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ABSTRACT

Transfer RNAs (tRNAs) represent the single largest,
best-understood class of non-protein coding RNA
genes found in all living organisms. By far, the
major source of new tRNAs is computational
identification of genes within newly sequenced
genomes. To organize the rapidly growing collection
and enable systematic analyses, we created the
Genomic tRNA Database (GtRNAdb), currently
including over 74000 tRNA genes predicted from
740 species. The web resource provides over-
view statistics of tRNA genes within each ana-
lyzed genome, including information by isotype
and genetic locus, easily downloadable primary
sequences, graphical secondary structures and mul-
tiple sequence alignments. Direct links for each gene
to UCSC eukaryotic and microbial genome browsers
provide graphical display of tRNA genes in the
context of all other local genetic information. The
database can be searched by primary sequence
similarity, tRNA characteristics or phylogenetic
group. The database is publicly available at http://
gtrnadb.ucsc.edu.

INTRODUCTION

Transfer RNA (tRNA) genes play an essential role in
protein translation in all living cells. Among the numerous
tRNA search programs created in the last 10 years,
tRNAscan-SE (1) remains a popular standard for whole-
genome annotation of tRNA genes. This PERL program
uses the original tRNAscan program (2) and a linear
sequence signal detection algorithm by Pavesi and col-
leagues (3) as pre-filters to obtain an initial list of tRNA
candidates. The program then passes these candidates to
a highly sensitive and selective covariance model search
program (4) to obtain a final set of gene predictions that

represent 99-100% of true tRNAs with a false positive
rate of fewer than 1/15 gigabases (1).

To catalog the increasing number of predicted tRNA
genes found in complete genomes, we developed the
Genomic tRNA Database (GtRNAdb) as a repository
for all identifications made by tRNAscan-SE. This data-
base has been in regular use by the community for over 7
years, but never formally described. Recently, we updated
the interface, content and search capabilities, justifying a
new report of this improved resource. As before, the data-
base provides summary statistics of predicted tRNA genes
and the number of isotypes detected in each genome.
Researchers can view tRNA genes by retrieving primary
sequences, secondary structure information and isotype
alignments. Alternatively, tRNA genes can now be
viewed within the eukaryotic-specific UCSC Genome
Browser (5) or similar microbial genome browsers (6). In
addition, a new database search page and BLAST (7)
server enable similarity studies of tRNA genes across spe-
cies. To date, GtRNAdb contains 74 777 predicted tRNA
genes derived from 36 eukaryotes, 55 archaea and 649
bacteria. Together with tRNAscan-SE, this public data-
base provides an important information resource to the
tRNA and genomics research communities.

DATABASE FEATURES
tRNA identification information

tRNAs from individual species can be selected from a full
organism list on the GtRNAdDb front page. Researchers
can study the summary statistics of tRNA gene predic-
tions from each genome, including the number of
tRNAs with introns and the distribution of tRNAs
belonging to each isotype. tRNA isotypes are grouped
by ‘two-box’, ‘four-box’ or ‘six-box’ codon families, with
highlighting colors to indicate potentially missing tRNAs
(Figure 1). Users can study the frequency of tRNA genes
in relationship to the codon usage, which is computed
using protein gene annotations in NCBI RefSeq (8)
for all prokaryotes and fungi, or obtained from the
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tRNAscan-SE Analysis of Escherichia coli K12
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The codon usage of this genome was generated from protein-coding genes annotated in RefSeq.

Humber of CDS: 4294
Humber of Codons: 1362834

Four Box tRNA Sets Six Box tRNA Sets
Isotype tRNA Count by Anticodon & Total Isotype tRNA Count by Anticodon Total
Codon Usage (Percentage) Codon Usage (Percentage)
Ala AGC GGC cGC TGC 5 Ser AGA |GGA |CGA |TGA |ACT |GCT 5
2 3 2 b 1 1
GCT GCC GCG GCA 9.48% TCT |TCC |TCG |TCA |AGT |AGC 5.73%
1.53 | 2.56 | 3.37 | 2.02 0.8 (0.86/0.89/0.71/0.87 1.6
Gly ACC GCC ccc TCC 6 Arg ACG |GCG |CCG |TCG CCT |TCT 7
4 1 1 4 1 1 1
GGT GGC GGG GGA 7.35% CGT |CGC |CGG |CGA AGG AGA | 5.49%
2.48 | 2.97 | 1.11 | 0.79 2.09/2.20.54/0.35 0.11/0.2
Pro AGG GGG CGG TGG 3 Leu |AAG |GAG |CAG |TAG CAA |TAA 8
1 1 1 1 41 1 1 1
CCT ccc CCG CCA 4.41% CTT |CTC |CTG |CTA TTG |TTA |10.64%
0.7 0.55 | 2.32 | 0.84 1.1/1.11/5.29/0.39 1.36/1.39
Thr AGT GGT CGT TGT 5
2 2 a

