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The genus Yersinia consists of 15 species (www.bacterio.cict
.fr/xz/yersinia.html), and only three of them, Y. pestis, Y.
pseudotuberculosis, and Y. enterocolitica, are pathogenic to
mammals, including humans. The Y. pseudotuberculosis-Y. pestis
evolutionary linkage diverged from Y. enterocolitica between 41
and 186 million years ago, while Y. pestis diverged from Y.
pseudotuberculosis within the last 1,500 to 20,000 years (1, 65).
In accordance with this evolutionary cascade, wide genetic
diversity exists between Y. pseudotuberculosis and Y. enterocolitica,
while very close genetic similarity is found between Y.
pseudotuberculosis and Y. pestis. Y. pseudotuberculosis causes only
nonfatal gastrointestinal disease in mammalian hosts, including
humans, and the disease is transmitted by the food-borne route.
Y. pestis causes plague, which is one of the most deadly diseases
(47). Three pandemics of plague have been recorded in human
history and have claimed hundreds of thousands of lives (47).
Plague is a typical enzootic disease (an infection of the animal
population[s] in one or more confined natural foci without the
need for external inputs), and epidemics of rodent plague are
restricted in various enzootic plague foci especially in Asia,
the Americas, and Africa (80). Compared to its progenitor
Y. pseudotuberculosis, Y. pestis utilizes a radically different
mechanism of transmission in rodent reservoirs that relies
primarily upon biting by flea vectors. This review deals with how
genetic changes (gene inactivation, loss, and acquisition) and
remodeling of gene regulation encourage Y. pestis to switch from
an enteric lifestyle to a mammalian blood-borne lifestyle that
relies on vector-borne transmission.

PROGRESSION OF PLAGUE INFECTION

Rodents and humans acquire Y. pestis by the bite of an
infected flea, contact with infected tissues, or inhalation of
respiratory droplets or aerosols, with manifestations of bu-
bonic, septicemic, and pneumonic plague (47). After the flea
bite, there is an initial subcutaneous and intradermal coloni-
zation, and then the bacteria migrate into the regional lymph
nodes and inflammation, cellulitis, and occasionally large car-
buncles develop around the bubo (bubonic plague) (60). With-
out timely effective treatment, the bacteria will rapidly escape
from containment in the lymph node and spread systemically

through the blood to various organs, causing fatal sepsis (sep-
ticemic plague) (82). An intracellular growth of Y. pestis in
macrophages at early stages of infection is thought to allow this
pathogen to proliferate and to synthesize virulence determi-
nants, enabling the releasing bacteria to acquire the ability to
eliminate the host immune response (39). In addition, second-
ary pneumonic plague could result from hematogenous spread
from the bubo to the lung, presenting in patients as severe
bronchopneumonia, cavitation, or consolidation with produc-
tion of bloody or purulent sputum (82). Primary pneumonic
plague could be caused directly by the inhalation of infectious
droplets or aerosols, with symptoms including acute pneumo-
nia, intra-alveolar hemorrhage and edema, profound lobular
exudation, fibrin deposition, and bacillary aggregation (33).
Both primary and secondary pneumonic plagues are highly
contagious for close contacts by airborne transmission.

ECOLOGICAL AND EPIDEMIOLOGICAL DIFFERENCES
BETWEEN Y. PESTIS AND Y. PSEUDOTUBERCULOSIS

Animals, food, and the abiotic environment are Y. pseudo-
tuberculosis reservoirs from which epizootic and human infec-
tion may arise, and the disease is mild and transmitted by the
food-borne route. In humans, typical symptoms include fever
and right-side abdominal pain. In rare cases the disease may
cause skin complaints (erythema nodosum), joint stiffness and
pain (reactive arthritis), or spread of bacteria to the blood
(bacteremia).

