The Plasmid of *Escherichia coli* Strain S88 (O45:K1:H7) That Causes Neonatal Meningitis Is Closely Related to Avian Pathogenic *E. coli* Plasmids and Is Associated with High-Level Bacteremia in a Neonatal Rat Meningitis Model[∇]

Chantal Peigne,¹ Philippe Bidet,¹ Farah Mahjoub-Messai,¹ Céline Plainvert,¹ Valérie Barbe,² Claudine Médigue,³ Eric Frapy,⁴ Xavier Nassif,⁴ Erick Denamur,⁵ Edouard Bingen,¹ and Stéphane Bonacorsi¹*

Laboratoire d'Études de Génétique Bactérienne dans les Infections de l'Enfant (EA 3105), Université Paris Diderot, Hôpital Robert Debré, 75019 Paris, ¹ Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91057 Evry Cedex,² Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Atelier de Génomique Comparative, CNRS UMR8030, 91057 Evry Cedex,³ Institut National de la Santé et de la Recherche Médicale U570 and Université Paris Descartes, 75015 Paris,⁴ and Institut National de la Santé et de la Recherche Médicale U722, 75018 Paris, and Université Paris Diderot, Site Xavier Bichat, 75018 Paris,⁵ France

Received 31 October 2008/Returned for modification 12 January 2009/Accepted 15 March 2009

A new Escherichia coli virulent clonal group, O45:K1, belonging to the highly virulent subgroup B2, was recently identified in France, where it accounts for one-third of E. coli neonatal meningitis cases. Here we describe the sequence, epidemiology and function of the large plasmid harbored by strain S88, which is representative of the O45:K1 clonal group. Plasmid pS88 is 133,853 bp long and contains 144 protein-coding genes. It harbors three different iron uptake systems (aerobactin, salmochelin, and the sitABCD genes) and other putative virulence genes (iss, etsABC, omp T_P , and hlyF). The pS88 sequence is composed of several gene blocks homologous to avian pathogenic E. coli plasmids pAPEC-O2-ColV and pAPEC-O1-ColBM. PCR amplification of 11 open reading frames scattered throughout the plasmid was used to investigate the distribution of pS88 and showed that a pS88-like plasmid is present in other meningitis clonal groups such as O18:K1, O1:K1, and O83:K1. A pS88-like plasmid was also found in avian pathogenic strains and human urosepsis strains belonging to subgroup B21. A variant of S88 cured of its plasmid displayed a marked loss of virulence relative to the wild-type strain in a neonatal rat model, with bacteremia more than 2 log CFU/ml lower. The salmochelin siderophore, a known meningovirulence factor, could not alone explain the plasmid's contribution to virulence, as a salmochelin mutant displayed only a minor fall in bacteremia (0.9 log CFU/ml). Thus, pS88 is a major virulence determinant related to avian pathogenic plasmids that has spread not only through meningitis clonal groups but also human urosepsis and avian pathogenic strains.

Escherichia coli is the second cause of neonatal bacterial meningitis in industrialized countries, after group B streptococci. Despite advances in neonatal care, E. coli neonatal meningitis (ECNM) remains a potentially devastating illness, with a mortality rate of 10 to 15% and neurological sequelae in 30 to 50% of cases (8, 20, 28, 29, 62). Like most extraintestinal pathogenic E. coli (ExPEC) strains, ECNM strains mainly belong to phylogenetic group B2 and compose a small number of serotypes (O18:K1:H7, O1:K1, O83:K1, and O7:K1) (2, 11, 12, 33, 41, 49). Virulence genes in ECNM strains are involved in two major pathological steps, namely, intravascular multiplication (leading to high-level bacteremia) and blood-brain barrier penetration (38). A new virulent clone, O45:K1:H7, was recently identified in France, where it now accounts for one-third of ECNM isolates (13). The K1 capsular antigen and the salmochelin siderophore are the only two specific virulence traits

Here we describe the complete DNA sequence, epidemiology, and function of pS88.

Bacteria. Strain S88, a representative of the French clonal group (O45:K1:H7) which accounts for one-third of ECMN isolates in this country, was isolated in 1989 from the cerebrospinal fluid of a newborn (Robert Debré Hospital, Paris, France). This strain is known to harbor a large plasmid (>100 kb) encoding at

known to be shared by this clone and the archetypal strains of clonal group O18:K1:H7, even though the two clonal groups belong to the same highly virulent subgroup B2₁, defined by a specific sequence type (ST) designated ST29_{Whittam} (www.shigatox.net), ST95_{Achtmann} (www.mlst.net), or B2-IX (in Denamur's scheme) (10, 40). Hence, this new clone may serve to identify new virulence determinants and other genetic factors involved in the pathogenesis of ECNM. Strain S88, representative of clone O45:K1:H7, has been sequenced as part of a whole-genome sequencing project (ColiScope [www.genoscope.cns.fr]) at the Evry Genoscope in France. This strain harbors a large plasmid, designated pS88, that encodes the salmochelin and aerobactin siderophores and may be involved in the virulence of S88 (13).

MATERIALS AND METHODS

^{*} Corresponding author. Mailing address: Service de Microbiologie, Hôpital Robert-Debré, 48 blvd. Sérurier, 75395 Paris cedex 19, France. Phone: 33 1 40 03 23 40. Fax: 33 1 40 03 24 50. E-mail: stephane.bonacorsi@rdb.aphp.fr.

[▽] Published ahead of print on 23 March 2009.

TABLE 1. Molecular epidemiology of plasmid pS88 by multiplex PCR of pS88 ORFs performed on 81 K1 *E. coli* strains representative of extraintestinal pathogenic clones causing meningitis and strains of other origins belonging to the highly virulent ST29/B2₁ subgroup B2

