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Abstract

In a recent publication we described a microscopical technique called Ultramicroscopy, combined with a histological
procedure that makes biological samples transparent. With this combination we can gather three-dimensional image data
of large biological samples. Here we present the theoretical analysis of the z-resolution. By analyzing the cross-section of the
illuminating sheet of light we derive resolution values according to the Rayleigh-criterion. Next we investigate the
resolution adjacent to the focal point of the illumination beam, analyze throughout what extend the illumination beam is of
acceptable sharpness and investigate the resolution improvements caused by the objective lens. Finally we conclude with a
useful rule for the sampling rates. These findings are of practical importance for researchers working with Ultramicroscopy
to decide on adequate sampling rates. They are also necessary to modify deconvolution techniques to gain further image
improvements.
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Introduction

Ultramicroscopy [1,2] denotes a microscopical technique in

which the sample is illuminated from the side, perpendicular to the

direction of observation (fig. 1). We combined this technique with

a procedure that makes biological tissue transparent. The basic

principle of making biological samples transparent is to replace the

water contained in the sample with a liquid of the same refractive

index as the proteins and lipids [3]. Although pure proteins, lipids

and most other components of a cell are transparent, the

inhomogeneous mixture like membranes embedded in water, as

in a living cell, is opaque. This opaqueness originates in the

differences in the refractive index of bordering components in

cells, resulting in scattering of light (Tyndall-effect). By replacing

the water contained in the sample with a liquid of the same

refractive index of proteins or lipids, scattering effects can be

minimized and the transparency of the sample is gained [3].

Spalteholz [3] used a mixture of 1 part benzyl alcohol and two

parts benzyl benzoate (abbreviated BABB). This mixture is still a

good choice. After this procedure, optical imaging deep inside the

biological tissue is possible. With an illumination from the side,

layers of the sample can be selectively illuminated and recorded

and, thus, tomographical data can be directly acquired. Although

this illumination method can be used for scattered light

observations as well, we use this method mainly with monochro-

matic illumination and fluorescence filters recording samples

stained with fluorescent markers. This makes this microscopical

technique applicable in the research on transgenic-fluorescent

animals and allows the use of well established immunohistochem-

ical fluorescence techniques.

As the sample is transparent to a large extent, and immersed in the

same liquid used to make it transparent, the illumination beam

propagates straight even inside the biological sample and is not

interfered by the surface of the sample. For illumination we use an

Argon laser (Innova 90, Coherent), for the observation we applied a

GFP-filter (505–555 nm wavelength range), recording only fluores-

cence, and preventing the remaining scattered light from reaching the

detector. To perform a three-dimensional recording, all z-positions of

the sample were successively illuminated and recorded. This results in

a stack of images that can be visualized by computer graphics and are

ready for subsequent analysis and image processing.

The practical advantage of this illumination method compared to

confocal microscopy is, that the illumination is not done throughout

the whole sample in z-direction. By illuminating the focal region

from the side, this technique avoids bleaching and intensity losses of

the illumination beam by absorption in out-of-focus regions. No

fluorescence is generated in the out-of-focus region and therefore

has not to be rejected by a pinhole. Hence, with normal lenses we

can capture bright images. Additionally, by the sectioning

capabilities of the illumination beam, the images have a high

contrast. An additional optical advantage is specially given for low

magnification objective lenses (about 16–2.56). These lenses with

large field of view (more than 1 cm2) all have a low numerical

aperture (NA) and a poor z-resolution in common. With this

illumination method only the highlighted parts of the sample

contribute to the image and hence to the z-resolution of the 3D data

stack. Using objective lenses with a poor z-resolution together with a

thin illuminating sheet of light, the z-resolution is mainly determined

by the illumination beam. For some combinations the improvement

in z-resolution is enormous. In theory, the z-resolution even

improves when both resolutions (from the objective lens and the

illumination beam) are in the same range, but to a lower extent. The

exact relations will be discussed in a later section.

This microscopical technique can image medium-sized samples

(1–30 mm) three-dimensionally. It fills the gap between two-photon

or confocal microscopy with highest resolution, but smaller field of
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views (,1 mm3), and computer tomography (CT) and magnetic

resonance imaging (MRI), that can be used for large objects, e.g

humans. An additional advantage is that it is an optical imaging

technique that allows visualization of florescent dyes. Well

established histological techniques like antibody staining can be

used to mark the interesting parts of the sample. Staining can also be

done by the design of transgenic animals. In current research sites of

altered gene expression in transgenic animals are routinely marked

by the additional expression of green fluorescent protein (GFP). This

allows the investigation of three-dimensional gene expression in the

whole animal. Genetic techniques can also be used to mark specific

types of cells, e.g. pyramidal cells in the hippocampus. This can be

used for three-dimensional analysis of networks that are formed by

these cells. Until now no three-dimensional optical recording

technique with micrometer resolution for objects in the size of

1 mm3 to 1 dm3 existed. In contrast to the above mentioned

techniques Ultramicroscopy is very cheap, does not need skilled

personal to use, and can be established in any laboratory.

This illumination method was originally named ultramicroscopy

[1] and later rediscovered by Voie et al [4] and termed OPFOS

(orthogonal plane fluorescence optical sectioning). Later it was

termed SPIM (selective plane illumination microscopy) [5].

