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ABSTRACT

DiProDB (http://diprodb.fli-leibniz.de) is a database
of conformational and thermodynamic dinucleotide
properties. It includes datasets both for DNA and
RNA, as well as for single and double strands. The
data have been shown to be important for under-
standing different aspects of nucleic acid struc-
ture and function, and they can also be used for
encoding nucleic acid sequences. The database is
intended to facilitate further applications of dinu-
cleotide properties. A number of property datasets
is highly correlated. Therefore, the database comes
with a correlation analysis facility. Authors having
determined new sets of dinucleotide property
values are invited to submit these data to DiProDB.

INTRODUCTION

Nucleic acid properties are governed by the corresponding
nucleotide sequence. More specifically, many proper-
ties such as nucleic acid stability, for example, seem to
depend primarily on the identity of nearest-neighbour
nucleotides (1). The corresponding nearest-neighbour
model is also the basis for RNA secondary structure pre-
diction by free-energy minimization (2). It is known that
not only thermodynamic but also conformational nucleo-
tide properties may play a role. It has been shown, for
example, that promoter locations can be predicted adopt-
ing dinucleotide stiffness parameters derived from molecu-
lar dynamic simulations (3). Also, curved DNA is known
to play a role in prokaryotic gene expression (4). In
addition, physical DNA profiles have been used for an
improved promoter prediction (5,6). There are numerous
other examples. It is, however, beyond the scope of this
brief database description to provide a comprehensive
overview. Currently, we are developing a Genome
Browser that encodes complete eukaryotic or prokaryotic
genomes by thermodynamic and conformational dinu-
cleotide properties. In this context, we have collected

more than 100 sets of dinucleotide properties from
the literature. Currently, there are two related data col-
lections, the PROPERTY DB (srs6.bionet.nsc.ru/srs6
bin/cgi-bin/wgetz?-page + LibInfo +-id + 1pFZP1TuQpU
+-lib+ PROPERTY) with about 30 property sets (7) and
plot.it (hydra.icgeb.trieste.it/dna/plot_it.html) with about
50 sets (Vlahovicek, K. and Pongor,S., unpublished data).
Both of these databases do not include many of the exist-
ing datasets and, in addition, it is difficult to trace back the
original data sources. Also, both of them are not included
in the NAR Database Collection. Therefore, we have set
up the database DiProDB, which is aimed to be a one-stop
resource for these properties. With DiProDB we want
to provide reliable, easily accessible and comprehensive
information on dinucleotide properties that may stimulate
the application of these data to a diversity of biological
problems.

DATABASE CONTENT

DiProDB currently includes 115 dinucleotide datasets.
They were collected from the literature and are classified
according to nucleic acid type (DNA and RNA), strand
information (double or single), how the data were
obtained (experimental, theoretical/calculated) and also
according to the general type of the dinucleotide property:
thermodynamical (e.g. free energy), conformational (e.g.
twist) or letter-based (e.g. GC content). We include the
letter-based data to demonstrate relations to thermodyna-
mical and conformational properties. Moreover, most of
the current motif discovery approaches are letter-based.
An example from our work refers to the identification of
significant purine—pyrimidine patterns in restriction
enzyme binding sites (8). The number of datasets for
each category is shown in Table 1. For each dataset, the
16 dinucleotide values, the unit of measurement, the refer-
ence, the classification features as well as comments are
provided. If a dataset refers to RNA, it is mentioned in the
corresponding property name, if the name does not men-
tion a nucleic acid, it always refers to DNA.
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Table 1. Number of dinucleotide property datasets for each category

Nucleic acid type Strand information Mode of property determination Property type

DNA DNA/RNA RNA Double Single Experimental Theoretical/calculated Thermo-dynamical Conformational Letter-based

93 7 15 103 12 33 82 34 74 7
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Figure 1. Screenshot of the DiProDB table displaying search results for the term ‘twist’ (conformational dinucleotide property) in the property name.

USER INTERFACE correlation coefficients for all or selected properties. This
allows easy identification of dependencies between differ-
ent dinucleotide properties. As an example in Figure 2,
Spearman’s correlation data are shown for five different
datasets quantifying the twist in B-DNA. All datasets
are clearly correlated to each other. However, the extent
of correlation is rather different. Correlation coeffi-
cients >0.58 are considered as statistically significant
(P <0.01, r-test).

Based on these correlations, we have done different hier-
archical clustering analyses to get a deeper insight into the
overall correlation of the datasets. Figure 3 shows a single
linkage hierarchical clustering of all 23 B-DNA double-
strand thermodynamical properties together with the
three-dinucleotide letter-based quantities GC content,
purine (GA) content and keto (GT) content. This cluster-
DATA ANALYSES ing is based on the distance measure 1—|rpearson|, Decause
The DiProDB website contains a Correlate option, it is just the absolute value of the correlation, which indi-
where users can calculate Pearson’s or Spearman’s rank cates whether two properties contain similar information.