Due to acute and systemic infection, the mortality rate of
plague reaches 70 to 100% without treatment depending on
routes of infection. Y. pestis has a limited ability to live in the
environment, although there is evidence that Y. pestis can live
in soil for up to 30 weeks (3). Maintenance of plague in enzo-
otic plague foci is almost absolutely dependent upon cyclic
transmission between fleas and mammals (80). Blocked fleas
are important for transmission of plague (24). Blockage of
fleas (heavy proliferation of bacteria in the adhesive biofilms in
the proventriculus) makes them feel hungry and repeatedly
attempt to feed, and the plague bacilli will be pumped into the
host body during these futile feeding attempts (25). The de-
velopment of heavy bacteremia (bacterial concentration reach-
ing at least 106 CFU/ml) in hosts is necessary to reliably infect
the fleas (38). Such a high level of bacteremia raises the risk of
hosts’ rapid death. Nevertheless, once some fleas achieve feed-
ing prior to the host’s death, they will seek alternative hosts,
thereby increasing the likelihood of transmission to other in-
dividuals from the hosts (15).

Generally, it takes about 2 weeks for blockage to develop,
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which is not sufficient to explain the high rate of spread that
typifies plague epidemics. Various species of rodent fleas are
immediately infectious after biting a septicemic host and trans-
mit bacteria efficiently for at least 4 days postinfection, and
accordingly the mode of “early-phase transmission” by un-
blocked fleas has been proposed (14). Early-phase transmis-
sion helps explain not only the rapid spread that typifies plague
epidemics but also previous inconsistencies between the rates
of pathogen spread expected from the blocked fleas. It was
suggested that mechanical transmission by unblocked fleas is
significant during epidemics that represent the periods when Y.
pestis can spread rapidly across landscapes but that transmis-
sion by blocked fleas is important primarily during in-
terepizootic transmission (15). In addition, a combination of
early-phase transmission and blocking probably helps to ex-
plain the observed high mortality rates of susceptible host
populations, including humans during the Black Death (74).

The rodent reservoirs, the flea vectors, and Y. pestis consti-
tute a well-balanced biocommunity in the plague foci. Y. pestis
possesses potential to attack humans, and human infection
usually occurs with the transmission of the pathogen from
rodents. Although cases of human plague can be well con-
trolled by timely antibiotic administration, plague still remains
a significant concern for public health because it can be trans-
mitted from person to person through respiratory droplets and
used for bioterrorism and biological warfare (68).

Y. PESTIS VIRULENCE DETERMINANTS SHARED
BY Y. PSEUDOTUBERCULOSIS

Y. pestis has developed specialized strategies for virulence in
hosts and transmission by fleas (Table 1), and many of these
determinants are harbored in the genome of Y. pseudotuber-
culosis.

COLONIZATION AND DISSEMINATION

The major adhesin and invasin, YadA and Inv, respectively,
specific for gastrointestinal infection are inactivated in Y. pestis
(see below), but this pathogen still has additional proteins (Ail
[31], YadBC [20], and YapE [35]) that account for bacterial
colonization and dissemination during infection.

INTRACELLULAR GROWTH

The ability to replicate in macrophages is conserved in Y.
pestis and Y. pseudotuberculosis (53). RipABC (54), MgtCB
(22), Ugd (22), Yfe (48), and Feo (48) have been shown to be
required for the replication of Y. pestis in macrophages. Both
MgtCB and Ugd are positively regulated by the PhoP-PhoQ
two-component system (37) that is important for survival un-
der conditions of macrophage-induced stress and virulence in
Y. pestis (44).

ELIMINATION OF HOST IMMUNE RESPONSE

The plasmid pCD1-borne type III secretion system (T3SS) is
composed of a secretion machinery, a set of translocation pro-
teins, a control system, and six Yop effector proteins (56).
Through the T3SS, pathogenic yersiniae inject effectors into

the cytosol of eukaryotic cells when docking at the surface of
host cells, and the injected Yops mediate suppression of
phagocytosis and the inflammatory reaction (56). Y. pestis uti-
lizes T3SS to selectively destroy innate immune cells that rep-
resent the first line of host defense, thereby preventing adap-
tive responses and precipitating the fatal outcome of plague
(40). Y. pestis still employs pH 6 antigen fimbriae to function as
an antiphagocytic factor independent of Yops (27).