											P	resence (of ^b :					
Source	Strain(s) ^a	n	Phylogroup	Sequence O type	Pathotype	cia	cvaA	etsC	iss	ORF 143	tra J ^c	$ompT_{\rm P}$	hlyF	sitA	iroN	iucC	tsh	eitB
Meningitis strains	S10, S38, S50, S78, S132, S145, S161, S169, S206, S267, S205, S272	12	B2	ST29 ^{O45}	NMEC	+	+	+	+	+	+	+	+	+	+	+	_	_
	S2, S4, S26 ^U , S133, S153, S157, S181, S208, S147, S175, S179	11	B2	ST29 ^{O18}	NMEC	+	+	+	+	+	+	+	+	+	+	+	-	-
	S168	1	B2	ST29 ^{O18}	NMEC	+	+	+	+	+	+	+	+	+	+	+	+	_
	S3, S6, S35, S68	4	B2	ST29 ^{O18}	NMEC	_	+	+	+	+	+	+	+	+	+	+	ND	ND
	S69, S131, S203, S46, S96	5	B2	ST29 ^{O18}	NMEC	_	+	+	+	+	-	+	+	+	+	+	ND	ND
	C5 ^U , RS218 ^U , S209	3	B2	ST29 ^{O18}	NMEC	_	_	_	_	_	_	_	_	+	+	_	ND	ND
	S124	1	B2	ST29 ^{O1}	NMEC	_	_	_	_	_	_	+	_	+	+	+	ND	ND
	S158, S136	2	B2	ST29 ^{O1}	NMEC	+	+	+	+	+	+	+	+	+	+	+	_	_
	S166	1	B2	ST29 ^{O1}	NMEC				+	+		+		+	+	+	ND	ND
	S172	1	B2	ST29 ^{O1}	NMEC		+	'	'					+	+	+	ND	ND
	S21 ^U , S108 ^U , S109 ^U , S116 ^U ,	6	B2 B2	ST304 ^{O16}	NMEC	_	_	_	_	_	_	_	_	+	_	+	ND	ND
	S121 ^U , S191 S130	1	D2	ST692 ^{O83}	NMEC		+		+		+		+					
		1	B2	ST696 ^{O83}		+	+	+	+	+	+	+	+	+	+	+	-	-
	S149	1	B2			_	_	_	_	_	_	_	_	+	_	_	ND	ND
	S15 ^D , S57 ^U , S156, S159, S194 ^N , S195 ^N , S196 ^N	7	B2	ST697 ^{O83}		_	+	+	+	+	_	+	+	+	+	+	ND	ND
	S94	1	B2	ST697 ^{O83}	NMEC	+	+	+	+	+	+	+	+	+	+	+	_	_
	S151	1	B2	ST697 ^{O83}	NMEC	+	+	+	+	+	+	+	+	+	+	+	+	_
	S13 ^D , S18 ^U , S210, S76, S79, S197	6	D	ST301 ^{O7}	NMEC	-	-	-	-	-	-	_	-	+	-	+	ND	ND
	S63 ^U	1	D	ST100 ^{O1}	NMEC	_	+	_	_	_	_	_	_	+	+	_	ND	ND
	S58	1	D	ST100 ^{O1}	NMEC	-	_	-	-	-	-	-	-	+	-	+	ND	ND
Non meningitis	HN50, HN113	2	В2	ST29 ^{O2}	UPEC	+	+	+	+	+	+	+	+	+	+	+		
				ST29 ^{O2}	UPEC			+									_	_
strains of	HN30	1	B2			+	+		+	+	+	+	+	+	+	+		
$ST29/B2_1$	HN7	1	B2	ST29 ^{O2}	UPEC	_	+	+	+	+	_	+	+	+	+	+	ND	ND
	NC59, NC28	2	B2	ST29 ^{O2}	Commensal	+	+	+	+	+	+	+	+	+	+	+	_	_
	ECOR62 ^s	1	B2	ST29 ^{O2}	UPEC	+	+	+	+	+	+	+	+	+	+	+	_	_
	ECOR61 ^S	1	B2	ST29 ^{O2}	Commensal	_	_	_	_	_	_	_	_	+	+	_	ND	ND
	BEN1068 ^E , BEN1082 ^E , BEN1090 ^E , BEN1354 ^E	4	B2	ST29 ^{O45}	APEC	+	+	+	+	+	+	+	+	+	+	+	_	-
	LDA5067912, LDA5063391	2	B2	ST29 ^{O2}	APEC	_	+	+	+	+	-	+	+	+	+	+	+	+
	LDA6042253	1	B2	$ST29^{O1}$	APEC	+	+	+	+	+	+	+	+	+	+	+	_	_

^a All strains are from France except when specified by superscript letters (U, United States; D, Germany; N, The Netherlands; S, Sweden; E, Spain).

least two iron uptake systems, namely, salmochelin and aerobactin (13). Other chromosomally encoded ExPEC traits are K1 antigen, P fimbriae with the adhesin PapGII, and yersiniabactin (13). Strain K-12, MG1655, was used as a colicin-sensitive strain. Strain J53, with natural rifampin (rifampicin) resistance, was used for conjugal transfer of plasmids as previously described (51).

To investigate the epidemiology of plasmid pS88, we also used 66 strains representative of the major meningitis clonal groups defined by the combination of their ST (www.shigatox.net) and their serogroup (sequence O types) as previously described (9). Other human and avian E. coli strains (n = 15) belonging to the highly virulent subgroup B2₁, characterized by ST29 (10), were also studied (Table 1).

Sequencing and annotation of the pS88 plasmid. The genome and plasmid of strain S88 were sequenced as part of a whole-genome sequencing project (ColiScope [www.genoscope.cns.fr]) at the Evry Genoscope in France. Sequencing and assembly of pS88 were performed as previously described (7, 50). MaGe (Magnifying Genomes) software was used for gene annotation and comparative analysis of the S88 genome as described elsewhere (50, 63).

Phylogenetic analysis. To determine the genetic relatedness of the *tra* gene clusters in plasmid S88 by comparison with plasmids of other strains, the nucleotide sequences of *tra1*, *traM*, *traS*, *traT*, and *traY* from several *E. coli* conjugative plasmids were extracted from GenBank. The Clustal W program was used to align the

sequences (59). Phylogenetic and molecular evolutionary relationships were examined by using the neighbor-joining method implemented with MEGA 3.1 software (39). Bootstrap confidence values for each node of the trees were calculated over 100 replicate trees.

Epidemiology of pS88-like plasmids by multiplex PCR and pulsed-field gel electrophoresis (PFGE). In order to investigate the epidemiology of pS88 among human and avian E. coli strains, PCR was used to screen for 11 open reading frames (ORFs) or genes scattered throughout the plasmid. The PCR targets and primers are listed in Table 2. The aerobactin and salmochelin genes were PCR amplified as previously described (14). The other nine ORFs or genes were detected with two new multiplex PCR methods (one hexaplex and one triplex). PCR was carried out in a 50- μ l volume with 25 μ l of 2 \times Qiagen Multiple PCR Master Mix (Qiagen, Courtaboeuf, France), 5 µl of 5× Q-solution, 5 µl of a primer mix (with final concentrations in the hexaplex PCR of 0.2 µM for cia, traJ, and ompT_P; 0.1 μM for etsC and ORF143; and 0.05 μM for iss and in the triplex PCR of 0.2 µM for hlyF, cvaA, and sitA), 10 µl of distilled water, and 5 µl of bacterial lysate, using an iCycler thermal cycler (Bio-Rad, Marnes la Coquette, France) under the following conditions: DNA denaturation and polymerase activation for 15 min at 95°C; 30 cycles of 30 s at 94°C, 90 s at 55°C, and 90 s at 72°C; and a final extension step for 10 min at 72°C. Samples were electrophoresed in 3% Resophor gels (Eurobio, France) and then stained with ethidium

^b Strains positive for all 11 screened ORFs belonging to pS88 and negative for two genes (tsh and eitB) found in APEC O2 were considered to harbor a pS88-like plasmid (boldface). ND, not done.

