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Catechin is a highly studied but controversial allelochemical 
reported as a component of the root exudates of Centaurea macu-
losa. Initial reports of high and consistent exudation rates and 
soil concentrations have been shown to be highly inaccurate, but 
the chemical has been found in root exudates at and much less 
frequently in soil but sporadically at high concentrations. Part of 
the problem of detection and measuring phytotoxicity in natural 
soils may be due to the confounding effect of soil microbes, 
and little is known about interactions between catechin and soil 
microbes. Here we tested the effect of catechin on soil microbial 
communities and the feedback of these effects to two plant species. 
We found that catechin inhibits microbial activity in the soil we 
tested, and by doing so appears to promote plant growth in the 
microbe-free environment. This is in striking contrast to other 
in vitro studies, emphasizing the highly conditional effects of the 
chemical and suggesting that the phytotoxic effects of catechin may 
be exerted through the microbes in some soils.

Centaurea maculosa, a Eurasian invader in North America, has been 
reported to release (±)-catechin (hereafter referred as catechin) from 
its roots,1,2 and this chemical has been shown to be phytotoxic in 
vitro, in sand cultures and in the field.3-10 A number of other authors 
have reported phytotoxicity of the (+)-catechin form11-14 and the 
(-)-catechin form has been reported to inhibit green algae.15 However, 
other authors have found no phytotoxic effects of forms of catechin or 
phytotoxicity only at unreasonably high concentrations.1 Furubayashi 
et al.13 found that phytotoxic effects of (+)-catechin on lettuce (which 
is a very insensitive species to the chemical)6 were manifest in some 
soils but not others. Furthermore, the effects of catechin on grasses 
in field experiments are highly variable among sites.9,10 There is 
also initial evidence that Centaurea is more allelopathic to North 

American native species than congeneric European native species in 
vitro10,16 and in the field,7 and these biogeographic differences have 
been suggested to be consistent with the “Novel Weapon Hypothesis” 
(NWH).17,18 This is the idea that some invaders may succeed because 
they possess unique allelopathic, defense or antimicrobial biochem-
istry to which naïve natives have not adapted.

Phytotoxicity has been repeatedly demonstrated, but the most 
controversial aspects of the potential role of catechin as an allelo-
pathic compound are whether or not the roots exude enough catechin 
to be phytotoxic, and the conflicting reports on soil concentrations; 
are they high enough to be phytotoxic.19 Early reports of very high 
catechin concentrations in soils6,20,21 are not reliable due to sample 
contamination during analysis19 and the inability to consistently find 
such high concentrations in later field studies19,22 (Callaway RM and 
Vivanco JM, unpublished data). Blair et al.22 reported finding cate-
chin in many soil samples but at low levels, never more than 1 μg g-1, 
and argued that this concentration could not be phytotoxic. Perry 
et al.19 using a minimum detection limit of ≈25 μg g-1, detected 
catechin in only 20 soil samples out of 402, but this was for a set of 
plants repeatedly measured over a season, and at one point in time 
all plants at the site were associated with catechin in the soil at a very 
high mean concentration (650 ± 450 (SD) μg g-1. Pulsed releases of 
roughly similar concentrations have also occurred in mesocosms with 
C. maculosa (Schultze M and Paschke M, unpublished data). Extreme 
variation in detection may be due to pulsed releases, but catechin is 
highly ephemeral in soil, and applied concentrations of (±)-catechin 
result in far lower concentrations in solution, sand and soil than 
calculated from the application rate.9 This may be due to the interac-
tion of the compound with components in the soils and oxidation. 
However, catechin detection and phytotoxicity may also be affected 
by soil microbial communities, a component of the system that has 
been minimally explored.5,23,24

Catechin Phytotoxicity and Soil Microbial Communities

In this Addendum, we report the impact of catechin on soil 
microbial activity by measuring soil CO2 release, and modification 
of catechin phytotoxicity in soil free from soil microbes. Levels of 
nitrogen (N) and phosphorus (P) in soil are influenced by microbial 
activity and death; we measured levels of these nutrients in catechin-
treated soil.