The Tc genes were first identified in the insect pathogen and
encode a protein complex toxic to insects. Tc proteins in Y.
pseudotuberculosis and Y. pestis are not insecticidal toxins but
have evolved toxicity to mammalian cells (23).

Heavy proliferation of Y. pestis in the bloodstream is essential
for its transmission by fleas. Resistance to complement-mediated
lysis (serum resistance) is required for bacterial survival in mam-
malian blood. The Ail protein (4) and lipopolysaccharide (LPS)
(50) promote serum resistance, which appears to be a conserved
mechanism in pathogenic yersiniae.

IRON UPTAKE

In mammals, iron is bound to Fe3�-binding proteins and
hemoproteins, and thus free iron is too rare to sustain bacterial
growth. Iron acquisition is critical for the survival of patho-
genic bacteria during infection. A wide array of iron acquisi-
tion systems have been characterized or annotated for Y. pestis
(21), and at least two (Ybt and Yfe) of them were proven to be
required for full virulence (5). Ybt, also known as the high-
pathogenicity island (59), is essential to iron acquisition at the
site of the flea bite and in the lymphatic system, while Yfe is
likely used in the later stages of the disease, i.e., blood-borne
systemic dissemination (5).

LATERAL ACQUISITION OF NOVEL VIRULENCE
DETERMINANTS BY Y. PESTIS

Lateral gene transfer directly introduces foreign DNA ele-
ments into the host genome, which will effectively alter the
pathogenic characters of bacterial species (42). Y. pestis has
acquired two unique virulence plasmids, pPCP1 and pMT1,
through lateral gene transfer. pPCP1 encodes plasminogen
activator (Pla), while pMT1 encodes murine toxin (Ymt) and
F1 capsule (Table 1).

Pla is essential for bubonic and primary pneumonic plague
(but not primary and secondary septicemic forms), since it
specifically promotes Y. pestis dissemination from peripheral
infection routes (34, 61). At 37°C but not 26°C, Y. pestis ex-
presses a capsule-like antigen, called F1 antigen. F1 provides
Y. pestis the ability to block phagocytosis by a mechanism
different from those of T3SS and pH 6 antigen (13). Ymt does
not play a role in mouse infection (57) but shows phospho-
lipase D activity and is required for survival of Y. pestis in fleas
(26). It was thought that intracellular phospholipase D activity
appeared to protect Y. pestis from a cytotoxic digestion product
of plasma in the flea gut (26).

Unexpectedly, only two chromosomal regions seem to be
specific to Y. pestis (76) (Table 1). They are located in two
different genomic islands probably acquired through lateral
gene transfer (45). These two Y. pestis-specific chromosomal
regions deserve more attention to investigation of their roles in
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virulence and/or transmission by fleas. However, it has been
argued that analysis of more bacterial strains could further
reduce the number of Y. pestis-specific chromosomal genes,
perhaps to zero (7, 45).

DECAY OF REDUNDANT OR DELETERIOUS
FUNCTIONS IN Y. PESTIS

About 13% of Y. pseudotuberculosis genes no longer func-
tion (inactivated or absent) in Y. pestis CO92 (45). Genome
decay (gene loss and inactivation) appears to be closely linked
to flea-borne transmission and increased virulence of Y. pestis
(Table 1).

GENE INACTIVATION

yadA and inv encode the major adhesin and invasin, respec-
tively, in Y. pseudotuberculosis and enable this enteropathogen
to specifically adhere to surfaces of host intestines and invade
lining epithelial cells. Both of them are inactivated in Y. pestis
(30). Urease plays its role in using urea as a source of nitrogen.
Production of urease by the ure operon is necessary for oral
transmission of Y. pseudotuberculosis, but it is inactivated in Y.
pestis due to the mutation causing a premature stop codon in
ureD (33). Since Y. pestis spends its life almost exclusively in a
flea-host-flea cycle, the organism can lose with impunity the
function of urease needed for survival in natural environments.