ACT | ACC | ACG | ACA 5.37%
0.89 | 2.34 | 1.44 | 0.7
val AAC GAC CAC TAC 7
2 5
GTT GTC | GTG | GTA | 7.07%
1.83 | 1.53 | 2.62 | 1.09

Two Box tRNA Sets Two Box & Other tRNA Sets
Isotype tRNA Count by Anticodon Total Isotype tRNA Count by Anticodon Total
Codon Usage (Percentage) Codon Usage (Percentage)
Phe AAR GAA 2 Ile AAT GAT TAT 3
2 3
T e 3.87% ATT ATC ATA 5.99%
2.22 | 1.65 3.04 | 2.52 0.43
Asn ATT GTT 41 Met CAT 8
4 8
AAT AAC 3.93% ATG 2.78%
L7/ 2.16 2.78
Lys CTT TTT 6 Tyr ATA GTA 3
6 3
AAG AAR 4.4% TAT TAC 2.82%
1.03 | 3.37 1.6 il 07l
Asp ATC GTC 3 Supres CTA TTA 0
3
GAT GAC 5.13% Stop TAG TAA 0.24%
32 2 15395 0.03 | 0.21
Glu CTC TTC 4 Cys ACA GCA 1
4 1
GAG GAA 5.74% TGT TGC 1.14%
1.78 | 3.96 0.5 0.64
His ATG GTG 1 Trp CCA 1
1 1
CAT CAC 2.26% TGG 1.53%
1.29 | 0.97 1l 553
Gln CTG TTG 4 SelCys TCA 1
2 2 1
CAG CAA 4.43% Stop TGA 0.09%
2.89 | 1.54 0.09

Figure 1. tRNA summary statistics with codon usage for Escherichia coli K12. Number of total tRNA genes and genes by isotypes and anticodons
were provided by tRNAscan-SE (1) identification results. Protein-coding genes annotated in RefSeq (8) were used to compute codon usage of the
genome. Side menus include links to detailed information for tRNA genes and external databases for gene analysis.
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Figure 2. Secondary structure prediction of tRNA-GIuCTC in chromosome III of Caenorhabditis elegans. (A) Linear string representation of
secondary structure prediction generated within tRNAscan-SE by COVE (4). (B) Graphic representation of secondary structure prediction rendered

by NAVIEW (14).

Codon Usage Database (9) for other eukaryotes. The
GtRNAdb provides two viewing modes for gene lists:
organized by isotype or by genome locus. Both views
include tRNA gene and intron positions relative to the
source chromosome (or plasmid); upstream and down-
stream sequence flanking the tRNA genes; and covariance
model search scores that are broken down by contribution
from primary sequence patterns versus secondary struc-
tures (this breakdown enables identification of some
types of tRNA pseudogenes). If the eukaryotic or micro-
bial genomes are available in external genome browsers
(5,6), users can follow the provided links to study each
tRNA within the context of neighboring genes. tRNA
gene information can also be displayed and saved as
plain text in the standard tRNAscan-SE output file
format. In addition, researchers can download the tRNA

sequences for each species in FASTA format, or as part of
a full set for each phylogenetic domain.

tRNA secondary structures and alignments

Although all mature non-organellar tRNAs form a gen-
eral cloverleaf secondary structure, variations in the length
of stem-loops exist. tRNAscan-SE (1) provides highly
accurate secondary structure predictions via covariance
model analysis (4) for each tRNA. These secondary struc-
tures can be viewed within GtRNAdb in linear string
representations or as graphical two-dimensional images
(Figure 2). To enable critical evaluation of lower-scoring
tRNA identifications, the database also provides multiple
sequence alignments across all tRNAs of the same iso-
type within a species. These structural alignments are
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Figure 3. Multiple sequence alignments of tRNA-PheGAA in Homo sapiens. Sequence alignments are grouped by identical secondary structures with
the linear string representation listed on top of each block. Each color in the alignments codes for the base pairing of each stem loop in the secondary
structure. The tRNA genes marked as ‘pseudo’ were identified as pseudogenes. The last tRNA RF9990_ GAA_HUMAN_PLACENTA was retrieved

from the Sprinzl tRNA database (10).