^c traJ of F-like plasmid (as opposed to R-like plasmids).

2274 PEIGNE ET AL. INFECT. IMMUN.

TABLE 2. Oligonucleotides used for mutagenesis and PCR assay^a

Name	Target	Sequence (5' to 3')	PCR product size (bp)	Reference
iroN.P0	iroN	AACTGTGCTCCTGGTTGGGTTGAATAGCCAGGTATCAGTA TGTGTA GGCTGGAGCTGCTT		This study
iroN.P2	iroN	AAGCCCGGCCTGGCTCGTTATAGGTATTCGCCCCTTCAGACATATGA ATATCCTCCTTAG		This study
iut P0	iutA	GCGCCAGCAGTCGCTCAACAAACCGATGATGAAACGTTCGTGTGTA GGCTGGAGCTGCTT		This study
iut.P2	iutA	CCTGCCTTTGTAGTCGTACAGTGACGCTGGGCCGTAACCCCATATGA ATATCCTCCTTAG		This study
sit P0	sit cluster	GGAACACCGCAGCTACGTAAGGTTGTTGATATAGTTATGTGTA GGCTGGAGCTGCTT		This study
sit P2	sit cluster	TGGATTATATCGCCGATGGTTATCCCGAGCATGTCGCCGACATATGA ATATCCTCCTTAG		This study
inter P0		AGAGCGCGTAGCATTCTTATTTCATGAGGAAATTTACCCGTGTGTA GGCTGGAGCTGCTT		This study
inter P2		CTTGCCTCCTCGCCAGTAATGATTAATGGGAATGCTTCCTCATATGA ATATCCTCCTTAG		This study
C1	cat	TTATACGCAAGGCGACAAGG		This study
C2	cat	GATCTTCCGTCACAGGTAGG		This study
iroN.FR1	iroN	TATCTGGCAAGGATGTGAGCTTAACGATCA		This study
iroN.FR2	iroN	CGCAAATTACACAGCAGGTTGTCATGAGTT		This study
iut.FR1	iutA	TTAACTCGCTACACAGCATCTTTGGGCTGA		This study
iut.FR2	iutA	TCAGAACAGCACAGAGTAGTTCAGACCAAA		This study
sit FR1p	sit cluster	GTGCCTAGTCCTCACCTGCTCGATAGCATT		This study
sit FR1c	sit cluster	TAACGCGTCGCCAGCCGGAAACAACCTAAT		This study
sit FR2	sit cluster	GCTAATAACAAGTGTAACCAGTCCGGCAAT		This study
inter FR1	Intergenic	AGGCCATCAGCAAAACACTGATAGTCTGAA		This study
inter FR2	Intergenic	AGCTGGTAAATCAGATTTTGCATGGACTGA		This study
p-omp.1	$ompT_{\rm P}$	GGAAATACAGTAATGCGCCAAT	189	This study
p-omp.2	$ompT_{\rm P}$	TTAGACGGGTATTCGGATGTTT	189	This study
traJ.1	$traJ_{\text{F-plasmid}}$	GAACTCCCTGCATCGACTGT	230	This study
traJ.2	traJ _{F-plasmid}	CTCTGCGACAGAAGCCATTT	230	This study
ORF143.1	ORF143	CTATCGGCTTCCCCTCTTCT	285	This study
ORF143.2	ORF143	CTGCATCTCCAGGACTTTGA	285	This study
etsC.1	etsC	ATCCCATCAACTGGACCAAG	359	This study
etsC.2	etsC	TTCTTCACTGGCATGGACTG	359	This study
cia.1	cia	CGCTGGGGTATGATTCAGAT	456	This study
cia.2	cia	AGAGCATCCGGCTCTCTGTA	456	This study
cva.F	cvaA	ATCCGGGCGTTGTCTGACGGGAAAGTTG	319	35
cva.R	cvaA	ACCAGGGAACAGAGGCACCCGGCGTATT	319	33
issF	iss	CAGCAACCGAACCACTTGATG	323	35
issR	iss	AGCATTGCCAGAGCGCAGAA	323	33
hlyF.R	hlvF	GGCGATTTAGGCATTCCGATACTC	599	35
hlyF.R	hlyF	ACGGGGTCGCTAGTTAAGGAG	599	33
tsh.F	tsh	GGGAAATGACCTGAATGCTGG	420	35
tsh.R	tsh	CCGCTCATCAGTCAGTACCAC	420	35
eitB-F	eit	CAGCAGCGCTTCGGACAAAATCTCCT	380	35
eitB-R	eit eit	TTCCCCACCACTCTCGGTTCTCAAAC	380	35
sitA.F	eu sitA	CGCAGGGGCACAACTGAT	663	52
sitA.F sitA.R	sitA sitA	CCCTGTACCAGCGTACTGG	663	34
iroN.1	suA iroN	GAAAGCTCTGGTGGACGGTA	126	13
		CGACAGAGGATTACCGGTGT		13
iroN.2	iroN ivoC		126	
aer.1	iucC :C	AAACCTGGTTTACGCAACTGT	269	13
aer.2	iucC	ACCCGTCTGCAAATCATGGAT	269	13

^a Oligonucleotide primers used for gene recombination are designated by the suffixes P0 and P2; bold characters in the primer sequences indicate the 20 nucleotides homologous to the *cat* gene sequence. The primers used to control the correct introduction of the *cat* gene are designated by the suffixes FR1 and FR2 and flank the DNA target segment. Oligonucleotides designated by sit FR1p and sit FR1c were used to check for the correct introduction of the *cat* gene in the plasmid and chromosomal *sit* loci, respectively. Oligonucleotides designated by inter P0 and inter P2 amplify a noncoding plasmid region located between ORFs 131 and 132. Oligonucleotide primers from p-omp.1 to the end of the table were used to study the molecular epidemiology of the plasmid. *TraJ*_{F-plasmid} corresponds to the *traJ* gene of F-type plasmids.

bromide and photographed with UV transillumination. In each PCR run, a lysate of strain S88 was used as a positive control. Finally, all strains harboring the 11 pS88 genes were also screened for *eitB* and *tsh* genes using the primers described by Johnson et al. (35).

Plasmid sizes were determined by PFGE of undigested DNAs of strains harboring the 11 pS88 genes. PFGE followed by Southern blot hybridization with an *iroN* probe were performed as previously described (13).