Y. pestis expresses rough LPS lacking the O antigen, due to
the inactivation of several genes in the O-antigen gene cluster
(52). Y. pseudotuberculosis produces a rough LPS at 37°C but
not at 26°C, and a variable number of LPS genes are seen to be
defective when various biovars of Y. pestis are compared (64).
Expression of rough LPS is essential for Pla activity and viru-
lence in Y. pestis (32). A pathogenic advantage of rough LPS in
Y. pestis is that it enables efficient Pla-mediated bacterial dis-
semination to cause systemic disease.

For the blocked fleas, Y. pestis synthesizes an attached bio-
film in the flea proventriculus and in its midgut posteriorly
(25). Three distinct operons, hmsHFRS, hmsT, and hmsP, are
involved in the synthesis of bacterial extracellular matrix, which
is the primary component of Yersinia biofilm (28). Y. pseudo-
tuberculosis contains all of these hms genes, which are 99%
identical to the Y. pestis homologues (9). In addition to Hms,
several other proteins (GmhA, SpeAC, and YrbH) involved in
biofilm formation by Y. pestis are harbored in Y. pseudotuber-
culosis (Table 1).

Only a small number of Y. pseudotuberculosis strains are able
to form biofilm on Caenorhabditis elegans, and none of them
has the ability to form adhesive biofilms in fleas (17). The
transcriptional regulator RcsA (69) and the glycosyl hydrolase
NghA (16) have been shown to inhibit Yersinia biofilm forma-
tion, but both of them are functional in Y. pseudotuberculosis
but inactivated in Y. pestis (16, 69). Expression of functional
RcsA or NghA in Y. pestis strongly represses biofilm formation
and abolishes flea blockage (16). Therefore, Y. pestis has
evolved the changes in regulatory functions on biofilm devel-
opment to ensure stable biofilm formation in the flea proven-
triculus and to result in efficient arthropod-borne transmission.
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GENE LOSS

Hexa-acylated LPS observed in many gram-negative patho-
gens is able to activate TLR4 signaling and to further stimulate
the host innate immune response (55). The acyltransferase
LpxL is required for addition of the secondary acyl chains to
the tetra-acylated precursor (55). The lpxL gene is absent from
Y. pestis, leading this pathogen to produce tetra-acylated LPS
that inhibits TLR4 activation, which allows this pathogen to
evade the protective inflammatory response and establish fatal
infection (41).

Five additional Y. pseudotuberculosis-specific chromosomal
loci (R1, R3, ORF2, ORF3, and ORF4) required for its sur-
vival, optimal growth, or virulence are absent from Y. pestis
(51) (Table 1). ORF3 and ORF4, with unknown function, are
essential for the viability of Y. pseudotuberculosis, while ORF2
(a putative pseudouridylate synthase involved in RNA stabil-
ity) and R3 (a genomic region composed mostly of genes of
unknown functions) are necessary for its optimal growth in a
chemically defined medium (51). Deletion of R1 (a genomic
region responsible for the methionine salvage pathway) alters
the mutant’s virulence, suggesting that the availability of free
methionine is severely restricted in vivo (51).

REMODELING OF GENE REGULATION

Virulence determinants are tightly and coordinately regu-
lated during infection. Virulence-related regulators can sense
host signals, e.g., changes in temperature, and then differen-
tially regulate not only virulence genes but other large sets of
genes required for adaptation to the host niche (84). A number
of virulence-required regulators have been characterized in Y.
pestis and Y. pseudotuberculosis (Table 1), indicating that re-
modeling of gene regulation contributes to the indicated dif-
ferences between these two pathogens (Fig. 1).

