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Abstract The purinergic receptor, P2X7, has recently
emerged as an important component of the innate immune
response against microbial infections. Ligation of P2X7 by
ATP can stimulate inflammasome activation and secretion
of proinflammatory cytokines, but it can also lead directly
to killing of intracellular pathogens in infected macro-
phages and epithelial cells. Thus, while some intracellular
pathogens evade host defense responses by modulating
with membrane trafficking or cell signaling in the infected
cells, the host cells have also developed mechanisms for
inhibiting infection. This review will focus on the effects of
P2X7 on control of infection by intracellular pathogens,
microbial virulence factors that interfere with P2X7 activity,
and recent evidence linking polymorphisms in human P2X7

with susceptibility to infection.
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NDK nucleoside diphosphate kinase

NTPase nucleoside triphosphatase
PLD phospholipase D
ROS reactive oxygen species
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Introduction

Host organisms and their cells have evolved a large array of
mechanisms for controlling infection. Simultaneously,
many pathogens have also attempted to circumvent the
defense mechanisms. Thus, pathogens can subvert macro-
phage antimicrobial function, manipulating intracellular
signaling pathways [1–3], interfering with membrane
trafficking or the cell cycle [4], and modifying host
metabolism [5].

The ultimate effect of microbial invasion depends on
tissues infected and the microbial strategies of survival,
with different strategies of pathogen adaptation being
associated with varying degrees of damage of host tissues
[6, 7]. Conversely, the host has also evolved defense
mechanisms for resisting infection. In this review we will
discuss how pathogens and host immune systems have co-
evolved to thwart each other’s attacks, focusing on the
effects of purinergic signaling on infection and the immune
response. We will thus consider effects of P2X7 and the
pathogen on fusion between host cell phagosomes and
lysosomes, production of reactive oxygen species (ROS) by
the host, and modulation of host cell apoptosis. Finally, we
will discuss microbial enzymes that deplete the P2X7 ligand
and polymorphisms in human P2X7 that influence the
ability to control infection.

Purinergic Signalling (2009) 5:197–204
DOI 10.1007/s11302-009-9130-x

R. Coutinho-Silva :G. Corrêa
Immunobiology Program, Biophysics Institute Carlos Chagas
Filho, Federal University of Rio de Janeiro,
21941–902 RJ, Brazil

A. A. Sater :D. M. Ojcius
School of Natural Sciences, University of California,
Merced, CA 95334, USA

R. Coutinho-Silva (*)
Instituto de Biofísica Carlos Chagas Filho – UFRJ,
Cidade Universitária,
Av. Carlos Chagas Filho no 373, Bloco G do CCS,
21941–902 Ilha do Fundão, Rio de Janeiro, Brazil
e-mail: rcsilva@biof.ufrj.br



Interference with membrane trafficking

Lysosomes are dynamic organelles that receive and degrade
macromolecules from the secretory, endocytic, autophagic,
and phagocytic membrane-trafficking pathways. Many
pathogens that hijack the endocytic pathways to enter cells
have evolved mechanisms to avoid being degraded by
lysosomes [8]. Bacteria such as Salmonella and Mycobac-
terium arrest the maturation of the phagosome at specific
stages of the phagolysosomal route [9, 10]. Intracellular
survival of Chlamydia depends in part on the ability of the
microorganism to inhibit phagolysosomal fusion and
subsequently survive and proliferate within a membrane-
bound compartment called the inclusion [11]. Toxoplasma
parasites infect virtually all mammalian cells, including
macrophages, by active invasion [12]. The vacuole that
surrounds Toxoplasma lacks the membrane proteins that
normally deliver the endosomes to the cell fusion machin-
ery. Thus, the parasitophorous vacuole remains at a neutral
pH, allowing the parasite to survive [13]. Similarly,
intracellular survival of Burkholderia cenocepacia in
macrophages is associated with the pathogen’s ability to
delay maturation of vacuoles that harbor these bacteria [14].

But the host immune system has also evolved to
counteract the evasion strategies of these pathogens; and
binding of extracellular nucleotides to purinergic recep-
tors, especially the P2X7 receptor, can block development
of pathogens that survive in an intracellular vacuole. Thus,
treatment of infected macrophages with ATP kills Myco-
bacterium tuberculosis or Mycobacterium bovis, through a
process requiring phospholipase D (PLD) activation,
fusion between lysosomes and mycobacterial vacuoles,
and acidification of the vacuoles [15, 16]. Likewise, P2X7-
dependent PLD activation and fusion between vacuoles
and lysosomes is involved in inhibition of Chlamydia
trachomatis growth in macrophages [17]. These results
have been extended by recent studies, which show that
P2X7 activation also inhibits chlamydial infection in a
cervical epithelial cell line and in vaginally infected mice
[18]. Activation of PLD may be a general mechanism of
elimination of parasites that normally reside within
intracellular vacuoles that avoid fusion with lysosomes
[19] (Fig. 1). Consistent with this view, we have observed
that extracellular ATP decreases the parasite load in
Toxoplasma gondii-infected macrophages and that this
effect is mediated by P2X7-mediated acidification of the
parasitophorous vacuole (manuscript in preparation).