Although it has already been employed in various research

projects [4,5,6], we still lack a computation of the resolution with

the biological most relevant criterion, the Rayleigh-criterion. This

criterion results in an easy formula. Most previous publications

approximate the z-resolution by assuming the beam is of Gaussian

shape. This leads to incorrect formulae and the given resolution

values do not match with our experienced resolution. Additionally,

there is no investigation on the sharpness of the illumination beam

adjacent to the focal spot. In the theoretical analysis part we

present our investigations throughout what size the illumination

beam is thin enough to provide an acceptable image, how it

widens and how the wider illumination beam affects image quality.

This leads to predictions of the size of the field of sharp focus

(FoSF, illustrated in fig. 1), describing what field of views can be

illuminated with a thin beam. This knowledge helps choosing the

right magnification of the objective lens.

There is one publication [7] that does not make a Gaussian beam

approximation. Unfortunately they apply the more technical

resolution criterion of Full-Width-Half-Maximum (FWHM) of the

point spread function (PSF). The advantage of this criterion is that it

can be applied to any PSF and describes the resolution of any

optical system. The disadvantage is that it is complicated to handle

and does not result in an easy formula. In biological research the

Rayleigh-criterion is mainly used, because it can be written in an

easy formula that allows a fast approximation of the resolution of the

optical system. Our investigations here also lead to easy formulae. In

Figure 1. The principle of illumination in Ultramicroscopy: Light (e.g. 488 nm Argon laser) is being focused quoin-like by a cylinder
lens. In the area where the beam is focused maximally a quoin-like description is not appropriate and the profile of the illumination beam stays
relatively constant. The sample is immersed in the same liquid used to gain transparency. This assures that the illumination beam is not diffracted on
the surface of the sample and propagates straight, even inside the sample. By moving the sample, different z-positions can be illuminated and
recorded afterwards. In this way we acquired three-dimensional tomographical data.
doi:10.1371/journal.pone.0005785.g001

Resolution of Ultramicroscopy
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contrast to our method the paper that applied the FWHM rule [7]

only gives the computed results for some used components. When

other components are used it is quite hard to transfer the results.

Additionally, the computed values are extremely optimistic and

always include an improvement of the resolution by the used

objective lens. We think this is misleading. In most cases the

objective lens does not improve the resolution when the Rayleigh-

criterion is applied. Only theoretically the objective lens improves

the resolution in the case when an image reconstruction method in

the Fourier-domain is applied. As later discussed this illumination

method has mainly advantages because of its sectioning capabilities.

It increases contrast and image quality dramatically, but big

enhancements of the resolution can not be expected.

Here we apply the two most frequently used approaches to

determine the optical resolution in biological imaging: the classical

approach using the criterion given by Rayleigh, predicting the

subjective resolution of the original raw data, and a more recent

approach from signal transmission based on the mathematics of

Fourier optics and inverse filtering, predicting the maximum

resolution limit that can be reached with ideally working inverse

filtering techniques. Inverse filtering is a very important deconvo-

lution technique, but these signal reconstruction techniques were

recently refined and extended with other procedures. Deconvolu-

tion is now the umbrella term for all these methods that try to

reverse a convolution. The theory of inverse filtering, signal

recovery from corrupted signal and reachable resolution is much

larger [8], especially when prior knowledge of the objects shape is

used (e.g. in astronomy) [9,10]. There are statements that the

resolution is only limited by noise, but this requires very advanced

image reconstruction techniques. We can not give an introduction

of these techniques here and they are not too important in

biological imaging. In general biological researchers think that the

results of an investigation must be visible in the original data, not

only after using sophisticated image reconstruction techniques. In

this way deconvolution is a tool to improve the visibility of the

results, but it should not be a necessary tool for research. However,

mentioning these techniques is important because deconvolution is

regularly done to improve biological images. Additionally, with the

framework of Fourier-mathematics it is easy to explain the

resolution improvement by the objective lens. With these

approaches we get an overview on the expected resolution values.

Finally we investigate the lateral development of the illumination

beam and describe, throughout what size it is of acceptable

sharpness and provides good images.

Mathematical model of mapping biological tissue
As the lateral resolution of imaging thin slices of biological tissue

has been well investigated, we focus on the axial (along the

direction of the axis of the objective lens) resolution with this

illumination method. In the focal region, only one thin sheet of the

sample is illuminated and contributes to the recorded image (fig. 1).

To simplify the model we first assume that the depth of focus of the

objective lens is far bigger than the contributing cross-section of

the light sheet, and ignore bleaching or saturation of the

fluorescent dye. We will focus later on the contribution of the

objective lens. In this case the axial resolution depends only on the

form of the cross-section of the illumination beam. To display the

mathematical model we captured data of the concentration of the

fluorophore on a line in an axial direction from fig. 2, and plotted

it in a mathematical diagram in fig. 3.

Figure 2. Spatial distribution of the fluorophore. GFP is mainly located inside the neurons in the hippocampus. The spatial distribution of GFP
has to be resolved, as demonstrated in fig. 3.
doi:10.1371/journal.pone.0005785.g002
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We are interested in the spatial distribution of a fluorescent dye,

such as GFP, fluorescent antibodies or the background of

autofluorescence of the sample. In this model the recorded

illumination of a pixel in an image is the integral over the product

of two functions, the spatial distribution of the fluorescent dye and

the spatial distribution of the irradiance of the illumination beam.

When scanning the object, this mathematical model becomes a

one-dimensional convolution. Thus, the convolution kernel, i.e.

the cross-section of the illumination beam, is essential for

predicting the resolution of this illumination method.

Methods

We used two approaches for calculating the shape of the cross-

section of the illumination beam: an approach based on a Fourier

transform, and a numerical simulation based on the principle of

Huygens.