INTEGRATION OF LATERALLY ACQUIRED
VIRULENCE GENES

The global transcriptional regulators cyclic AMP receptor
protein (CRP) (49, 79) and RovA (8, 73) are conserved and
required for virulence in the three pathogenic Yersinia species.
In addition, the Y. pestis CRP is 98.6% identical to the Esch-
erichia coli one with the same length, and CRPs from these two
bacteria share an identical consensus box sequence (TGTGA-
N6-TCACA) that represents the conserved signals for CRP
recognition of promoter DNA (79). Through regulator-pro-

FIG. 1. Remodeling of gene regulation in Y. pestis and Y. pseudotuberculosis. Transcription regulators listed here bind to cis-acting DNA
sequences within the promoters of their target genes and either activate or repress transcription initiation of these targets. Some regulators (e.g.,
CRP) can function as either activators or repressors according to the target promoters. Shown also is autoregulation of some regulators (e.g.,
RovA).
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moter DNA interaction in Y. pestis, CRP activates two laterally
acquired plasmid genes, pla and pst (30, 79), while RovA up-
regulates a genomic region, YPO2272 to YPO2281 (8). The
prophage YPO2272 to YPO2281 is acquired by the Y. pestis
ancestor, and its genome forms an unstable episome in biovars
Antiqua and Medievalis whereas it is stably integrated in bio-
var Orientalis (12, 36). The acquisition of this prophage does
not correlate with flea transmission but contributes to viru-
lence in mice (12). These “newly” acquired virulence genes
have evolved to integrate themselves into the “ancestral” Yer-
sinia regulatory cascade. The plague pathogen integrates lat-
erally acquired genes to coordinate virulence factor expression
within global gene regulatory networks to maintain homeosta-
sis through the infectious life cycle.

ADDITION OF LATERALLY ACQUIRED VIRULENCE
GENE AND ITS OWN SPECIFIC REGULATOR

The pMT1-borne F1 antigen locus is transcribed as two
operons (caf1M-caf1A-caf1 and caf1R) with opposite direc-
tions. Caf1R is a positive transcriptional activator responsible
for the regulation of capsule formation (29). Thus, the newly
acquired caf genes constitute a self-controlling regulatory cas-
cade. According to our microarray expression data, CRP acti-
vated caf1R whereas it repressed the caf1M-caf1A-caf1 operon
(79), and the nucleoid-associated protein Fis stimulates all the
caf genes (unpublished data). Whether these two caf operons
are controlled by the host’s regulators still needs to be eluci-
dated.

DECAY OF REDUNDANT OR DELETERIOUS
REGULATORS/TARGETS

As mentioned above, Y. pestis has evolved the genetic inactiva-
tion of inhibitory functions (RcsA or NghA) on biofilm forma-
tion, which greatly contributes to efficient flea-borne transmission.
RovA and VirF positively control inv and yadA, respectively,
while reductive inactivation of these two targets has occurred in Y.
pestis (see above). However, the upstream regulators RovA and
VirF still function to regulate other virulence genes in Y. pestis,
and both of them are required for virulence of Y. pestis (8, 19).
The established target of the activator RovA is PsaABC (pH 6
antigen) (8), while VirF stimulates several components (YpkA-
YopJ, LcrG/V/D-YopB/D, VirC, YopH, and YopE) of T3SS
(77), which appears to be conserved between Y. pestis and Y.
pseudotuberculosis.

PROBABLE DARWINIAN EMERGENCE OF PLAGUE

Y. pseudotuberculosis harbors a set of functional or structural
determinants including adhesion/invasin, T3SS, pH 6 antigen,
Tc proteins, iron uptake systems, and enzymes for biofilm
formation. Thereby, it has the potential to attack mammals to
cause systemic infection and to be transmitted by fleas. At a
certain stage of history, the change of natural environment
might have led to the dramatic increase of population size or to
behaviors of a certain rodent, probably the woodchuck (70).
This change in animal reservoir might trigger the speciation of
Y. pestis from Y. pseudotuberculosis as a directional positive
selection (Darwinian selection). Y. pseudotuberculosis is found

widely in the environment and is a common cause of animal
infections. The bacteria can invade individual rodents suffering
from cold, hunger, or illness due to drastic in-species compe-
tition or a harsh environment and then are sucked into the
bodies of fleas through flea biting.