Cure of the pS88 plasmid. Strain S88 was grown for $18 \, \mathrm{h}$ in Luria-Bertani (LB) medium at $37^{\circ}\mathrm{C}$ with shaking. The culture was then diluted to $10^{5} \, \mathrm{CFU/ml}$, and serial concentrations (2.5, 5, and 10%) of sodium dodecyl sulfate were added. After $18 \, \mathrm{h}$ of growth with shaking, the cultures were plated on LB agar. After overnight incubation, 200 colonies were screened for colicin production by pricking them out on LB agar plates overlaid with a suspension of E. coli strain K-12, which is sensitive to colicin. Test strains were assumed to have lost the ColV

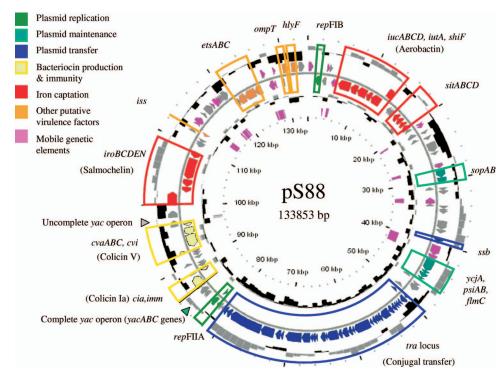


FIG. 1. Circular representation of the *Escherichia coli* strain S88 plasmid (pS88). Circles display (from the outside) (i) GC percent deviation (GC window - mean GC) in a 1,000-bp window, (ii) predicted ORFs transcribed in the clockwise direction, (iii) predicted ORFs transcribed in the counterclockwise direction, (iv) GC skew (G + C/G - C) in a 1,000-bp window, (v) transposable elements (pink), and (vi) coordinates in kilobase pairs (kbp) from the origin of replication. Genes displayed in circles ii and iii are categorized by color as follows: red, iron uptake systems; orange, other putative virulence factors; yellow, bacteriocin production and immunity; pink, mobile genetic elements; dark blue, plasmid transfer; green, plasmid replication; teal, plasmid maintenance; gray, unknown.

plasmid if they were unable to inhibit the growth of strain K-12. This was confirmed, using the PCRs described above, by the loss of the 11 plasmid-related ORFs or genes and by the disappearance of extrachromosomal DNA on agarose gel electrophoresis after plasmid preparation with the relevant colonies (Qiaprep Minispin, Qiagen). For each variant thus obtained, we checked the expression of the K1 capsule antigen and the presence of chromosomal virulence genes, using multiplex PCR as previously described (14).

Mutant construction. S88 mutants were obtained with the PCR-based method of Datsenko and Wanner (19) as previously described, with plasmids kindly provided by Lionello and Nara Bossi (Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France) (47, 50). The primers used for insertional mutation are listed in Table 2. Correct introduction of the *cat* gene into the target was controlled by PCR using primers homologous to the *cat* gene and the flanking region of the target, as previously described (47, 50). For each mutant thus obtained, we checked the expression of the K1 capsule antigen, bacteriocin production, the presence of nondeleted plasmid genes, and chromosomal virulence genes, using multiplex PCRs.

Conjugal plasmid transfer. The *cat* gene was introduced into a nonencoding region of pS88 between ORFs 131 and 132, using the method of Datsenko and Wanner (19), so that the plasmid harbored a chloramphenicol resistance determinant (plasmid pS88*cat*) for the selection of transconjugant clones after conjugal transfer. The cured S88 variant was made resistant to nalidixic acid in order to select transconjugants for pS88*cat* reintroduction.

Donor and recipient cells were grown overnight at 37° C in LB broth. A 10^{-2} dilution was prepared with fresh LB medium. After incubation at 37° C for 2.5 h without shaking, 2.5-ml aliquots of each culture were mixed. After overnight incubation, the mating mixture was harvested and bacteria were plated on selective medium. The transconjugants thus obtained were checked for colicin production and the presence of plasmid-related genes by PCR and by gel electrophoresis of a plasmid extract (Qiaprep minispin; Qiagen).

Experimental models. We assessed the ability of the wild-type strain and mutants to induce high-level bacteremia in newborn rats, as previously described (30). Briefly, pathogen-free Sprague-Dawley rats were obtained from Charles River Laboratories at 4 days of age, with their mothers. At 5 days of age, the pups

were inoculated intraperitoneally with a normal saline suspension containing \sim 500 CFU of the test strain. A tail incision was made 18 h after inoculation, and 5 μ l of blood was sampled. Serial dilutions were plated for CFU counting. Comparisons of bacterial counts in the animal model were based on a two-sample unpaired t test. Data are expressed as mean \pm standard deviation. P values below 0.05 were considered to denote statistically significant differences.

Serum bactericidal activity against E. coli strains was determined using pooled sera of healthy volunteers as previously described (30). To measure bactericidal serum activity, $20~\mu$ l of a bacterial inoculum of $10^8~\text{CFU/ml}$ in physiological serum was added to $180~\mu$ l of freshly thawed pure serum. Quantitative cultures were done 5~h later. Experiments were repeated five times.

Nucleotide sequence accession number. The DNA sequence of pS88 has been deposited in GenBank under accession number CU928146.

RESULTS

Sequencing of pS88. (i) Overview. A complete circularized DNA sequence of plasmid pS88 was obtained. It was 133,853 bp long, with an overall G+C content of 49.28% (Fig. 1). A total of 133 protein-coding genes plus 11 fragments of protein-coding genes corresponding to six pseudogenes were identified in the sequence (Table 3). Globally, based on sequence homologies, the plasmid could be separated into two halves. The first, from base 20,000 to base 86,000, is mostly composed of the genes involved in plasmid-related functions (conjugal transfer, maintenance, and partition); all are almost exclusively transcribed in the clockwise direction, with an average G+C content of 51%. The other half contains most of the putative or known virulence-associated genes, such as those encoding iron uptake systems and factors involved in resistance to the innate

TABLE 3. Predicted ORFs identified on the DNA sequence of plasmid pS88 with their homologs on plasmids pAPEC-O2-CoIV and pAPEC-O1-CoIBM