Computation by the Fourier method
The Fourier method uses a formula very similar to a Fourier

transform. It describes the relationship between the spatial

distribution of the electromagnetic field on the back-aperture of

the lens and on a plane at focal distance from the lens:

E X ,Yð Þ~
ð ð
aperture

A x,yð Þeik
f

XxzYyð Þdxdy ð1Þ

Herein X and Y denote the spatial coordinates in the focal plane,

and x and y denote the coordinates in the aperture plane close to the

lens, A(x,y) the distribution of the electro-magnetic field in the

aperture plane, k the wave number k = 2p/l, l being the

wavelength of the laser light and f the focal length of the lens. In

the derivation of this equation was assumed that f is much greater

than the aperture [11]. This formula describes the situation in air.

An elaborate derivation of this formula, and information on the

factors that were neglected in front of the integral, can be found in

[11,12]. These factors can be regained by normalization. Due to the

use of a cylindrical lens, we only performed a unidirectional

transformation that additionally simplifies the formula. With these

simplifications we can solve the integral as followed:
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wherein SD names the slit diameter and x the characteristic- (or

rectangular-) function ( = 1 inside the interval defined by the

boundaries in the brackets, and = 0 otherwise) representing the slit.

For the calculation we assumed a normalized homogeneous

Figure 3. Mathematical model of the mapping principle in one dimension, as shown in fig. 2. The sample is illuminated from the side, and
the radiation of the fluorophore is observed from the top. The emission of the fluorescence is directly proportional to the illumination of the
fluorophore. As we observe fluorescence from the top, the total detected fluorescence is the integral over the product of the irradiance and the
concentration of the fluorophore.
doi:10.1371/journal.pone.0005785.g003
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illumination. In order to obtain the required irradiance we only

have to square equation (2).

Computation by the principle of Huygens
The Fourier method is only applicable in the focal region.

Outside the focal region we computed the cross-section of the

illumination beam by applying the principle of Huygens. The

principle of Huygens predicates that light propagates as if every

point in a wave-front causes a spherical wave, and the resulting

wave form is a superposition of these spherical waves. To calculate

the illumination of a point at a distance r from the aperture the

formula

ð
slit aperture

eikr

r
cos n,rð Þdx

has to be solved. An explanation of this formula can be found in

[13]. Here, n is the normal vector of the interval of the slit element

and r the distance from the interval. cos(n,r) is the cosine of the

angle between r and n. Solving this formula results in the pattern

on an projection screen produced by an illuminated aperture, as

defined by the integration limits in the formula. We extended this

model to calculate beam propagation through lenses by firstly

calculating the illumination pattern of a slit on a lens, secondly the

pattern on the opposite side of the lens, illuminated by the

previously calculated pattern, and finally the distribution of the

electro-magnetic field on a projection screen at the desired

distance. Because we use a cylindrical lens, we again reduced the

model to the one-dimensional case. (The calculation took about

one hour for each step on an Athlon 3000+, the properties of the

lens like radius, thickness and refractive index were obtained from

the database in the program WinLens from Linos). Again we get

the required irradiance by squaring absolute values of the final

result. (Phase shifts have no influence on the excitation of a

fluorophore). This numerical simulation is a relatively easy method

that avoids complicated algebraic formulations [14]. Additionally,

this method is more precise. We later extend this method to

calculate cross-sections through the illumination spot in the

direction of light propagation. In this case the analytic formula-

tions become really complicated. We will compare this method

with its advantages and differences with the existing analytical

methods later. The results of the simulation are given in the next

section, together with the results of the measurement of the cross-

section of the illumination beam. (The code of the MatLab

functions is available upon request).

The measurement of the cross-section of the illumination
beam

The mainly applied technique to measure the resolution of a

microscope is simply to record fluorescent beads smaller than the

resolution of the microscope. The result is a blurred image of a

fluorescent point. By analyzing the image of the blurred point, a

prediction of the resolution can be gained. This approach was not

possible, because the liquid (BABB) we used to achieve transparency

is quite aggressive and dissolved all fluorescent beads we tested. So

to measure the cross-section of the illumination beam, we modified

the experimental arrangement as shown in fig. 4:

The light (488 nm Argon laser) was directed by a mirror towards

the objective lens (Zeiss Plan Neofluar 206/0.5) and focused by the

cylindrical lens and slit aperture. The lens was placed on a

micropositioning device and could be moved in a vertical direction.

A fluorescent cover slip was placed at a spot around the focal line of

the cylinder lens (Molecular probes yellow-green FluoSpheres,

polystyrene microspheres (505/515) was dissolved in acetone and

the resulting liquid containing the dissolved fluorescent dye was

placed and dried on a cover slip. Like this the cover slip was

homogeneously coated with the fluorescent dye). The microscope was

focused on the cover slip. To record the fluorescence only we applied

a GFP-filter (505 nm–555 nm transmission) behind the objective

lens. With this arrangement the cross-section of the illumination

Figure 4. Modified setup for the measurement of the cross-section of the illumination beam. The illumination beam was focused towards
the microscope and a fluorescent cover slip was placed in its way. By observing the fluorescence of the cover slip, the cross-sections of the
illumination beam was measured. By moving the cylindrical lens, cross-sections of various positions from the focal point can be observed.
doi:10.1371/journal.pone.0005785.g004
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beam can be measured at any distance from the cylindrical lens. In

fig. 5 the results of the measurement of the cross-sections are

displayed together with the numerically simulated cross-sections, as

described in the previous section.