Y. pseudotuberculosis or ancestral Y. pestis shares a niche
with other organisms in rodents and fleas, which might allow
the random occurrence of lateral gene transfer. At the same
time, gene loss or inactivation occurs randomly as well. Bene-
ficial events of genetic variations would be stabilized by vertical
inheritance under Darwinian selection. The positive and direc-
tional selection promotes the acquisition of novel virulence
determinants as well as the decay of redundant or deleterious
functions, which would stimulate the emergence of Y. pestis. In
addition, remodeling of gene regulation enables the coordi-
nated regulation of existent and newly acquired virulence
markers. The Darwinian selective advantages contribute to the
demonstrated differences between Y. pestis and Y. pseudotuber-
culosis and favor an ordered buildup of specific combinations
of virulence determinants enabling the establishment and
transmission of Y. pestis as a new clone from Y. pseudotuber-
culosis.

ADAPTIVE INTRASPECIFIC MICROEVOLUTION AND
DIVERSIFICATION OF Y. PESTIS

Y. pestis has been historically divided into three biovars,
namely, Antiqua, Medievalis, and Orientalis, and they are
thought to be linked with the first to third plague pandemics,
respectively. Each biovar has unique genes, a different profile
of inactivated genes, and a distinct genome structure according
to the relevant sequenced genomes. In addition to the above
three classical biovars, another distinct group of strains, called
biovar Microtus (83), are avirulent in primates and some large
rodent species and are thought to be the intermediate evolu-
tionary clade between Y. pseudotuberculosis and Y. pestis (36,
72, 81). Compared to other types of Y. pestis, biovar Microtus
strains have a unique genomic profile of gene loss and pseu-
dogene distribution (36, 72, 81, 83). The specific loss of genes
or gene functions documented for this group of strains is
thought to be responsible for the human attenuation of these
strains, providing candidates for further hypothesis-driven in-
vestigations of virulence microevolution of Y. pestis.

Y. pestis strains in North and South America are clonally
derived from a biovar Orientalis strain due to the third pan-
demic of human plague in the early 20th century and thus
genetically restricted (2). In China, Mongolia, and the former
Soviet Union, there are large areas of enzootic plague foci
containing genetically diverse strains (2). Y. pestis isolates from
these plague foci can be classified into many different geno-
types (also known as genomovars) (2, 10, 36, 72, 81). Accumu-
lation of genetic variations promotes the diversification of Y.
pestis, while distribution of Y. pestis genotypes is plague focus
specific (36, 81). The parallel expansion of plague foci as well
as the directional diversification of Y. pestis within these foci is
likely subject to the action of the complex of interactions be-
tween the environment, the hosts, and the pathogen (81). For
a specific plague focus, Y. pestis genotypes can be assigned into
major and minor genomovars (36). Strains of major genomo-
vars represent the dominant populations in a specific plague
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focus, and they are generally isolated from the main reservoirs/
vectors and distributed throughout the focus. In contrast, the
strains of minor ones account for a very small portion of the
tested stains from the specific plague focus and are distributed
sporadically in a focus or along the border of neighboring foci.
Notably, major and minor genomovars make sense in combi-
nation with the concept of a specific plague focus. The major
genomovar in one plague focus might be the minor one in the
others.

In summary, adaptive microevolution likely promotes diver-
sification of Y. pestis (different major and minor genomovars)
within enzootic foci; major genotypes would play a crucial role
in the maintenance of plague in enzootic foci, whereas minor
ones (likely representing evolutionary dead ends) would make
little contribution to the well-balanced interactions between
environment, hosts, and Y. pestis (36, 81). This speculation still
needs further evidence to show phenotypic effects of gene
loss/gain during microevolution of Y. pestis.

