for comparison of any pair of treat-

ments. The relative size of these SEDs

reflects degree of imbalance, so treatments

never seen on the same plate will be

compared with the greatest SED/LSD.

Repeating an identical sample on all plates

(i.e., using IRCs) will help in the assessment

of plate-to-plate variation and hence in

controlling the size of SEDs in the analysis

of unbalanced designs. In some cases,

variances may still be heterogeneous after

log transformation (e.g., in experiments

that include samples with a very low tran-

script level [high Cq], which inherently have

a higher error). The influence of such

samples could be inspected by inclusion/

omission from the statistical analysis. Al-

ternatively, nonparametric tests, such as

Friedman’s ANOVA (which accounts for

block effects), Kruskal-Wallis ANOVA

(which does not account for block effects),

or the Mann-Whitney test in the situation of

only two treatments (in one block) can be

applied (note that all these tests require a

balanced design).

It is possible to process and analyze

qRT-PCR data using standard database/

spreadsheet and statistics software such

as R (freely available), SAS, and GenStat.

Alternatively, dedicated qRT-PCR analysis

software packages are available (both

commercially and as freeware), although

careful checking is required to determine

whether they are tailored for the experi-

mental setup (e.g., whether they can han-

dle multiple levels of replication [i.e.,

biological and technical] and whether they

can perform an appropriate statistical anal-

ysis of the data). An up-to-date overview of

qPCR software can be found at http://

www.gene-quantification.info or in Pfaffl

et al. (2009).

PRESENTATION

Although NRQ data should not be used

for inferential statistics (the analyses/

comparisons are done on a different scale;

see above), the mean NRQ and corre-

sponding standard error for each treat-

ment, as calculated from the replicate

NRQ observations, are commonly used

(graphically) to represent qRT-PCR re-

sults. When using a randomized block

design, the NRQs may first be corrected to

account for block effects (e.g., plate-to-

plate variation). To do this, it is important

to note that the block effects are not

additive on the NRQ scale (hence, the

transformation to Cq# that was required).

For a balanced randomized block design,

the block effects can be taken out man-

ually by subtracting the mean Cq# of a

given block from each individual Cq# in

that same block. In the case of an unbal-

anced design, it is not possible to take out

the block effects manually using block

means, but the Cq# values can be cor-

rected at least partially by subtracting

from each individual Cq# in a block the

Cq# of an IRC in the block. NRQ data for

presentation then may be calculated by

back-transforming the corrected Cq#
values to the NRQ scale. Usually the

mean (corrected) NRQs and correspond-

ing standard errors are presented all

rescaled by the same quantity for conve-

nient display (e.g., such that the rescaled

mean NRQ of one of the treatments

equals 1). In cases where all treatments

are only compared with a common control

(or calibrator) sample, it may be appropri-

ate to calculate and present only the ratios

between the mean NRQs of the treat-

ments and the control. If this is done, the

standard error of the ratios, using the

standard errors of the mean NRQs, should

be correctly calculated as given below:

Se
NRQT

NRQC

� �
¼ NRQT

2

NRQC
2

SeðNRQTÞ
2

NRQT
2

("

1
SeðNRQCÞ

2

NRQC
2

)#1
�2

;

where NRQT , NRQC, Se NRQT

� �
, and

Se NRQC

� �
are the means and standard

errors for treatment T and control treat-

ment C.

CONCLUSION

To make a valid comparison of treat-

ments in qRT-PCR experiments, it is es-

sential to begin with a statistical design

that incorporates the concepts of ran-

domization, blocking, and adequate (bio-

logical) replication. Subsequently, data

analysis will benefit from appropriate data

transformation and proper accounting of

1032 The Plant Cell



sources of variation due to the experimen-

tal design prior to making a statistical

assessment of differences between treat-

ments. Finally, it should be kept in mind

that the strategy of relative quantification,

as dealt with here, is only suitable for

comparing results from a given primer

pair between treatments and not for com-

paring results obtained with different

primer pairs to each other.
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