Avoidance of the toxic effects of reactive oxygen species

Production of ROS such as H2O2 was considered for many
years as an unfortunate, deleterious consequence of aerobic

metabolism. However, it has now become clear that ROS
can also participate as physiological mediators in cell
signaling pathways [20, 21]. Moreover, ROS can contribute
to pathogen killing, and the role of ROS in nucleotide-
mediated cell signaling is attracting growing attention.
Hence, nucleotide receptors have been implicated in
modulating the production of superoxide, H2O2, and other
ROS by several cell types [22–26]. Ferrari et al. [27] had
previously described that nuclear factor (NF)-κB activation
by P2X7 ligation is sensitive to antioxidants, suggesting
that ROS might contribute to this outcome. In addition,
nucleotide receptor signaling in murine macrophages is
linked to ROS generation [26], and ATP treatment can
activate an ROS-dependent oxidative stress response and
secretion of proinflammatory cytokines in macrophages
[28] (Fig. 1). Interestingly, one of the mechanisms by which
ATP triggers apoptosis in macrophages may also involve
ROS, probably via NOX2 [29].

Leishmania parasites enter into macrophages by phago-
cytosis. But unlike the pathogens cited above, Leishmania
does not seek to inhibit fusion between entry vacuoles and
lysosomes. Instead, Leishmania amastigotes display the
interesting ability to survive and replicate within the hostile,
low-pH environment of phagolysosomes [1]. Leishmania
promastigotes interfere with reactive oxygen and nitrogen
species responses in phagocytes [1].

Fig. 1 Pathogen clearance by infected cells. Ligation of P2X7 by
extracellular ATP can promote elimination of intracellular pathogens
(left side). P2X7 signaling can lead to PLD activation and/or ROS
production, both of which can lead to killing of the pathogens. PLD
has its effect primarily through stimulation of fusion between
parasitophorous vacuoles and lysosomes, and subsequent killing of
pathogens in acidic phagolysosomes (right side)
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We have observed that Leishmania infection of macro-
phages modulates P2X7 activity and that extracellular ATP
treatment reduces the parasite load via P2X7 activation
(submitted). In addition, we observed an increase in ROS
levels in infected macrophages after treatment with ATP
and increased parasite survival in ATP-treated macrophages
treated with antioxidants (unpublished data). These findings
suggest that ROS production by the immune system may
contribute to clearance of parasites such as Leishmania that
survive within phagolysosomes.

Prevention of host cell apoptosis

Intracellular pathogens obtain many of their nutrients from
the host cell and also require that their host cells survive
long enough for the pathogen to complete its infectious
cycle (reviewed in [30, 31–34]). Apoptosis is a widespread
mechanism that is central to the maintenance of cellular
homeostasis in all tissues, including the immune system
[35]. Apoptosis, or the lack of apoptosis, contributes to the
pathogenesis of a number of diseases, including acquired
immunodeficiency syndrome, autoimmune disease, and, in
particular, cancer [36, 37]. One may argue that the natural
tendency of infected cells would be to die, mainly in
response to the stress represented by the infection, and that
therefore any successful intracellular pathogen should delay
host cell apoptosis as long as possible.

In fact, Heussler et al. [38, 39] showed that the
intracellular apicomplexan parasite Theileria parva pro-
tects infected T cells from apoptosis through activation of
the transcription factor NF-κB. Another apicomplexan
parasite, Toxoplasma, also modulates activity of NF-κB as
a way of protecting infected cells against apoptosis [40].
Similar strategies are also used by several bacteria, and
NF-κB activation has been shown to insure host cell
survival during Rickettsia rickettsii infection [41]. How-
ever, although Chlamydia infection renders host cells
resistant to apoptosis, the evidence linking NF-κB activa-
tion with Chlamydia infection has been more controversial
[33, 34]. Other parasites that protect the host cells against
apoptosis include T. cruzi, Leishmania, and Plasmodium
[42–44].