DiProDB displays all data in a single table, see Figure 1.
The number and type of columns shown can be custom-
ized by the user. When clicking on the ID button in the
first column a new page pops up containing all relevant
information about the corresponding property. The data-
base entries can be sorted according to three different cri-
teria. There is also a search option for all or for specific
columns. The complete table or parts of it can be saved
as text file or in a format directly importable into the
Genome Browser mentioned in the Introduction section.
The DiProDB website contains a Submit button, where
users can submit new property datasets.
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Figure 2. Pearson’s correlation coefficients for five sets of twist angles. ID (Ref.): 1 (9), 61 (10), 88 (11), 92 (12) and 98 (13). Correlation coefficients

>0.8 are coloured in green.
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Figure 3. Hierarchical clustering of all 23 B-DNA double-strand physicochemical properties and the three-dinucleotide letter-based quantities
GC content, purine (GA) content and keto (GT) content. The property sets are designated by their IDs and names.

Other correlation measures like Spearman or Kendall-Tau
give very similar results. It can be seen that all free-energy
data contain more or less the same information and that
this is basically equivalent to the GC content. This is very
likely due to the simple fact that GC pairs have three
H-bonds instead of two in AT base pairs. The complete
single-linkage hierarchical clustering of all 115 properties
is given in the Supplementary Material (Table 2), where
also a corresponding Ward clustering (14) is shown. The
latter one shows a separation between a free energy/
entropy/enthalpy/stacking energy/melting temperature
cluster and another cluster containing all the conforma-
tional datasets. The complete single linkage clustering
reveals that the most uncorrelated dinucleotide properties
are direction, inclination, twist—rise (conformational),
stacking energy, tilt, shift, propeller twist and rise.

In order to gain more insights into the data, we per-
formed two principal component analyses (PCA) (15).
The complete data of 115 properties for 16 dinucleotides
corresponds to 115 points in 16-dimensional space (or 16
points in 115-dimensional space). PCA helps to reveal
the internal structure of such high-dimensional data

by providing lower dimensional pictures of the ‘cloud’
in coordinates corresponding to maximum variance of
the data (http://en.wikipedia.org/wiki/Principal _compo
nents_analysis). The cloud of all 115 properties in
the first two principal components (PCs, the new coordi-
nates) is shown in Figure 4. Only the most uncorrelated
property ‘direction’ lies outside the shown region:
(PCL,PC2)pirection = (0.1,1.6) (the complete figure con-
taining direction and a PC1-PC3 projection are given in
the Supplementary Material; note also that only the first
three PCs carry relevant information: PC1 78.5%, PC2
16.9%, PC3 3.3%). The other two outliers are melting
temperature and persistence length. This indicates that
especially these three properties carry information quite
different from the others. Note that the latter two proper-
ties are not amongst the outliers according to the above
mentioned single linkage clustering, because each one has
(at least) one better correlation to other datasets (melting
temperature to stacking energy, and persistence length to
tilt—shift). Figure 4 also indicates three clusters containing
all other properties, one stacking energy/entropy cluster, a
twist cluster and the central main cluster.
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Table 2. Content of supplementary material

Percentage of importance of the first 10 dinucleotide properties in the first 15 PCs in decreasing order.

Figure S1 Single linkage hierarchical clustering of 115 dinucleotide properties.

Figure S2 Ward hierarchical clustering of 115 dinucleotide properties.

Figure S3 115 dinucleotide properties in the first two principal components.

Figure S4 115 dinucleotide properties in the first and third principal component.
Figure S5 The 16 dinucleotides in the first two principal components.

Table S1 Percentage of importance of the 15 PCs carrying >1071*% of information.
Table S2

Table S3

Involvement of the 10 most important dinucleotide properties in the PCs 1-15.
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Figure 4. All dinucleotide properties plotted in the first two PCs. A few
of them are designated by property name and ID.

Finally, we also performed a PCA calculating the 115
principal components for the 16 dinucleotides. The first 15
PCs carry information (23%, 21%, 14%, 12%, 6%, etc.),
roughly indicating that about this number of low corre-
lated properties is needed to represent all information of
the complete set of 115 properties. The Supplementary
Material also contains a corresponding PC1-PC2 plot,
together with all detailed information about the per-
formed PCAs.

OUTLOOK

So far the DiProDB database contains 115 sets of dinucleo-
tide properties. In the future, this number is to be increased.
We also invite other authors to submit their measured
or calculated dinucleotide properties to DiProDB.

SUPPLEMENTARY DATA
Supplementary data are available at NAR Online.
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