The computer-simulations yield good predictions for the real

shape of the cross-section. Besides the noise, the measured cross-

sections are a bit broadened and smeared and not always 100%

symmetric. This can be due to the facts that the surface of the lens

does not fit completely with the given radius from the catalogue

(the accuracy is given in the catalogue), that the slit is not placed

exactly on the center of the lens or from an inhomogeneous

bleaching of the dye. The positions of secondary minima and

maxima are well predicted, and these positions determine the

resolution according to the criteria we use here.

The effect of the immersion medium with a higher
refractive index on the cross-section of the illumination
beam

Some properties of the illumination beam change when it

crosses from air through a glass window into the medium with

different refractive index (fig. 6). The law of Snellius (n1sina1 = n2

sin a2, n: refractive index) describes the angle change of a ray of

light when it enters a medium with a different refractive index.

Applying this rule to the bounding rays of the illumination quoin

leads to a different focal length: n1sin(a1)<n1tan(a1) = n1 SD/

2f1 = n2SD/2 f2 , so f2 = n2f1/n1 . The beam is stretched by a factor

equal to the refractive index of the new immersion medium (a

value of 1.55 in our case). In contrast the profile of the illumination

beam does not change. We can see this by replacing in equation (2)

f1 by f2 and l1 by l2 = l1/n2. (In a medium with a higher refractive

index is the velocity of light slower, hence the wavelength is

shorter. The shorter wavelength compensates the reduced focusing

angle.)This relation can be expressed in a short statement: The law

of Snellius states that the numerical aperture does not change

when the illumination beam is changing the medium. Hence, the

resolution does not change as well. This is a useful effect, as a

stretched illumination beam laterally enlarges the area of a sharp

focused beam, making it more useful for illumination. On the

other hand, axial resolution is not increased by the immersion

medium.

Figure 5. Measured and computed cross-sections of the illumination beam at various distances from the focal point, 1 measured
cross-section, 2 numerically computed cross-section (offset and amplitude of the numerical data was fit to the measured data).
doi:10.1371/journal.pone.0005785.g005
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Results and Discussion

The theory of resolution, its limits and the applied criteria is

enormous [8]. We limit the discussion on the Rayleigh-criterion and

to an approach in the frequency domain. The analysis in the Fourier-

domain predicts the limits of image reconstruction techniques, mainly

known as deconvolution techniques. These two approaches are

sufficient for biological researchers who use mainstream techniques in

biological imaging. Next we investigate the lateral distribution of a

sharp focused illumination beam and the resolution improvements of

the used objective lens. Finally we present our sampling rule and

explain why we always sampled in this way.

The Rayleigh criterion
Rayleigh suggested that two points can be subjectively observed

as two distinct points when the maxima of their Point Spread

Functions (PSF) are not closer than the distance between the first

maximum and the first minimum (fig. 7). Applying this to the

(sin(x)/x)2 function from (2) (SD k X/2 f =p), we get a resolution of

Dx = f *l/SD. (This result is quite close to the known formula

Dx = 0,61 l/NA that describes resolution in microscopy for

objective lenses. In our case the NA of the illumination beam is

defined as NA = SD/2f .) In Table 1 we list the components we

mainly used together with the resulting resolutions.

The resolution in Fourier domain
The methods of Fourier analysis we present in this section were

mainly developed for radio frequency engineering, but they can be

transferred to two- or three-dimensional image signals as well. It is

a known phenomenon in the transmission of radio signals that the

attenuation of a signal is dependent on the signals frequency.

Some frequencies can be transmitted through air very easily, while

other frequencies are more attenuated. The same is true for other

components like amplifiers, cables and antennae. Methods of

Fourier analysis are very useful to predict the change of the shape

of a complex signals that consists of several frequencies. To

compute the shape of a signal after it passed e.g. a cable you first

need to know how much a specific frequency is attenuated by the

cable. Next, by a Fourier transformation the original signal is

resolved into its frequency components and the specific frequency

components are attenuated according to the cables properties.

After an inverse Fourier transformation of the modified frequency

components, we get a good prediction how the signal looks after it

passed the cable.

This approach can be transferred to three-dimensional image

signals. Very helpful is the fact that mapping the sample is based

on a convolution, hence the convolution theorem can be applied.

This theorem states that the convolution kernel determines how

much a specific frequency is attenuated. In noise-free signals this

attenuation can be reversed by simply Fourier-transforming the

recorded signal, amplifying the specific components according to

its attenuation factor and finally a reverse Fourier-transformation

of the modified frequencies. This procedure is known as ‘‘inverse

filtering’’ or ‘‘deconvolution’’.

The limits of this procedure are first of all noise. The second and

more general limit is determined by the convolution kernel. Some

frequencies are simply not transferred and are completely erased

in the recorded signal. These frequencies can not be recovered by

an inverse filtering procedure.

The convolution theorem states that the Fourier transformation

of the convolution kernel predicts how much a specific frequency is

attenuated. The convolution kernel is in our case the cross-section

of the illumination beam. There is a very elegant way of

computing the Fourier transformation of this cross-section.