Fifty g soil was placed in each of 9-cm Petri dishes, and treated 
with appropriate amount of catechin to get final concentrations of 
133, 266 or 400 μg catechin/g soil9 (see for methodology). Based on 
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previous work9 (Fig. 2) these added concentrations to this particular 
soil probably created detectable or effective concentrations of >1, 
1–5 and 1–40 μg catechin/g soil. It is important to note that bulk 
soil concentrations of an allelochemical far overestimate the phyto-
toxic dose because interactions can occur at root-root interfaces; 
however, these concentrations provide a reasonable place to start. 
Soil treated with the same amount of water served as controls. Ten 
seeds of Phalaris minor or Brassica campestris were placed on control 
or treated soil. Data on root and shoot length were collected after 7 
days. Each experiment was replicated six times. Since CO2 release is a 
good indicator of microbial activity in different soils,25 we measured 
soil CO2 respiration by chemical titration following Andersen.26 Soil 
was treated with catechin to achieve added concentrations of 0, 133, 
266 or 400 μg catechin/g soil.9 Ten mL 0.1 N NaOH was placed in 
each 5-cm Petri dish, which was then placed in a chamber (433 cm3) 
filled with 150 g control or treated soil. Chambers were then imme-
diately covered and care was taken to avoid any loss of CO2. Soil was 
incubated for 24 h, and experiment was terminated by adding 1 mL 
of 0.1 N BaCl2 to NaOH. Ten mL of NaOH taken from blanks, 
controls and treatments was titrated against 0.1 N HCl, and the 
amount of CO2 released was calculated. Control and treated soils 
were analyzed for extractable phosphate-P using molybdenum blue 
method.27 To determine total organic N, soil was digested using the 

Figure 1. Mean (+SE) shoot (black bar) and root (white bar) length of 
Phalaris minor (A) and Brassica campestris (B) in sterilized soil treated with 
0, 133, 266 or 400 μg/g soil. Results from Inderjit et al.9 indicated that 
these application rates produced detectable concentrations of roughly 0, >1, 
1–5 and 1–40 μg catechin/g soil. Shared letters indicate no significant dif-
ferences among treatments and control as determined by one-way ANOVA 
with treatment as fixed variable, and post ANOVA Tukey test (p < 0.05).

Figure 2. (A) Mean (+SE) CO2 release (μg CO2 released/g soil/h) from soil 
treated with 0, 133, 266 or 400 μg catechin/g soil. Results from Inderjit et 
al.9 indicated that these application rates produced detectable concentra-
tions of roughly 0, >1, 1–5 and 1–40 μg catechin/g soil. (B) Mean (+SE) 
total organic N (mg/100 g dry soil) of soil treated with 0, 133, 266 or 
400 μg catechin/g soil. Shared letters indicate no significant differences 
among treatments and control as determined by one-way ANOVA with treat-
ment as fixed variable, and post ANOVA Tukey test (p < 0.05).

semi-micro Kjeldahl method, and N concentration was determined 
using the indophenol blue method.27

When soil was sterilized, several concentrations of catechin 
increased shoot length (Fig. 1; FPhalaris = 12.743, df = 3, 199, p < 
0.001; FBrassica = 7.316, df = 3, 229, p < 0.001) and root length 
(FPhalaris = 10.722, df = 3, 199, p < 0.001; FBrassica = 8.992, df = 3, 
229, p < 0.001) and no concentration inhibited the growth of these 
species. In our previous study, catechin addition to this same soil, but 
not sterilized, inhibited plant growth at very low detectable concen-
trations (1.4 ± 1.4 to 36.1 ± 10.2 [1 SE] μg g-1)9, which suggests that 
in some soils and for some species catechin may need to interact with 
soil microbial communities to cause plant growth inhibition. Phalaris 
was inhibited in the initial experiment,9 and to our knowledge the 
only species in the Brassicaceae tested with catechin is Arabidopsis 
thaliana, which is highly sensitive.14 We emphasize however, that in 
other experiments catechin has been shown to be phytotoxic in vitro 
and, river sand, and sterile sand,9,16 and thus these microbial effects 
are likely to be just one more component of the conditional effects 
of this species.
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We observed a concentration-dependent decline in CO2 efflux 
in non-sterile soil treated with catechin (F = 84.254, df = 3, 20, 
p < 0.0001) (Fig. 2A) suggesting that catechin killed microbes. 
(+)-Catechin has inhibitory effects on soil microbial density in vitro 
and this effect is far stronger on microbes that are found in North 
American soils than those from European soils.5 No significant 
differences were observed in the soil concentrations of PO4-P (F 
=1.591, df = 3, 20, p = 0.223). We observed higher total N levels in 
soil treated with 400 μg/g soil compared to untreated soil (t = -3.799, 
P(2-tailed) = 0.004) (Fig. 2B inset), but there is no clear explanation 
for why suppressing total microbial activity would increase total soil 
N, unless all microbes but free living N2-fixers were suppressed and 
N2-fixers were enhanced. Acinetobacter calcoaceticus, which does not 
fix N, can utilize other forms of catechin as its sole carbon source23 
and genes involved in the utilization of various forms of catechin 
have been reported from the genomic DNA of Rhizobium sp. and 
Bradyrhizobium japonicum USDA 110, both N2-fixers.28,29

Our results indicate that catechin can inhibit general soil 
microbial activity and that in some soils the role of soil micro-
bial communities may function as either drivers or passengers for 
catechin phytotoxicity. Either way, these results are a step towards a 
better understanding of the conditional effects of catechin.
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