DARWINIAN ADAPTIVE EVOLUTION VERSUS
NEUTRAL GENETIC DRIFT

The driving forces of molecular evolution involve two as-
pects, namely, “genetic drift” and “natural [or Darwinian] se-
lection.” Genetic drift promotes the accumulation of neutral,
random changes in a gene pool, and thus it affects only geno-
typic frequencies within a population and has no phenotypic
causes. Darwinian selection makes alleles more or less wide-
spread in a population due to their effects on fitness advan-
tages; therefore, it influences both phenotype and genotype
components in a population. Darwinian selection impels the
creation of adaptations, while genetic drift does not. Classical
Darwinian evolution refers to the specific selection and fixation
of small allelic variants (point mutations) that confer positive
evolutionary advantage. It is becoming more and more evident
that accumulation of large genomic changes (gene loss/acqui-
sition) can alter the phenotypes in “quantum leaps” during the
evolution of bacterial pathogenesis (43). Herein, selection and
fixation of inactivation, loss, and acquisition of functional
genes are all thought to be under the framework of Darwinian
adaptive evolution.

Although evolved from the mildly pathogenic bacterium Y.
pseudotuberculosis, Y. pestis is a highly virulent pathogen and
has switched from an enteric lifestyle to a mammalian blood-
borne one. For it to become a more virulent pathogen, at least
three adaptive evolution mechanisms were involved to gain
more pathogenic phenotypes: (i) the horizontal acquisition of
genes encoding specific virulence determinants (“gain-of-func-
tion” mechanism), (ii) an appropriate functional inactivation
or loss of preexisting genetic materials (“loss-of-function”
mechanism), and (iii) laterally acquired virulence genes either
with or without their own specific regulators, which evolve to
being integrated into the host’s regulatory cascades to coordi-
nate expression of virulence factors within global gene regula-
tory networks for maintaining homeostasis through the infec-
tious life cycle (“regulation-remodeling” mechanism). Genetic
variations occur randomly, yet only those beneficial to mam-
malian blood-borne infection or vector-borne transmission of
Y. pestis would be stabilized by vertical inheritance under Dar-
winian selection. Darwinian adaptive evolution (rather than

neutral genetic drift) would induce Y. pestis to evolve from Y.
pseudotuberculosis to a newly emerged pathogen that is not
only able to parasitize insects in part of its life cycle but also
highly virulent to rodents and humans, causing pandemics of a
systemic and often fatal disease.

PERSPECTIVES

Comparison of available genome sequences of Y. pestis and
Y. pseudotuberculosis enables us to find genetic differences in
minute detail. Subsequent hypothesis-directed studies have
presented a wealth of experimental evidence that promotes
our understanding of the positive evolution of virulence during
speciation of Y. pestis, whereas phenotypic characterization of
intraspecific microevolution of Y. pestis and its link to expan-
sion of enzootic plague foci is lacking.

Tightly regulated virulence genes are important components
of the global gene regulation network, which is a three-dimen-
sional architecture involving various regulators and structural
genes. Y. pestis has evolved extremely complex signaling and
regulatory pathways that are activated during different stages
of infection. Global comparative analysis of gene regulation
(84) in Y. pestis and Y. pseudotuberculosis would bring a dy-
namic and complete picture of virulence and host adaption in
Y. pestis.

The insertion sequence (IS) elements constitute about 3% of
the whole genome in Y. pestis (67). Due to IS-mediated ho-
mologous recombination, the genome structures of different Y.
pestis strains are markedly different, although their genome
contents and sequences show high similarity (67). There are no
reported data for the IS-mediated recombination event that is
experimentally linked to the virulence evolution of Y. pestis.

An evolutionary “source-sink” model was recently proposed
to detect genetic adaptation of bacterial pathogens, with which
the evolution of bacterial pathogens can be seen from the
angle of continuous switching between permanent (source)
and transient (sink) habitats (66). Virulence habitats are mar-
ginal sink habitats for some pathogens, and virulence-enhanc-
ing genetic adaptation is mostly transient in nature. The adap-
tation to harsh, or “sink,” environments is the supply of
beneficial mutations via migration from a “source” population.
Experimental evidence to support the source-sink model for Y.
pestis needs to be characterized and would provide a concep-
tual framework for understanding the population dynamics
and molecular mechanisms of virulence evolution.
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