Position	tion			DAPEC-O2-C	pAPEC-O2-C	pAPEC-O2-ColV homolog	pAPEC-O1-ColBM homolog	IBM homolog
		Gene	ORF	Product		0		٥
Beginning	End				Name	Identity (%)	Name	Identity (%)
132	872	int	0001	Putative site-specific recombinase DanEIB realization protein DanA	O2CoIV23	100	O1CoBM187	99.59
2543	2839	rzdor	0003	Conserved hypothetical protein	O2ColV21	100	O1CoBM185	100
2808 3244	3029 3309		0004	Conserved hypothetical protein Putative transposase (fragment) IS21 family				
3494	3883		9000	Putative fragment of ImpB UV protection protein	O2CoIV19	100	O1CoBM183	100
4063	4566		0007	Transposase InsB (ORF2) ISI	02ColV18	100	O1CoBM2	100
5285	7486	intA	6000	Halisposase hisa (Orall) 151 Ferric aerobactin receptor precursor IntA	O2ColV17	001	O1CoBM168	100
7568	8845	iucD	0010	L-Lysine 6-monooxygenase IucD	O2CoIV14	8.66	O1CoBM169	99.29
8842	10584	iucC	0011	Aerobactin siderophore biosynthesis protein IucC	O2CoIV13	100	O1CoBM170	100
10584	11531	iucB	0012	N(6)-Hydroxylysine acetylase lucb	02ColV12	99.7	O1CoBM171	100
13392	14585	uc.A shiF	0013	Aerobactin sideropnore biosynthesis protein fuca Putative membrane fransport protein ShiF	02ColV11	99.7	O1CoBM173	100
14965	15345	744	0015	Putative membrane protein; CrcB-like protein	O2CoIV8	97.7	O1CoBM174	100
15417	15689		0016	Conserved hypothetical protein	O2CoIV7	100	O1CoBM175	100
15686	16120	C Trick	0017	Putative enolase	O2CoIV6	100	O1CoBM176	100
17442	1/443	sitC	0019	SitU protein, from transport protein, inner memorane component SitC protein, iron transport protein, inner membrane component	O2CoIV4	99.2	O1CoBM178	99.3
18296	19123	sitB	0021	SitB protein, iron transport protein, ATP-binding component	O2CoIV2	100	O1CoBM179	99.64
19123	20037	sitA	0022	SitA protein, iron transport protein, periplasmic-binding protein	O2ColV1	66	O1CoBM180	100
20393	20531	ins.4	0023	ISI repressor protein InsA	O2CoIV182	100		
20695	21090	insB	0025	Fragment of transposase (partial)	O2ColV181	100		
21101	21775		0026	Hypothetical protein			O1CoBM164	100
22203	22682		0028	Conserved hypothetical protein			O1CoBM163	99.37
22800	23249		0029	Conserved hypothetical protein			O1CoBM162	100
23866	25368		0030	Conserved hypothetical protein	701/XI	7 00	O1CoBM160	8.66
23394	27668		0035	rypometical protein Transposase InsA (ORF1) IS/	O2CoIV198	90.4		
27587	28090	insB	0036	Transposase	O2CoIV199	66		
28381	29556	sopA	0037	SopA protein (plasmid partition protein A)	O2ColV161	26.5	O1CoBM3	100
31055	31216	ados	0039	Sopb protein (plasmid partition protein b) Hypothetical protein	O2C0I V 160	5.5.3	O1C0BiM4	100
31244	31591		0040	Conserved hypothetical protein		!		
31654	32235		0041	Hypothetical protein	O2ColV185	25		
33844	34014		0042	Hypothetical protein	O2C01 V 63	6.07		
34073	34519	yubI	0044	Putative antirestriction protein			O1CoBM7	100
34609 34080	34980 351 <i>6</i> 2		0045	Conserved hypothetical protein	02ColV152	36	O1CoBM8	100
36438	37799	ydbA	0047	Conserved hypothetical protein		ì	O1CoBM11	99.56
37847	38410 39848	ydcA	0048	Putative adenine-specific DNA methylase Single-stranded DNA-hinding protein	O2ColV148	51.7	O1CoBM12	100 89 3
39784	40044	yubL	0051	Conserved hypothetical protein			O1CoBM15	84.88
40381	41922		0052	Putative transposase ORFI, IS21 family	02CoIV72	46.8	O1CoBM77	100
41934 42799	42083 44652	vciA	0054 0054	rutative transposase OKF2, 1321 tamily Putative DNA-binding protein involved in plasmid partitioning	O2C0IV/3	6.64	O1CoBM/6	100 96.11
	;			(ParB-like partition protein)	!			į
44704 45138	45141 45857	psiB psiA	0055 0056	Plasmid SOS inhibition protein B Plasmid SOS inhibition protein A	O2ColV145 O2ColV144	97.2	O1CoBM17	99.31 97.49
45991	46290	AmC	0057	Putative F-plasmid maintenance protein C		2	O1CoBM20	48.57
46532 47193	46849 47480	Nduy Oduy	0900	Conserved hypothetical protein Conserved hypothetical protein	O2ColV143	94.7	O1CoBM23	42.86 94.74
47518	48420	yubP	0061	Conserved hypothetical protein	O2ColV142	93	O1CoBM24	98.98
48716 49640	49225 50023	$\sum_{t=0}^{t}$	0062	X polypeptide (P19 protein); putative transglycosylase	02ColV141 02ColV140	94.1 85	O1CoBM25 O1CoBM26	94.08
50129	50899	traJ	0064	Protein Trad (positive regulator of conjugal transfer operon)	O2ColV139	25.5	O1CoBM27	100