Since P2X7 ligation can lead to apoptosis or necrosis of
uninfected macrophages and epithelial cells [45, 46], it
should come as no surprise that some intracellular
pathogens also inhibit P2X7-mediated cell death. In fact,
inhibition of P2X7 signaling appears to be critical for
propagation of some infections, since P2X7-mediated host
cell death has a larger impact on development of
intracellular pathogens than host cell death induced
through other surface receptors. Thus, treatment of M.
tuberculosis-infected macrophages with ATP results in

killing of the intracellular mycobacteria [47, 48]. Treat-
ment of monocytes infected with bacille Calmette-Guérin
(BCG) with H2O2 or ATP kills the monocytes, but only
ATP treatment of the infected monocytes kills the
mycobacteria [48]. In a comparison with other conditions
that can induce lysis of macrophages, such as comple-
ment-mediated cytolysis, Fas ligation, and CD69 activa-
tion, only ATP treatment results in death of both host cells
and intracellular mycobacteria [47].

Infection by several pathogens has now been shown to
inhibit ATP-induced apoptosis of the host cell, including
mycobacteria, chlamydiae, Porphyromonas gingivalis, and
Leishmania [45, 49–51]. However, the mechanism by
which these pathogens protect the host cell has been
characterized mainly for mycobacteria and P. gingivalis
[49, 50], both of which secrete an enzyme, nucleoside
diphosphate kinase (NDK), that consumes extracellular
ATP, thus depriving P2X7 of its physiological ligand.

NDK is ubiquitously expressed in most species with
similar amino acid sequence; however, the quaternary
structure of NDK varies among species. It exists as a
hexamer (humans, rats, pigs, bovine, Drosophila) in most
species and as a tetramer in some bacteria (Myxococcus
xanthus, Escherichia coli) [52]. In 1997, Shankar et al. [53]
purified the 18-kDa NDK from Mycobacterium smegmatis.
Approximately 70% homology was reported between the N
terminus of M. smegmatis NDK and those of P. aeruginosa,
E. coli, and Myxococcus xanthus. Mycobacterium bovis
BCG is capable of secreting NDK upon stimulation with
eukaryotic proteins (bovine serum albumin or ovalbumin)
[50]. Later, recombinant M. tuberculosis NDK was crystal-
lized by Chen et al., who showed that it has 45% sequence
identity to human NDK with similar secondary and tertiary
structures and exists as a hexamer, unlike most other
bacteria [54]. Another group purified NDK from M.
tuberculosis and demonstrated similar structural results to
the recombinant protein [55].

Other ectonucleotidases produced by parasites

Examples of membrane-bound ecto-ATPases have been
described in several parasites. In 1981, a Ca2 + -dependent
nucleotidase was localized and characterized in Entamoeba
histolytica, whose ability to hydrolyze extracellular ATP
increases in the presence of MgCl2 [56, 57] (Fig. 2). In 1987,
a nucleoside triphosphate hydrolase was described in T.
gondii [58]. This hydrolase is present in the tachyzoite form
of T. gondii and was detected as a circulating antigen in the
sera of infected mice. Moreover, avirulent T. gondii strains
express only nucleoside triphosphatase (NTPase) II, whereas
virulent strains express both NTPase I and NTPase II [59].
Another study showed the membrane localization of a
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nucleotide triphosphate hydrolase in Toxoplasma [60], and its
isoform activity was linked with T. gondii virulence [61].
Neospora caninum, also an apicomplexan parasite, expresses
a type I nucleoside triphosphate hydrolase [62]. Recently,
ecto-ATPases have been identified in diverse trypanosoma-
tids, including T. cruzi [63], T. rangeli [64], and T. brucei
brucei [65]. While the physiological significance of some of
these ecto-ATPases remains to be shown, virulent Leishmania
amazonensis promastigotes can hydrolyze ATP by a Mg-
dependent ecto-ATPase more efficiently than avirulent
promastigotes [66]. Mg-dependent ecto-ATPase activity was
also described in Leishmania tropica [67]. In general, high
levels of surface expression of ecto-ATPases correlate with
virulence of the pathogens [19].

P2X7 receptor polymorphisms and their association
with disease susceptibility

Single nucleotide polymorphisms (SNPs) are variations in a
DNA sequence that occur when a single nucleotide in the
sequence is different from the norm in at least 1% of the
population. When SNPs occur inside a gene, they create
different variants, or alleles, of that gene. Genetic factors
may confer protection or increase susceptibility to infec-
tious disease [68, 69].

P2X7 receptor polymorphisms have been described in
several diseases associated with loss- or gain-of-functions
of this receptor. Two P2X7 alleles have been associated
with human diseases. Recently the Thr283 was found to be a
key determinant in P2X7 receptor function [70]. Gu et al.
[71] reported that the A1513C polymorphism is associated
with normal P2X7 protein expression levels and subcellular
localization, but defective pore formation. Functional
analysis in transfected HEK293 cells expressing P2X7

confirmed increased ATP-dependent activation of the
P2X7 489T mutant, compared to the wild-type receptor.
These data identify 489C>T as a gain-of-function polymor-
phism of P2X7 [71]. The A1513C allele has been correlated
with resistance to ATP-induced apoptosis and an increased
incidence of familial chronic lymphocytic leukemia [72–
74]. In addition, a His-155 to Tyr polymorphism confers
gain-of-function to the human P2X7 receptor of human
leukemic lymphocytes [75].

