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The Gram-negative opportunistic pathogen Legionella pneu-
mophila replicates in phagocytes within a specific compartment, 
the Legionella-containing vacuole (LCV). Formation of LCVs is 
a complex process requiring the bacterial Icm/Dot type IV secre-
tion system and more than 100 translocated effector proteins, 
which putatively subvert cellular signaling and vesicle trafficking 
pathways. Phosphoinositide (PI) glycerolipids are pivotal regula-
tors of signal transduction and membrane dynamics in eukaryotes. 
Recently, a number of Icm/Dot substrates were found to anchor 
to the LCV membrane by binding to PIs. One of these effectors, 
SidC, specifically interacts with phosphatidylinositol-4 phosphate 
[PtdIns(4)P]. Using an antibody against SidC and magnetic beads 
coupled to a secondary antibody, intact LCVs were purified by 
immuno-magnetic separation, followed by density centrifuga-
tion. This purification strategy is in principle applicable to any 
pathogen vacuole that carries specific markers. The LCV proteome 
determined by LC-MS/MS revealed 566 host proteins, including 
novel components of the endosomal pathway, as well as the early 
and late secretory trafficking pathways. Thus, LCV formation is a 
robust process that involves many (functionally redundant) Icm/
Dot substrates, as well as the interaction with different host cell 
vesicle trafficking pathways.

The Vacuolar Pathogen Legionella pneumophila

The Gram-negative bacterium Legionella pneumophila parasit-
izes environmental protozoa and grows in alveolar macrophages 
of the human lung, thus possibly causing the severe pneumonia 
Legionnaires’ disease.1 L. pneumophila replicates in amoebae 
and macrophages within a unique compartment, the Legionella-
containing vacuole (LCV),2 which in either phagocyte is formed by a 
seemingly conserved mechanism. Therefore, amoebae and in partic-
ular the genetically tractable social amoeba Dictyostelium discoideum, 

are  valuable model systems to dissect L. pneumophila-phagocyte 
interactions on a molecular and cellular level.3

L. pneumophila promotes the uptake by phagocytes4,5 and LCV 
formation by means of the Icm/Dot type IV secretion system.6 To 
date, more than 100 Icm/Dot substrates have been identified, many 
of which modulate host cell vesicle trafficking.7 While some of these 
effector proteins subvert host cell GTP turnover or PI metabo-
lism,8-10 most have not been characterized mechanistically. LCVs 
avoid fusion with lysosomes, interact with early secretory vesicles 
at endoplasmic reticulum (ER) exit sites and eventually fuse with 
the ER.2,11 Yet, multiple trafficking pathways converge to form a 
replicative LCV, several of which need to be inactivated to impair 
intracellular replication of L. pneumophila.12

A comprehensive description of LCV formation requires a cata-
logue of the factors involved. To determine the LCV proteome, we 
purified LCVs by a simple two-step protocol, using D. discoideum 
amoebae producing the ER marker calnexin-GFP and L. pneumo-
phila labeled with the red fluorescent protein DsRed.13 Intact LCVs 
were enriched by immuno-magnetic separation with an antibody 
against the Icm/Dot substrate SidC (selectively binding to LCVs) 
and magnetic beads coupled to a secondary antibody, followed by 
density centrifugation. The proteome determined by LC-MS/MS 
revealed 566 host proteins, including factors associated with mito-
chondria, the endosomal pathway and the secretory pathway.

Endosomal Markers of LCVs

LCVs avoid fusion with lysosomes, but still interact with 
the endosomal pathway, as indicated by the presence of the late 
endosomal small GTPase Rab7,13,14 (Fig. 1). LCVs also acquire 
the D. discoideum inositol polyphosphate 5-phosphatase (IP5P) 
Dd5P4 and its mammalian homologue OCRL1 (oculocerebrorenal 
syndrome of Lowe).15 Dd5P4 plays a role in phagocytosis,16 and 
in its absence, L. pneumophila replicates much more efficiently in 
the amoebae. OCRL1 localizes to endosomes and the trans Golgi 
network (TGN), where it promotes (retrograde) trafficking between 
the two compartments.17

Additional endosomal factors were identified in the LCV proteome, 
including the small GTPases Rab8 and Rab14, the putative copper 
transporter p80 and the coat protein clathrin.13,18 The GTPases 
and p80 are markers of LCVs containing wild-type but not icm/dot 
mutant L. pneumophila. While Rab14 accumulates on lysosomes,19,20 
Rab8 localizes to endosomes, where the GTPase promotes fusion 
with vesicles from TGN exit sites in the late  secretory pathway.21 The 
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endosomal enzymes Rab8 and OCRL1 
might be recruited to LCVs by (i) direct 
fusion of the two compartments, (ii) inter-
action of LCVs with transport vesicles 
at late secretory entry sites (Rab8) and 
early retrograde exit sites (OCRL1), or (iii) 
acquisition from the cytoplasm (Fig. 1).