99.25 100 100 99.47 100 99.79 100 100 100 100 99.66 92.97 97.98 98.59 98.59	98.05 98.05 93.92 97.94 97.35 97.35 97.55 91.53 94.62 92.86 49.38 96.54 100 95.7	98.75 100 98.51	99.76 98.55 100 100 99.17 99.69 99.76 99.84
01CoBM28 01CoBM39 01CoBM31 01CoBM31 01CoBM33 01CoBM35 01CoBM35 01CoBM36 01CoBM36 01CoBM36 01CoBM39 01CoBM39 01CoBM40 01CoBM41 01CoBM41 01CoBM43 01CoBM41 01CoBM43	OICOBM46 OICOBM49 OICOBM51 OICOBM53 OICOBM53 OICOBM55 OICOBM56 OICOBM61 OICOBM61 OICOBM61 OICOBM61 OICOBM61 OICOBM67 OICOBM67 OICOBM67 OICOBM67 OICOBM67 OICOBM129 OICOBM129	OI CoBM81 OI CoBM82 OI CoBM84	OICoBM124 OICoBM131 OICoBM131 OICoBM137 OICoBM138 OICoBM139 OICoBM139 OICoBM139 OICoBM140
53.2 96.7 100 100 84.4 90.2 98.3 98.3 98.4 98.4 98.4 98.4 98.5 98.5	98.4 99.4 99.2 100 100 99.6 97.7 97.9 97.9 97.9	26.7 100 97.5 100 100	100 100 100 99.6 99.2 100 100
02ColV138 02ColV137 02ColV135 02ColV135 02ColV133 02ColV131 02ColV125 02ColV125 02ColV125 02ColV125 02ColV125 02ColV125 02ColV125 02ColV125 02ColV125 02ColV125 02ColV125 02ColV125 02ColV125 02ColV125 02ColV125 02ColV125 02ColV125 02ColV125	02ColV120 02ColV118 02ColV117 02ColV114 02ColV113 02ColV111 02ColV100 02ColV100 02ColV100 02ColV100 02ColV100 02ColV100 02ColV100 02ColV100 02ColV100	O2ColV188 O2ColV67 O2ColV67 O2ColV66 O2ColV66	02ColV64 02ColV63 02ColV98 02ColV59 02ColV57 02ColV55 02ColV55 02ColV54 02ColV54
Protein TraY (conjugative transfer: oriT nicking) Fimbrial protein precursor TraA (Pilin) F pilus assembly protein TraE F pilus assembly protein TraB F pilus assembly protein TraB F pilus assembly protein TraB Putative conjugal transfer protein TraD Conserved hypothetical protein TrbD Conserved hypothetical protein TrbG F pilus assembly protein TraV Putative conjugal transfer protein TraC F pilus assembly protein TraC F pilus assembly protein TraC F pilus assembly protein TraU	F pilus assembly protein TraF F pilus synthesis protein TraO F pilin synthesis protein TraO F pilus assembly protein TraD Conjugal transfer protein TraH Mating contact stabilization protein TraG Surface exclusion inner membrane protein TraS Complement resistance and surface exclusion outer membrane protein TraT Conjugal transfer coupling protein TraI (DNA helicase I) F pilin acetylase TraX Fertility inhibition protein FinO (conjugal transfer repressor) Conserved hypothetical protein YigA Putative nuclease YigB Replication regulatory protein RepA2 (protein CopB) Replication initiation protein TraC Conserved hypothetical protein TraC Conserved hypothetical protein TraC Conserved hypothetical protein TraC Putative plasmid stabilization system protein YacB Putative exoribonuclease YacC	Colicin-Ia Colicin-Ia Colicin-Ia immunity protein Conserved hypothetical protein YbaA Conserved hypothetical protein YdeA Conserved hypothetical protein YdfA Putative acetyltransferase Predicted deliydrogenase Predicted deliydrogenase Predicted delydrogenase Colicin V immunity protein Colicin V precursor (microcin V bacteriocin)	Colicin V secretion/processing ATP-binding protein CvaB Colicin V secretion protein CvaA Conserved hypothetical protein YacA, possible repressor Fragment of putative plasmid stabilization protein YacB Fragment of conserved hypothetical protein YacA Putative phospho-2-dehydro-3-deoxyheptonatealdolase IroB, sumochelin siderophore receptor IroE, putative hydrolase IroC, ATP binding cassette (ABC) transporter homolog IroC, ATP binding cassette (ABC) transporter homolog
0065 0066 0067 0069 0070 0071 0073 0075 0077 0077 0078 0078 0080	0085 0085 0086 0087 0089 0091 0093 0095 0096 0096 0096 0099 0099 0100 0100 0100	0104 0106 0108 0109 0110 01112 01113 01114	0116 0117 0118 0119 0120 0121 0123 0125 0126 0126
ray ral ral ral rak rak ral ral ral ral ral ral ral ral	rrafe rrago	cia imm ybaA ydeA ydfA cvi	cvaB cvaA yacA yacB ybaA iroN iroE iroC iroC iroC
51393 52117 52117 52105 52420 53420 53420 55611 55611 55611 5561 56386 56742 56386 56742 56386 66541 61530 61530 64266	65002 66300 66300 66592 67965 77965 72069 74474 79444 80510 81125 81125 8115 82424 83574 84759 85931	87997 88354 88354 89350 89607 90572 91346 91761 92116	94671 95938 96535 96818 96997 97404 98998 102013 103014 104328 108091
50992 51426 51806 52139 52139 52692 534837 55623 55623 55623 55623 55623 56902 56902 56902 56902 56902 60538 61536 64006	64229 65735 66230 66539 66589 66589 66589 70791 71239 72321 74474 79764 80514 81563 81658 82164 82705 84490 84756	86117 88019 88483 88760 89347 89900 90408 91318 911318	92575 94664 96549 96549 96815 97096 97096 97864 99851 102058 103099 104432

PEIGNE ET AL. Infect. Immun.

Position		Gono	ODE	Droduct	pAPEC-02-0	pAPEC-O2-CoIV homolog	pAPEC-01-ColBM homolog	BM homolog
Beginning	End	Oelle	ON	TORROLL TORROLL	Name	Identity (%)	Name	Identity (%)
110582	111217		0130	Conserved hypothetical protein	O2CoIV51	95.6	O1CoBM143	100
111327	111632		0131	Conserved hypothetical protein	O2CoIV50	66	O1CoBM144	100
112196	112378		0132	Hypothetical protein	O2CoIV49.2	100		
112492	112785	iss	0133	Iss (Increased serum survival)	O2CoIV49	100	O1CoBM146	100
113412	113777	vqiG	0134	Transposase ORF A, IS2	O2CoIV48.2	9.66	O1CoBM126	100
113735	114640	yqiG	0135	Transposase ORF 2, IS2	O2CoIV48	97.3	O1CoBM149	100
115306	115449	•	0136	Hypothetical protein			O1CoBM150	100
115864	117057		0137	Conserved hypothetical protein; putative GTPase	O2CoIV47	100	O1CoBM151	99.75
117190	117507		0138	Putative transposase ORF B (fragment), IS2	O2CoIV46	100	O1CoBM152	100
117694	118560		0139	Putative transposase (fragment)	O2CoIV45	95.8	O1CoBM153	100
118538	118648		0140	Putative transposase (fragment)	O2CoIV45	83.9		
118697	119083		0141	Putative transposase (fragment)	O2CoIV45	93	O1CoBM154	100
119120	119308		0142	Conserved hypothetical protein			O1CoBM155	100
119318	120259		0143	Conserved hypothetical protein			O1CoBM156	100
121056	122426	etsC	0146	Putative type I secretion outer membrane protein EtsC	O2CoIV35	100	O1CoBM199	100
122430	124370	etsB	0147	Putative type I secretion ATP-binding protein EtsB	O2CoIV34	6.66	O1CoBM198	99.85
124367	125575	etsA	0148	Putative type I secretion membrane-fusion protein EtsA	O2CoIV33	7.86	O1CoBM197	99.75
126448	126738		0149	Putative transposase ORF B (fragment), IS3 family			O1CoBM196	100
126687	126860		0150	Putative transposase ORF B (fragment), IS3 family			O1CoBM71	100
127008	127898		0151	Transposase ORF B, IS3 family, IS51 group	O2CoIV95	99.2	O1CoBM194	100
127895	128221		0152	Transposase ORF A, IS3 family, IS51 group	O2CoIV96	93.5	O1CoBM192	100
128405	128563		0153	Putative transposase ORF B (fragment), IS3 family, IS407 group	O2CoIV29	98.1	O1CoBM154	100
129343	129732		0154	Hypothetical protein	O2CoIV27	6.96	O1CoBM155	100
129836	130789	$ompT_{ m P}$	0155	Outer membrane protease (omptin)	O2CoIV26	100		
131222	132331	hyF	0156	Hemolysin HlyF	O2CoIV24	100	O1CoBM189	100
132394	133302		0157	Conserved hypothetical protein; putative Mig-14 protein			O1CoBM188	29.66