constructed via alignment to domain-specific tRNA
covariance models (4). Each stem-loop in the alignments
is color-coded (similar to alignments found in Rfam 8.1)
for easy viewing (Figure 3). For comparison to older refer-
ence tRNA sequences, multiple alignments also include
aligned entries from the original Sprinzl tRNA database
(10), when present from the same species and isotype.

tRNA search and BLAST server

One of the goals in developing the GtRNAdb is to provide
a tool for comparative analysis across multiple genomes.
The search capabilities allow researchers to query the data-
base with criteria including phylogenetic domain and
clade, partial species name, chromosome or scaffold
name, any combination of amino acids and anticodons,
nucleotide identity at the —1 upstream position, number
of introns and the existence of a genome-encoded terminal
CCA sequence. Besides viewing results within the web
browser interface, search results can be downloaded for
further analysis, containing gene annotation and
sequences. Researchers can use this search functionality
to address various biological questions. For example,
‘which eukaryotes have predicted selenocysteine tRNAs
in their genomes? By selecting the domain ‘Eukarya’
and amino acid ‘selenocysteine’, we find that there are 86
total selenocysteine tRNA predictions across 24 genomes
such as human, mouse, horse, fruit fly and model legume
Medicago truncatula.

Although genome-encoded anticodons starting with
guanosine (G) or adenosine (A) are commonly used to
decode codons ending with cytosine (C) or uridine (U),
tRNAs with anticodons starting with A were not found
in complete archaeal genomes (11). To search for possible
exceptions, we selected the domain Archaea and all antico-
dons starting with A as the search criteria. The result
shows that Ferroplasma acidarmanus includes a tRNA

for leucine with anticodon AAG. Considering (i) the rela-
tively low covariance model score of 45.65 bits as com-
pared to the other tRNAs identified in the same genome
and (i) the absence of an expected leucine tRNA with
anticodon GAG, this ‘flags’ either a potential sequencing
error, or a target for further study in terms of post-
transcriptional modification or RNA editing.

To search any given sequence directly against the
tRNASs in the database, the tRNA BLAST server can be
used. Options include searching for tRNA matches in all
species, or only in one of the three domains of life.
Standard BLAST options including expect value threshold
and word size can be set for each query (7). Users can also
enter advanced BLAST options in a free-text window.
Pair-wise alignments are listed upon the completion of
the search. If tRNA matches occur in genomes available
in the external UCSC genome browsers (5,6), users can
view tRNA hits within genomic context by clicking on
the provided links.

Error and request tracking

In order to document tRNA gene predictions in a rapidly
expanding list of completed genomes, most annotations
in the database are automated without experimental
verification or inspection against published literature. We
acknowledge that there are exceptions to general anticodon-
based isotype identification rules and other occasional
errors due to post-transcriptional anticodon modification,
unrecognized pseudogenes, some classes of short inter-
spersed nuclear elements (SINEs) and other tRNA-derived
sequences. In some cases, tRNA introns are also misiden-
tified by automated searches (e.g. noncanonical introns
found in many crenarchaeal species), which can cause
incorrect determination of the anticodon and tRNA type.
We have manually examined and corrected some of these
errors (including crenarchaeal noncanonical introns and



some tRNA-derived SINEs), yet we continue to search for
new cases of obvious tRNA misidentification. We encou-
rage feedback on any unaddressed discrepancies by submit-
ting a report through our bug and request tracking system.
We also welcome ideas for new features within the data-
base, and often accept special requests for manually
reviewed tRNA analyses from the user community. Users
can monitor the progress of their requests and search
through the development of other reports in the system.

FUTURE DIRECTIONS

Due to the design of a static web interface, the capability
of data searching across genomes is currently limited. We
plan to expand the database features by providing func-
tionality to execute queries with more criteria such as eco-
type of organisms, or allowing specification of sequence
patterns at multiple positions within the tRNAs. Genes
found via searches will be dynamically aligned with sec-
ondary structure information for comparative studies.
Users will be able to download gene information in var-
ious file formats, including the BED format developed for
the UCSC Genome Browser (5), and the Stockholm
format used in Pfam (12) and Rfam (13) for multiple
sequence and secondary structure alignments. We will
also continue to update the database with new tRNA
identifications as additional genomes are made available.
Although the GtRNAdb generally focuses on collections
of tRNAs from complete genomes, we encourage mem-
bers of the research community to request analyses of
draft or incomplete genomes.
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