In pull-down experiments using 
GST-Rab8 coupled to glutathione beads 
and L. pneumophila lysate, we identified 
LidA as a Rab8-interacting protein (Fig. 
2). The Icm/Dot substrate LidA localizes to 
the LCV membrane, promotes intracellular 
replication and avoidance of the endosomal 
pathway,22 interferes with the early secre-
tory pathway23 and causes secretion defects 
upon production in the yeast Saccharomyces 
cerevisiae.7 Furthermore, LidA enhances 
the Rab1 guanine nucleotide exchange 
factor (GEF) activity of SidM/DrrA, and 
GST-LidA was found to bind Rab1, Rab6 
and Rab8, which promote early secretory, 
Golgi to ER, or Golgi to plasma membrane transport, respectively.24 
The promiscuous binding of LidA to different small GTPases 
suggests a role in subverting multiple host trafficking pathways.

Secretory Markers of LCVs

LCVs acquire ER markers, including calnexin, calreticulin, protein 
disulfide isomerase, and peptides containing the KDEL/HDEL 
retrieval motif.2,11,13 The formation of LCVs involves interactions 
with the early secretory pathway at ER exit sites and depends on the 
activity of the small GTPases Arf1, Sar1 and Rab1.12,25-27 Arf1 and 
Rab1, as well as the v-SNARE Sec22b also localize to LCVs.

Arf1 and Rab1 are recruited to LCVs and activated by two Icm/
Dot substrates, which function as GEFs: RalF is a GEF for Arf 
family GTPases,28 and SidM is a Rab1 GEF24,29 that also func-
tions as a GDP dissociation inhibitor (GDI) displacement factor 
(GDF).30,31 Other Icm/Dot substrates promoting interactions of 
the LCV with the secretory pathway include SidJ, which is involved 
in the recruitment of ER to LCVs32 and SidC. The 106 kDa 
protein SidC and its paralogue SdcA anchor to LCVs by binding 
to phosphatidylinositol-4 phosphate [PtdIns(4)P] via a 20 kDa 
“P4C” [PtdIns(4)P-binding of SidC] domain near the C-terminus, 
which is unrelated to eukaryotic PI-binding folds.5,18 A 70 kDa 
N-terminal fragment of SidC is sufficient to bind ER vesicles, and 
correspondingly, L. pneumophila sidC-sdcA deletion mutants do no 
longer recruit ER vesicles to LCVs, wherein the bacteria replicate at 
wild-type rate. Thus, communication with the ER is dispensable for 
the formation of replication-permissive LCVs.18

PtdIns(4)P is a lipid component of LCVs5 and mediates exit of 
early secretory vesicles from the ER,33 but preferentially localizes to 
the TGN, where it is produced by an Arf1-dependent recruitment 
of PtdIns 4-kinase IIIβ (PI4K IIIβ) to promote trafficking along the 
secretory pathway.34 Depletion by RNA interference of Rab8, Arf1, 
PI4K IIIβ but not other small GTPases or PI4Ks reduces the amount 
of the PtdIns(4)P-binding effector SidC on LCV membranes.13,35 
PtdIns(4)P might either accumulate on LCVs by direct fusion with 

(a) compartment(s) harboring this PI, or be synthesized on LCVs by 
PI4K IIIβ recruited by Arf1 from the cytoplasm (Fig. 1). Since an L. 
pneumophila ΔralF mutant strain is defective for Arf1 but not SidC 
acquisition,35 and since we failed to localize PI4K IIIβ on LCVs 
in D. discoideum and macrophages (unpublished observation), a 
mechanism involving the direct fusion of LCVs with a compartment 
decorated with PtdIns(4)P seems more likely.

Conclusions and Outlook

Formation of LCVs is a robust yet complex process involving 
more than 100 (functionally redundant) Icm/Dot-translocated 
effector proteins and multiple host cell vesicle trafficking pathways. 

Figure 1. Communication of LCVs with endosomal and secretory trafficking pathways. LCVs are deco-
rated with endosomal and secretory markers, which might be acquired by (i) direct fusion with cell organ-
elles, (ii) interaction with transport vesicles shuttling between compartments, or (iii) recruitment from the 
cytoplasm. L. pneumophila produces two distinct classes of Icm/Dot-translocated effector proteins, which 
interact with PtdIns(4)P (SidC, SidM)5,18,35 or PtdIns(3)P (LpnE, LidA),15,35 respectively.

Figure 2. GST-Rab8 interacts with the Icm/Dot substrate LidA in L. pneu-
mophila lysates. GST fusions proteins of Rab8 wild-type (wt) or constitu-
tive active (ca; Rab8Q74L

36) were used to precipitate binding partners in 
L. pneumophila lysates. Protein bands eluting from washed Rab8-coated 
beads but not from control beads were identified by LC-MS/MS as the Icm/
Dot substrate LidA, the Rab1 GEF SidM and a putative tellurite resistance 
protein (TRP).
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While it is firmly established that LCVs interact with the early secre-
tory pathway and ER, it is becoming apparent that this interaction 
is not required to form a replication-permissive vacuole. Moreover, 
LCVs also communicate with vesicle trafficking pathways between 
the TGN and endosomes, suggesting that the late secretory pathway, 
as well as retrograde endosome to TGN trafficking plays a role in 
LCV formation. A current challenge in the field is to define the 
minimal set of L. pneumophila effector proteins and host trafficking 
pathway required to form a replication-permissive vacuole.
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