Because the cross-section of the illumination beam is the square

of the Fourier-transformation of the slit function, as shown in

function (2), there is very little to compute. Because a

multiplication of two functions corresponds to a convolution in

the Fourier domain, the square can be written as a convolution of

the slit function with itself. F{1 x̂x2
� �

~x � x. In a long form the

function is

F{1 F x
{SD:k

2:f
,
SD:k

2:f

� �� �� �2
( )

~x
{SD:k

2:f
,
SD:k

2:f

� �
� x

{SD:k

2:f
,
SD:k

2:f

� � ð3Þ

We can solve a convolution of two rectangular functions

analytically. The result is a triangular function with twice the

width of the rectangular function from (2). This function is also

known as Optical Transfer Function (OTF), as it describes with

what amplitude a specific frequency is being transferred through

the imaging system. In the figure showing the Optical Transfer

Functions graph 1 displays the best focused OTF. (We are lucky

that all functions are symmetric, hence the Fourier-transforms are

real with no imaginary components. Imaginary parts in the OTF

Figure 6. Focusing the illumination beam through a glass window into a different medium with a higher refractive index. The cross-
section and thickness stay the same, but the illumination beam is stretched lengthwise by a factor equal to the new refractive index n2 (deduction in
the text).
doi:10.1371/journal.pone.0005785.g006
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would describe phase-shifts of a specific frequency, but as they

don’t appear we ignore that part of the theory)

There is a cut-off frequency, defined by DS 2 p/(l f). Higher

lateral (angular) frequencies in axial direction cannot be

transferred by this illumination and are completely deleted by

this mapping method.

To interpret these values you have to consider that the Fourier-

tranform as written in formula (2) does not transform into the

normal frequency space, but in the angular frequency space. A

sine-wave with a frequency of 1 per meter would result in a

frequency of the value 2p/meter with the upper formula. In

normal frequency space a frequency is defined by 1/(wave-length),

while in angular frequency space it is defined by 2p/(wave length).

We have to correct these values to normal frequencies by dividing

by 2p and come to SD/l f. The wave-length of this cut-off

frequency is identical with the Abbe-limit (l/2 NA), which was

developed to describe the resolution limit of spherical lenses. The

wave-length of this cut-off frequency is the same like applying the

Rayleigh-criterion on the PSF.

The Nyquist frequency
A practical question for researchers in biological imaging is how

many pixels are needed in-between two objects that these objects

are clearly separated. Researchers normally cite a theorem that is

Figure 7. Rayleigh criterion: Two points are recognized as distinct points when they are not closer than the distance between the
maximum and the first minimum of the PSF. Red crosses display the Nyquist sampling frequency.
doi:10.1371/journal.pone.0005785.g007

Table 1. axial resolution calculated by the Rayleigh criterion by the formula Dx = f *l/SD and l= 488 nm.

Used cylinder lenses and slit aperture diameter
Resolution according to the
Rayleigh criterion in microns Useful image size and examined samples

f = 80 mm, SD = 2 mm 19,5 mm 10610 mm2 whole mouse brain, whole mouse embryo

f = 40 mm, SD = 2 mm; f = 80 mm, SD = 4 mm 9,8 mm 363 mm2 Head of mouse embryo, whole Drosophila

f = 80 mm, SD = 6 mm 6,5 mm

f = 40 mm ,SD = 4 mm 4,9 mm 0.560.5 mm2 Section of mouse hippocampus, head of
Drosophila

f = 40 mm, SD = 6 mm 3,3 mm ,0.5 mm2 High resolution hippocampus, eye of
drosophila

Rayleigh-Resolution for different slit apertures and cylinder lenses with illumination light at 488 nm.
doi:10.1371/journal.pone.0005785.t001
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known by the names Nyquist, Shannon, Whittaker (and sometimes

Kotelnikow) and all combinations of these four names. The

theorem proposes a pixel size that is useful in practice.

The theorem answers the questions, how a function can be

completely reconstructed when we only know the values of the

function at single points (the sampling points). The answer is: In case

that the function is band-limited and the points are equally spaced,

the distance between the points must be at least half of the wavelength

of the maximum frequency present in the signal. This frequency of

the sampling points is known by the name Nyquist-frequency. In fig. 7

we show how the points must be spaced when the distance of the

Rayleigh-criterion is seen as the wavelength of the limiting frequency.

In biological imaging we do not sample from single points, but

integrate the function over a certain distance. In this case the

results of the sampling distances are identical. The big advantage

of this sampling rule is, that it is easy and clear and it matches well

with practical requirements.

The resolution around the focal area
Besides the focal spot of the illumination beam we cannot apply

the Rayleigh-criterion, because there is not always a first minimum

or the secondary maxima are larger than the first maximum (fig. 5).

In this case we measured the FWHM of the illumination beam of

the computationally simulated cross-sections. At the focal spot the

FWHM-criterion predicts a resolution of 4.2 mm, quite close to the

4.9 mm predicted by the Rayleigh-criterion. In fig. 8 we plot the

value of the FWHM of the cross-section of the illumination beam

versus the lateral position from the focal spot.

The thickness of the illumination beam is varying stepwise. This is

caused by the fact that we mainly count the number of secondary

maxima that contribute to the FWHM-distance. We state here that

a beam is well focused as long as only the first maximum contributes

to the FWHM-value, no secondary maxima. This is in agreement

with our subjective impression of image quality and with the

observation, that the image quality is relatively constant in the

center of the image, but then decreases rapidly.

To investigate the depth-resolution of a cylindrical lens we can

use the results for normal objective lens systems. The depth-

resolution there according to the Rayleigh-criterion is given by 2nl/

(NA)2 [15,16]. In our case the numerical aperture is defined by SD/

2f. With the previous described functions we simulated several beam

distributions around the focal spot with different components and

cylindrical lenses. We found, that a function with a quadratic

relationship between the numerical aperture and the field of sharp

focus describes the simulations for cylindrical lenses quite well.