P2X7 polymorphisms are also involved in murine and
human lupus susceptibility [76] and Crohn’s disease [77].
Several lines of evidence link P2X7 polymorphisms with
various diseases such as Alzheimer’s disease [78], bipolar
affective disorders [79], multiple sclerosis [80], and
diabetes [81].

Skarrat et al. [82] identified a splice site mutation that is
an inherited polymorphism in a Caucasian population and
gives rise to a P2X7 null allele in 1–2% of the population.
Similarly, an Arg307 to Gln change within the ATP-binding
site of human P2X7 causes a loss of function of the receptor
[83]. This work raises the possibility that low or absent
P2X7 receptor function due to inherited polymorphisms
may be a genetic susceptibility factor in a range of
infections as diverse as tuberculosis, toxoplasmosis, or
Chlamydia. Individuals who carry two loss-of-function
polymorphisms (compound heterozygotes) in P2X7 may
have the highest susceptibility to infections [83].

In the context of infections by intracellular pathogens,
heterogeneity of ATP-induced killing of BCG was shown in
a small number of patients, suggesting possible genetic
differences in P2X7 [47]. A Gambian study showed a
weakly protective effect against pulmonary tuberculosis for
a polymorphism in the putative promoter [84]. These
findings suggest that P2X7 polymorphisms may contribute
to host immunity to M. tuberculosis infection in humans
[84]. P2X7 is now known to stimulate secretion of the
proinflammatory cytokines, interleukin (IL)-1β and IL-18,
following inflammasome and caspase-1 activation in
macrophages [85, 86]. The Glu-496 to Ala polymorphism
was shown to impair ATP-mediated immune responses
such as the killing of mycobacteria by human macrophages
and the release of IL-1β and IL-18 from human monocytes
[87–89]. Three single loss-of-function mutations in human
P2X7 cause reduced ATP-induced macrophage apoptosis

Fig. 2 Mechanisms of pathogen evasion. Parasites have several
methods to avoid antimicrobial activity of infected cells, including
interference of intracellular signaling pathways (in response to ROS)
and membrane trafficking (via PLD). Successful pathogens (green)
can thus replicate, complete their infection cycle, and escape to the
extracellular environment (right side). In addition, some protozoan
parasites express ecto-ATPases (green with orange hat), which can
contribute to cleavage of extracellular ATP, preventing P2X7R
activation (left side). Some intracellular bacteria also protect the
infected cell by secreting enzymes that consume extracellular ATP
(not shown)
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and killing of mycobacteria [90]. Shemon et al. [91]
reported that another single polymorphism decreases the
response against mycobacterial infection by the host: a
Thr357 to Ser change in homozygous and compound
heterozygous subjects causes absent or reduced P2X7

function and impairs ATP-induced mycobacterial killing
by macrophages. P2X7 gene polymorphisms in Mexican
mestizo patients with pulmonary tuberculosis was associat-
ed with increased susceptibility for M. tuberculosis infec-
tion [92]. In conclusion, various polymorphisms in P2X7

abrogate ATP-induced killing of mycobacteria by human
macrophages and, thus, may contribute to variability in
susceptibility to mycobacterial infections [90].

Infection by T. gondii has also have been studied with
respect to P2X7 polymorphisms. Wiley et al. [93] have
observed severe illness in two compound heterozygotes
whose P2X7 function was totally absent. Moreover Fuller et
al. [94] identified three immunocompetent subjects with
absent P2X7 function due to single nucleotide polymor-
phisms and severe disease due to T. gondii infection.

Taken together, the results from studies on patients with
tuberculosis or toxoplasmosis suggest an important role for
P2X7 polymorphisms in the ability of the immune response
to control infection.

Concluding remarks

For many years, P2X7 on macrophages was studied mainly
with regards to its pharmacological properties and role in
macrophage lysis. A physiological function for P2X7

remained elusive, until more recent studies have shown a
role for P2X7 in promoting proinflammatory responses and
controlling intracellular infection in vitro. Growing evidence
also links P2X7 polymorphisms in humans with susceptibil-
ity to infection, further confirming an antimicrobial role for
P2X7 in vivo. Several pathogens are now known to protect
infected cells against P2X7-dependent apoptosis by produc-
ing ATPases that consume extracellular ATP, and it is likely
that more intracellular pathogens will be shown to similarly
confer resistance against host cell death.
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