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By utilizing the microdialysis technique, we investigated the pharmacokinetic profile of voriconazole in the
interstitium of the lungs and skeletal muscle tissue of rats after a single intravenous dose under healthy and
inflammatory conditions. As expected, voriconazole penetrated excellently into the interstitium of tissues, and
its levels were descriptively almost identical to free concentration-versus-time profiles in plasma.

The clinical efficacy of voriconazole is thought to be strongly
associated with its level of exposure in plasma and the infected
site (1). In contrast, the likelihood for the occurrence of severe
untoward effects, such as neurotoxicity, has been linked to
inappropriate dosing or dosing intervals associated with
plasma trough levels of higher than 5.5 mg/liter (2, 8). In
addition, the pharmacokinetic profile of voriconazole is non-
linear in all species, making adequate drug dosing a very dif-
ficult task in many clinical situations (12). Intrasubject and
intersubject variability was shown to range 100-fold depending
on age, liver function, genetic polymorphism, dose, concomi-
tant medication, and concurrent illness (7).

In the present study, we explored the pharmacokinetic pro-
file of voriconazole in plasma, the interstitium of lung tissue,
and skeletal muscle after administration of a single intravenous
dose of 6 mg/kg body weight in rats (Table 1). We also were
interested to see whether severe inflammation affects voricon-
azole’s pharmacokinetic profile and expanded the present ex-
perimental setting by inducing severe inflammation in a second
cohort of rats. These rats received a single intraperitoneal dose
of 250 �g of lipopolysaccharide (LPS) and showed symptoms
of severe inflammatory response (SIR) within 4 h postadmin-
istration.

The study protocol was approved by the local Animal Wel-
fare Committee. In total, 22 rats were used in the study. How-
ever, only 11 rats (7 were healthy, 4 received LPS) could be
used for data analysis as 3 rats were employed for the optimi-
zation of study procedures. Eight other rats died during study-
related procedures or from complications of SIR. LPS (Esch-
erichia coli serotype 0111:B4; Sigma-Aldrich, Steinheim,
Germany) was administered to male Wistar rats (Charles
River WIGA GmbH, Sulzfeld, Germany) weighing between
300 and 450 g approximately 9 h before the start of anesthesia
and surgical procedures. Death during study procedures was

related to therapy-nonresponsive hypotension, edema of the
lungs, cardiac ventricular fibrillation, or major bleeding.

The concentrations of voriconazole in the interstitial space
fluid (ISF) of skeletal muscle and lung tissue were assessed by
utilizing the microdialysis technique. The principle of micro-
dialysis was described previously in detail (5). Voriconazole
was quantified by a validated high-performance liquid chroma-
tography method, applying moderate modifications (6). The
limit of quantification, accuracy, and precision of the modified
method were 0.1 mg/liter, 12.0%, and 5.2% for plasma and 0.2
mg/liter, 7.5%, and 2.7% for microdialysates, respectively.

Plasma protein binding was intensively investigated previ-
ously and was reported to be 66% in female and male rats.
Free plasma concentrations of voriconazole were calculated
from plasma protein binding data obtained from the medical
literature (10). Pharmacokinetic calculations were carried out
by use of commercially available computer software (Kinetica,
version 3.0; InnaPhase, Philadelphia, PA). Voriconazole shows
a convex plasma pharmacokinetic profile approximately 6 h
after intravenous administration (10) which, in the present
study, precludes the use of the elimination rate constant (ke)
for the calculation of the last voriconazole concentrations.
Thus, the experiment presented here is descriptive only.

From the present data, we obtained circumstantial evidence
that voriconazole penetrates excellently into the ISF of soft
tissues. Severe inflammation as induced by the administration
of high-dose LPS had no descriptive effect on voriconazole’s
concentration-versus-time profiles in plasma, lung tissue, and
skeletal muscle compared to that with healthy conditions (Fig.
1a to c).

The findings of our study are of high clinical relevance as
recent studies suggest that concentrations of hydrophilic anti-
infectives may be markedly reduced in inflammatory states (4,
11). For children and adults, monitoring of voriconazole
plasma concentrations was recently proposed to be advisable
to prevent clinical failure due to underdosing or toxicity related
to excessive dosing (8, 9, 12).