Because the field of sharp focus, as defined above, does not match

with a Rayleigh-resolution, we have to find an additional coefficient.

All these relationships result in the following formula:

FoSF~7:58:l:
fCy

SD

� �2

:n ð4Þ

Here FoSF denotes the field of sharp focus, fCy the focal length of

the cylinder lens, SD the width of the slit diameter, n the refractive

index of the immersion medium and l the wavelength of the

Figure 8. Thickness (FWHM) of the illumination beam versus distance from the focal spot.
doi:10.1371/journal.pone.0005785.g008
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illuminating light. The result is given in the unit of l (normally

nm).

In biology very often the size of the specimen is given, e.g. a

head of drosophila. This size defines the field of sharp focus, that

next predefines the axial resolution. We can unify the formula for

the field of sharp focus (4) with the one for the axial resolution

(Dx = f *l/SD):

Dx~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FoSF :l

7:58:n

r
ð5Þ

This formula describes the axial resolution (in the standard

Rayleigh-case) for a given specimen size obtained with the optimal

selection of slit diameter. Practical examples are given in table 1

and fig. 9.

Very often our images cover larger field of views than the given

values from equation (4). Like this only the center of the image is

illuminated with maximum sharpness. The worse resolution on the

sides of the images is acceptable and does not disturb the image

severely. To record large objects, we used a trick. We recorded

each image twice, once illuminated from one side and the other

illuminated from the opposite side. For this recording procedure

we adjusted the illumination beams in a way that one illumination

beam provides a sharp image on one side of the sample and the

other illumination beam on the other side. We then merged the

two recorded images to one final image that only consists of sharp

parts of the original images[17,18]. In this way we increased the

field of sharp focus and the image quality.

In Fourier-optics, the relationship between the predicted

resolution and the distance from the focal spot is different. Since

there the OTFs predicates the extent of information on a lateral

frequency that is being transferred by the measurement, we

computed the Fourier-transformed cross-sections of the simulated

illumination beam from various distances besides the focal spot.

The results are given in fig. 10.

Higher lateral frequencies are less transferred by a less focused

beam. Surprisingly the cut-off frequency does not alter, hence with

perfectly working deconvolution techniques all the information

could still be recovered, even with a badly focused beam. This

theoretical statement has no practical implication, since noise is

always present in images and prevents the recovery of weakly

transferred lateral frequencies. Statements on the resolution in

Fourier-optics need to consider the noise level. The spectral

components of white noise, the standard noise model, have the

same amplitudes all over the spectrum. This value can serve as a

threshold level. Lateral frequencies that exceed this threshold level

can be regarded as resolvable. Without knowledge of the noise

level we cannot say, how weak a signal can be that it can still be

recovered.

In fig. 10 we plot the absolute values. The values could be

negative. A negative frequency would correspond to a phase

shifted frequency with a shift of 180u. It is important to consider

this in the implementation of inverse filtering algorithms.

The combined resolution of the objective lens and the
illumination beam

The PSF of the objective lens in non-coherent imaging is given

by the intensity distribution of a beam focused by the objective lens

[19]. In the case when illumination and detection can be

separated, both PSFs must be multiplied. In confocal imaging

for example, the illumination and detection is done by the same

lens, hence in a first approximation the PSF can be squared [19].

(The wavelength of excitation and emission are not identical,

hence the PSFs are also not identical. Squaring is not exactly right,

but it is a good first approximation). In order to derive resolution

Figure 9. If the necessary size of the field of view is given (e.g. the head of a drosophila), the thickness of the illumination beam
must be constant throughout that size. This predefines the depth-resolution. Because we have a square-root relationship, highest depth-
resolutions (,5 microns) are difficult to reach and are accompanied with and extreme small field of sharp focus.
doi:10.1371/journal.pone.0005785.g009
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values of the combined optics it is essential to know the shape of

the focal spot of the objective lens.

An axial cross-section through such a focus spot of an objective

lens looks very similar to a cross-section of our illumination beam

(fig. 11). It consists of a main maximum surrounded by several

maxima of higher order. The algebraic calculations for their

computation are complicated and non-uniform for low NAs and

high NAs [15,16]. For low NA the distance between the first

minimum and the main maximum is given by 2nl/(NA)2 , for high

NA the value is a bit smaller. We did not often use objective lenses

with NAs above 0.4, so we neglect the case of a high NA. (High

numerical apertures generally do not allow large working

distances. Large working distances are necessary for three-

dimensional imaging, the main strength of this technique). For a

discussion we simulated an axial cross-section through an

illumination beam with the numerical methods presented earlier

and plotted it in fig. 11.

It is surprising that the cross-section is not symmetric and the

minima do not reach zero, as stated in previous mathematical

formulations [15,16]. Additionally they also exhibit a non-

symmetric appearance with less pronounced minima behind the

focal spot. We also saw this asymmetry in our measurements,

hence this method is more precise. Spherical aberrations would

result in a similar asymmetry of the cross-section. Another reason

for this asymmetry could be that the slit aperture is not located in

the Fourier plane, but in some distance from it.

This function can be used as a model for the detection PSF of an

objective lens with low NA. (By using an ordinary lens instead of a

cylinder lens the main maximum may be more pronounced, but

the location of secondary maxima and minima are the same, since

they are determined by the NA (defined for a cylinder lens with a

slit aperture as SD/2 f ) The value 2nl/(NA)2 predicts the

resolution according to the Rayleigh-criterion. Multiplying two

functions like in fig. 11 and fig. 5 results in a function of similar

shape. The distance from the main maximum to the first

minimum is predefined by the smaller distance of both functions.