TABLE 3—Continuec

immune system (see below); they were transcribed in both directions and showed sharp deviations from the average G+C content (29.9% to 63.6%), suggesting a foreign mosaic origin. Thirty-five ORFs of unknown function and 14 insertion sequence-like genes were scattered throughout the plasmid. Two different colicins, colicin Ia and colicin V, along with their immunity protein, were encoded by pS88.

- (ii) Replication, transfer, and maintenance regions of pS88. Plasmid pS88 harbors two replicons. The first replicon region, RepFIB, contains the typical replication gene repA and the site-specific integrase int (55). The second, RepFIIA, encodes the CopB repressor and the RepA1 replication proteins. Thus, pS88 appears to belong to both the IncFI and IncFII incompatibility groups. The complete F-like transfer region of pS88 spans 31,485 bp and contains 32 genes (from traM to finO). The DNA sequences of the three regulator genes traM, traJ, and traY, relative to publicly available databases, appear to be characteristic of an F-type plasmid rather than an R1-type plasmid (15) (Fig. 2). None of the other tra genes were discriminated (as exemplified by traT), except for traS, which was closer to that of R1-type plasmids (Fig. 2). Upstream of the transfer locus lie genes involved in single-stranded DNA transfer; ssb, the gene encoding single-stranded binding protein; and psiA and psiB, plasmid SOS inhibition genes (6). Two loci putatively involved in plasmid maintenance were identified. One, close to the transfer region, was composed of the sopA and *sopB* genes, coding for the plasmid partition proteins (45). Located downstream of the RepFIIA replicon, the yacABC operon may represent a toxin-antitoxin plasmid stability system of which a second copy, albeit truncated, lies between the colicin V and salmochelin operons.
- (iii) Putative virulence region of S88. The putative virulence region of pS88 harbored three different iron uptake systems, namely, aerobactin (iucABCD and iutA), salmochelin (iroBCDEN), and the sitABCD genes (35, 53). The sitABCD genes were also chromosomally integrated. The other putative virulence genes found on pS88 were the increased serum survival gene iss, involved in complement resistance (17); the etsABC genes, encoding a putative type 1 secretion system (35); ompT, encoding an outer membrane protease (58); and hlyF, encoding a hemolysin (44). The S88 ompT gene is 100% homologous to the APEC O2 and O1 plasmid orthologs (34, 35) but differs significantly from the common E. coli chromosomal ompT gene. Therefore, we designate this gene ompTp (ompT of plasmids).
- (iv) Comparison with other plasmids. BLAST comparisons of the overall pS88 sequence with other sequences revealed that pS88 is closely related to pAPEC-O2-ColV and pAPEC-O1-ColBM (Table 3). These plasmids (184,501 and 174,240 bp, respectively) came from avian pathogenic *E. coli* (APEC) O2:K1 and O1:K1 strains causing colibacillosis in chickens (34, 35). Alignment of the three plasmid sequences using the online comparison tool WebACT Artemis (1) is shown in Fig. 3. The line plot revealed several large blocks of highly homologous DNA between pS88 and the two APEC plasmids. Depending on the region examined, the genes and their organization were more similar to pAPEC-O1-ColBM or to pAPEC-O2-ColV. The virulence region, from the locus *iroBCDEN* to the locus *sitABCD*, appears to be highly homologous to the virulence region of pAPEC-O2-ColV (the "conserved" virulence region

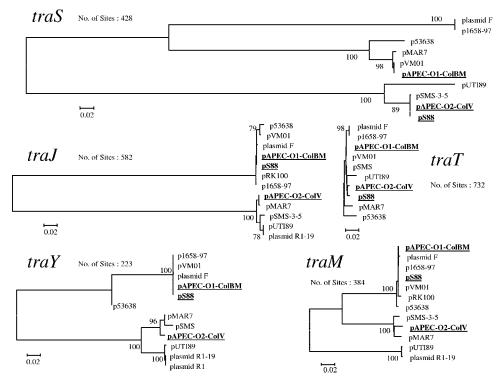


FIG. 2. Phylogenetic trees generated by the neighbor-joining method for *traJ*, *traM*, *traS*, *traT*, and *traY* sequences of several reference *E. coli* conjugative plasmids. Numbers at the branches are bootstrap proportions (displayed if >75) obtained from 100 replicates. Sequences were extracted from GenBank, except for plasmid pS88: pAPEC-O2-ColV (strain APEC O2; accession number AY545598), pAPEC-O1-ColBM (strain APEC O1; accession number DQ381420), plasmid F (accession number AP001918), p1658-97 (accession number AF550679), p53638 (accession number CP001064), pMAR7 (accession number DQ388534), pRK100 (accession number AY230886), pSMS-3-5 (accession number CP000971), pUTI89 (accession number CP000244), pVM01 (accession number EU330199), and plasmid R1 (accession number X13681) and its derepressed mutant pR1-19 (accession number M19710). Plasmid pS88 and the two APEC plasmids pAPEC-O2-ColV and pAPEC-O1-ColBM are highlighted in bold.

described by Johnson et al. [35]) and to have a highly similar organization (Fig. 3). In contrast, a block of DNA containing the loci etsABC, hlyF, and $ompT_P$, central to the virulence region of pS88, was inverted and relocated to the end of the virulence region in pAPEC-O1-ColBM. As expected, the transfer loci were highly homologous, but in pS88 the three transfer regulator genes traM, traJ, and traY (at the beginning of the tra operon) had a higher percent identity to those of pAPEC-O1-ColBM than to those of pAPEC-O2-ColV (100%) versus 85%, 99% versus 25%, and 99% versus 53%, respectively). The contrary was observed for traS (Fig. 2). Between the locus tra and the virulence region in pS88 lies a small region containing the colicin Ia and V operons and the partially duplicated yacABC operon. This contrasts with the presence at this location of a larger region in both APEC plasmids, harboring putative virulence loci such as eit and tsh (the "variable" virulence region described by Johnson et al. [35]). However, these "variable" virulence regions contain the complete ColV operon in pAPEC-O2-ColV, as in pS88, while it is truncated in pAPEC-O1-ColBM. Finally, the maintenance region downstream of the virulence region appears to be more closely related to the corresponding region of pAPEC-O1-ColBM than to that of pAPEC-O2-ColV. For example, the partition system present in pAPEC-O2-ColV (parAB) differs from that of pAPEC-O1-ColBM and pS88 (sopAB).