Effective concentrations of voriconazole at the site of infec-
tion are a prerequisite for the successful treatment of serious
fungal infections, but no adequate tool is currently available to
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give an appropriate estimate on voriconazole’s concentration
at the infected site. Thus, we measured the concentrations of
voriconazole in the ISF of lung tissue and skeletal muscle
tissue under inflamed and healthy conditions and compared
these data to corresponding free plasma levels, an approach
which offers several advantages. First, blood can be withdrawn
easily during daily routine clinical measures, and second, the
skeletal muscle compartment has been suggested to serve as an
appropriate surrogate tissue for the estimation of correspond-
ing concentrations of antiinfectives in the ISF of lungs (3),
particularly in cases in which microdialysis probe insertion into
the lung is not feasible (13). In addition, an increasing number
of hospitals are about to offer sensitive and validated methods
for the measurement of voriconazole concentrations in bodily
fluids.

As free concentrations of voriconazole in plasma were al-
most identical to free concentration-versus-time profiles in
lung and skeletal muscle tissue over the entire observation
period of 6 h, it is tempting to hypothesize that the knowledge
of the free fraction in plasma may serve as a good estimate of
voriconazole concentration in the ISF in lung tissue and skel-
etal muscle even under inflammatory conditions (Fig. 1b and
c). Hence, based on single-dose measurements, we offer a
rough estimation of voriconazole concentrations in the inter-
stitium of relevant target sites. We provide evidence that free
voriconazole in plasma equilibrates completely with the extra-
cellular space fluid of lung tissue and skeletal muscle under
inflammatory and healthy conditions (Fig. 1a to c). However, it
is noteworthy to mention that this is a comparison between
observed (tissue) and estimated (free plasma) voriconazole
concentrations and that drug protein binding in plasma may be
affected by LPS-induced severe septic shock. Finally, our data
were derived from a well-performed preclinical experimental
setting with rats and thus need to be verified in a prospective,
controlled clinical trial with human subjects. The major me-
tabolite of voriconazole, N-oxide (UK-121,265), was not mea-
sured in the present study as it is not considered to contribute
to the antifungal efficacy of voriconazole (10).

In summary, based on the concept that the efficacy of vori-
conazole is closely related to drug exposure at the infected site,
we conclude that the measurement of voriconazole concentra-
tions in plasma could help to reduce untoward side effects due
to toxic plasma levels and in parallel may increase success rates
in underdosed patients. Currently available pharmacokinetic-
pharmacodynamic indices and breakpoints for voriconazole

TABLE 1. Pharmacokinetic data of voriconazole in plasma (total) and in muscle and lung tissue after a single intravenous dose of 6 mg/kg
body weight in healthy rats (n � 7) and in rats presenting with SIR (n � 4)a

Group Compartment AUC0–6h
(mg � min/liter) Cmax (mg/liter) Tmax (min) t1/2 (min)

Healthy Plasma (total) 1,179 � 249 5.4 � 1.6 49 � 32 610 � 334
Lung free 608 � 164 2.6 � 0.7 137 � 62 NA
Muscle free 530 � 95 2.2 � 0.4 195 � 91 NA

Inflamed lungs Plasma (total) 1,364 � 187 6.3 � 1.1 15 � 0 677 � 441
Lung free 490 � 159 2.3 � 0.5 112 � 45 NA
Muscle free 507 � 127 2.2 � 0.5 130 � 46 NA

a Data are expressed as means � standard deviation. NA, not applicable; AUC0-6h, area under the concentration-time curve from 0 to 6 h; Cmax, maximum
concentration of drug in plasma; Tmax, time to Cmax; t1/2, half-life (to be used only with caution as the pharmacokinetic profile is convex after 6 h).

FIG. 1. Shown are time-concentration profiles of voriconazole in
plasma (a), lungs (b), and skeletal muscle tissue (c) in healthy rats
(n � 7) and rats suffering from severe symptoms of inflammatory
response after endotoxin challenge with LPS (n � 4). The free
concentration-versus-time profile of voriconazole in plasma (esti-
mated from plasma protein binding data from the literature) rep-
resents the mean of the inflamed (n � 4) and healthy (n � 7) groups
of rats.
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are not yet firmly established, but with some limitations they
may be considered predictive of clinical success and safety.
Their implementation in the strategy and decision making on
appropriate dosing regimens may be advisable.
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