Hence, according to the resolution criterion of Rayleigh the better

resolution value defines the overall resolution. In the theory of

inverse filtering the situation is different: A multiplication

corresponds to a convolution in the frequency domain, hence

the convolution of the two OTFs has to be computed. In fig. 12 we

plot the amplitude of the Fourier-transform of the function

displayed in fig. 11.

As the two PSFs look similar, the transfer functions are similar

as well. There is a cut-off frequency as well, again at a frequency of

1/(Abbe-Resolution), (real frequency, not angular frequency). A

convolution of two functions with finite support leads to a function

where the support of both functions is added. Hence, the cut-off

frequencies can be added and a resolution improvement can be

stated. This is again the theoretical limit, only the case when an

inverse filtering procedure is applied and far from practical values.

A formula that gives a more realistic description of the resolution

improvement is given by:

1

Rcombined

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R2
Lens

z
1

R2
Ill

s
ð6Þ

Its derivation is as follows: In statistics, the probability

distributions of the sum of two independent random variables

can be modeled as a convolution. Variances of independent

Figure 10. Amplitudes of the axial Optical Transfer Function at various distances besides the focus region, focused by a cylindrical
lens (f = 40 mm) and 4 mm slit width, 1 at the focal point, 2 at 0,1 mm distance, 3 at 0,2 mm distance, 4 at 0,3 mm distance from the
focal point.
doi:10.1371/journal.pone.0005785.g010
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random variables can be added. As the standard deviation (the

square root of the variance) is the interesting value, we come to this

formula. Maximally the resolution can be improved by a factor offfiffiffi
2
p

in the case when both resolution values are the same. When

both resolution values are not in the same range, the better one

dominates the overall resolution. The value of
ffiffiffi
2
p

was first

proposed in [20].

Light sheet thickness and image quality
The resolution of an optical system is normally measured by

simple test object like small fluorescent beads, ronchi rulings or test

targets, and the theory makes a good description of this simplified

situation. These test objects are normally very bright, with sharp

edges and the pattern on it are isolated not to interfere with each

other. Especially the last point is very different in real biological

samples. Interesting structures are very close, and the challenge is

to resolve one location with high resolution and suppress

interferences from nearby areas. Image quality is much better

when unsharp objects from the background are removed. Contrast

is the name of the image quality feature that describes the amount

of background present in the image. It is defined by the ratio of the

signal amplitude (peak-to-peak) to the overall amplitude including

the background. The subjective image quality is highest when the

contrast is highest. Restricting the discussion on the resolution only

to the mathematical criteria is a bit misleading, because it would

ignore the contrast and image quality.

Because in theory the objective lens itself could already provide

the good z-resolution, we made a test. We recorded a z-stack of a

drosophila sample with epifluorescence illumination and gave the

data to our contact person of a big microscope vendor and asked

him to make a deconvolution with their software packages. In

epifluorescence illumination the sample is illuminated from above

through the objective lens. In theory deconvolution packages

should be able to remove out-of-focus blur and reconstruct the in-

focus section, but the result showed the opposite. We could hardly

recognize that we recorded a drosophila. Epifluorescence

illumination generated a lot of out-of-focus fluorescence that

results in a high background. The out-of-focus blur is much

brighter than the fluorescence of the sharp in-focus area. The

images are unclear and blurry, or in technical terms: The contrast

is very low. This experiment just showed that epifluorescence

illumination is not a suited technique for three-dimensional

recordings, although in theory the depth resolution could be the

same. We need a powerful technique to reject the background,

otherwise the image quality is too bad to reconstruct the three-

dimensional structure.

The contrast and hence the image quality is best, when no

fluorescence is generated in out-of focus regions. This is the case

when the light sheet is thinner than the depth-resolution of the

objective lens. So we have two statements: The better resolution

defines the overall resolution, and (because of image quality

reasons) the light sheet resolution has to be better than the

objective lens depth resolution. Hence the light sheet determines

the overall resolution (with the presupposition that image quality is

optimized. If you disregard image quality you could argue for

better resolution values.) This describes the situation when we

Figure 11. Axial cross-section of an illumination beam of a cylinder lens with low NA. The shape is similar to a cross-section through the
focus spot of an objective lens. The location of secondary maxima and minima are only determined by the NA, so this can be seen as the axial
component of the PSF of the objective lens. As objective lens systems normally have several corrections (chromatic-, spherical-, and plancorrection),
this function can only be used for qualitative discussions.
doi:10.1371/journal.pone.0005785.g011
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have a lot of background fluorescence. In the case when you image

sparsely distributed fluorescent beads in a transparent liquid there

is almost no background and the objective lens itself provides a

good depth resolution. To image biological samples we always

selected components in a way that image quality is optimized.

With the use of deconvolution methods you could expect some

improvements by the objective lens (we argue for a factor of
ffiffiffi
2
p

),

but this is difficult to get. First of all because this illumination

technique is a bit exotic and it is not included as an option in

standard deconvolution packages. Secondly, the overall PSF is

more variable, because in practice the focal plane of the objective

lens and the center of the light sheet are not perfectly aligned. This

is the case when the microscope is not perfectly focused on the

illumination beam. This additional parameter complicates the

prediction of the real PSF and limits the efficiency of the

algorithms. Imaging is much easier when the depth-resolution of

the objective lens is much larger than the light sheet, because then

an optimum alignment is not so important, but in this case there is

not a big improvement in the depth-resolution by the objective

lens. So altogether, the depth-resolution is mainly determined by

the light sheet thickness. Possible resolution improvements by the

objective lens are not dramatic and should not be overrated.

We generally used objective lenses with axial resolution worse

than the resolution of the illumination beam, but close to the

resolution. If we had the choice between two objective lenses, we

took the one with the higher NA. This has the advantage of a

better x-y resolution and, as more light is being caught from the

sample, the illumination time can be reduced. This avoids fading

and reduces the noise in the images.

A practical rule for the sampling rates
For an easy rule we propose to sample the object in the same z

distance as the spatial size of pixels in x-y direction of the image.

This results in voxels with a cubic shape. Cubic voxels are very

useful for displaying the data with computer graphics. It avoids

previous resampling. Best results, e.g. the images and films from

[2], were obtained by sampling cubic voxels. Computer graphics

cannot handle other data sizes easily. When this rule was not

followed (in the case when we sampled according to the Rayleigh-

resolution) the visualization normally looked very poor, despite the

high quality of the images. (For best results we used volume-

rendering techniques to display the data. When the voxels are not

cubic, the newest graphic cards already perform an interpolation

to fill up the gap between two adjacent voxels. This interpolation is

only done in the direction of the frontal plane of the object. When

we create a movie with a rotating sample, the front plane of the

sample changes, and therefore the direction of interpolation also

changes. This sudden change in the visualization appears

unnatural. With cubic voxels this effect does not appear. This

effect will only be visible in high quality images with sharp objects.

Figure 12. Model of the axial component of the OTF of the objective lens with a NA of 0.05. As the two PSFs look similar, its Fourier-
transforms are similar as well, as can be compared to fig. 10.
doi:10.1371/journal.pone.0005785.g012
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In blurred and unsharp images it will not be visible.) Cubic voxels

are also very useful when we apply image reconstruction

techniques, where the dataset has to be rotated. Multiple

recordings of the same sample rotated by different angles and

subsequent composing of the final data of the best parts of each

data set returned images with a good constant overall quality

[17,18,21]. As the axial resolution is about 5 to 10 times worse

than the x-y-resolution (depending on the used lenses), a promising

approach is to get two recordings of the same sample rotated by

90u and extract the location of the fluorophore from the data set

where they are mapped sharply [17,22]. Rotations and the

subsequent merging of data sets are easier to perform with cubic

voxels. The sampling distance then depends more on the used

components like pixel size on the CCD detector, the used

diminution lens before the detector chip and the magnification of

the objective lens. We mainly used standard components with an

average pixel size of the CCD (a CoolSnap cf2 with a pixelsize of

4.6564.65 micrometer).

To oversample the object along z from the Rayleigh-resolution

value is justified by several reasons: First, having more data points

can be used to reduce noise. This will result in a better image

quality. Second the objective lens contributes to an improvement

by a factor of about
ffiffiffi
2
p

. Third, by applying deconvolution

techniques the image quality additionally improves. The object is

oversampled by a factor of about 3.This is a good compromise. As

long as bleaching is not a problem, it does not degrade image

quality. Sampling according to this resolution rule results in

images that can be immediately displayed with computer graphics,

an extremely practical feature.

The disadvantage of this sampling rule is that more computer

memory is needed. An average data stack (140061000 pixels6700

images) had about 2 GB raw data. Computer memory and space

on the hard disk were never an issue. The memory of the graphics

card is the limiting factor. There the data is displayed in an 8 bit

format, with half the size that is needed for storage. With a

graphics card with 1 GB memory we were able to display the data

in most cases without previous downsampling.

Further prospects
The rule for the sampling distances is of practical importance

for researchers working with this method. By following these rules,

oversampling and undersampling can be avoided. If later image

quality should be additionally increased by an image reconstruc-

tion technique like a deconvolution, the proposed sampling rates

still offer enough data points that an improvement is possible.

Next we investigate the size of the field of sharp focus. For a

given specimen size the investigator can calculate the suitable slit

diameter and then he will be able to predict the axial resolution.

This is important for the planning of experiments.

The focus of this paper is on the investigation of the cross-

section of the illumination beam, that is the axial PSF of the

illumination. A precise knowledge of it is essential for modifying

deconvolution algorithms for ultramicroscopy. Standard image

processing packages (e.g. ImageJ) do not include this deconvolu-

tion option yet. With this paper a computer scientist with no

deeper knowledge in optics is able to model the PSF and extend

the functional range of these free software [23] packages.

A promising approach that works already without modified

deconvolution algorithms is to use a PSF from the illumination

beam that looks similar to the PSF from the objective lens. This

can be achieved by using a slit with a width of SD = f NA2lexitation/

2nlemission. In this function NA denotes the numerical aperture of

the objective lens. In this case the (one-dimensional) illumination

PSF and the detection PSF are very close to the confocal case,

hence deconvolution algorithms developed for confocal imaging

can be applied. We already reported in [2] that we obtained good

results when deconvolution algorithms were used in this way.
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Goldrubingläser. Annalen der Physik 10: 1–39.

2. Dodt HU, Leischner U, Schierloh A, Jahrling N, Mauch CP, et al. (2007)

Ultramicroscopy: three-dimensional visualization of neuronal networks in the
whole mouse brain. Nat Methods 4: 331–336.
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