Molecular epidemiology of the plasmid. The distribution of 11 ORFs or genes scattered throughout pS88 in a representative collection of worldwide human meningitis strains and in several nonmeningitis E. coli strains genetically related to S88 is shown in Table 1. Strains positive for all 11 screened ORFs were also screened for eitB and tsh genes, representing the "variable" virulence region. Strains harboring all 11 pS88 genes and lacking the "variable" virulence region were considered to harbor a pS88-like plasmid. Among human meningitis strains, a pS88-like plasmid was frequently observed in the highly virulent subgroup B2₁ defined by a specific ST (ST29_{Whittam} [www .shigatox.net], $ST95_{Achtmann}$ [www.mlst.net], or B2-IX of Denamur's scheme) (10, 40). Indeed, a pS88-like plasmid was found in all the ST29^{O45} strains and about half the ST29^{O18} and ST29^{O1} strains. Outside of this subgroup ST29/B2₁, a pS88-like plasmid was observed in a few (2/11) O83:K1 strains (ST697^{O83} and ST692^{O83}) and never in other major-sequence O-type strains (ST304 O16 , ST301 O7 , and ST100 O1). As this plasmid appears to be highly frequent in group B2 and especially in subgroup ST29/B21, we investigated several nonmeningitis human and nonhuman strains belonging to the ST29/ B2₁ subgroup. Interestingly, the four ST29^{O45} APEC strains from Spain also harbored a pS88-like plasmid. Among the ST29^{O2} strains, the pS88-like plasmid was found in several human strains, including strain ECOR62 but not strain

2280 PEIGNE ET AL. Infect. Immun.

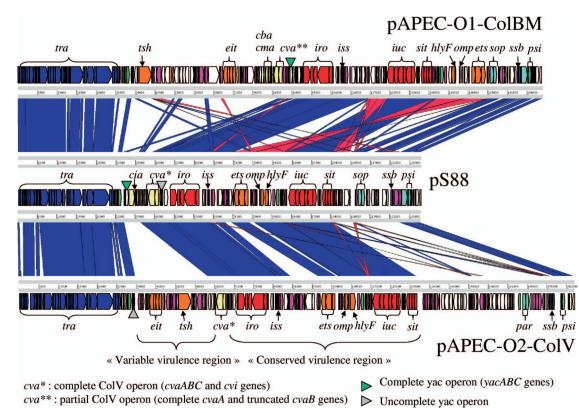


FIG. 3. Comparison of plasmid pS88 (133,853 bp) with plasmids pAPEC-O1-ColBM (174,241 bp) and pAPEC-O2-ColV (184,501 bp) using the line-plot representation of homologous regions. For convenience, the *traM* start codon was chosen as the beginning of the three sequences. Strand conservations are indicated in blue and strand inversions in red. Genes displayed are categorized using the color scheme described in Fig. 1. Variable and conserved virulence regions are defined as previously described by Johnson et al. (35).

ECOR61; the two ST29^{O2} APEC strains harbored a pS88-close plasmid that was PCR negative for cia and $traJ_{\text{F-plasmid}}$, suggesting the presence of a pAPEC-O2-ColV-like plasmid.

PFGE of undigested DNAs of several strains representative of different sequence O types positive for the 11 pS88 genes showed that all harbored a plasmid of about 130 kb hybridizing with the *iroN* probe (Fig. 4).

Overall, our molecular epidemiology studies indicate that the pS88-like plasmid is not restricted to France, as such plasmids can be found in strains from the United States, Spain, or Sweden, and not only to meningitis strains (Table 1).

Functional analysis. (i) Plasmid curation and experimental virulence. Exposure to sodium dodecyl sulfate yielded S88 variants at a high rate (99%). One of these variants (CH7) was markedly less virulent than the wild-type strain in the animal model, with a level of bacteremia at least 2 log CFU/ml lower in two separate experiments (Table 4). To confirm that this was due to the loss of pS88, we complemented the S88 variant with pS88cat, using a double-conjugal plasmid transfer method. Virulence was fully restored with the complemented strain, designated S88E (Table 4). Comparative experiments with growth in serum showed that S88 and S88E were more resistant to serum bactericidal activity than CH7, with a mean difference of 1.1 log CFU/ml (P < 0.05) after 5 hours of incubation (data not shown).

(ii) Mutagenesis. As we have previously shown that *iroN* has a role in the virulence of strain C5 (O18:K1:H7) (47), we

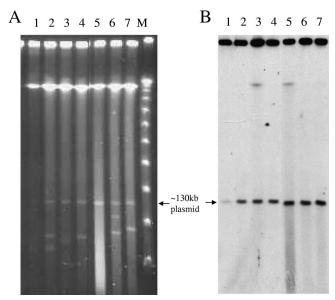


FIG. 4. (A) PFGE of undigested DNAs from seven representative strains harboring the 11 ORFs characteristics of pS88. Lane 1, S145; lane 2, Ben1068; lane 3, S4; lane 4, S133; lane 5, S94; lane 6, HN30; lane 7, ECOR62; lane M, molecular size marker (50-kb DNA ladder). (B) Hybridization with *iroN*-specific probe on a Southern blot.

TABLE 4. Mean bacteremia values in a neonatal rat model challenged with S88 and its mutants, variants, and transconjugants

Expt and strain	Strain description	No. of infected animals	Mean level of bacteremia, log CFU/ml (SD)
1			
S88	S88 wild type	10	6.02 (1.52)
CH7	S88Δp	10	$3.54 (0.71)^a$
2			
S88	S88 wild type	10	5.26 (1.9)
S88E	S88 Δ p (pŠ88cat)	10	5.95 (1.65)
3			
S88	S88 wild type	13	6.50 (1.67)
CH1	S88 (iroN::cat)	13	$5.67 (1.87)^b$
4			
S88	S88 wild type	9	6.17 (0.81)
CH23	S88 (iut::cat)	9	5.85 (1.56)
5			
S88	S88 wild type	14	5.71 (1.20)
CH19	S88 (sit::cat)	14	5.54 (1.35)

 $^{^{}a}P < 0.05$ versus S88 bacterial count in experiment 1.

examined its involvement, as well as that of the other two iron uptake systems (aerobactin and the *sit* operon), in the virulence linked to pS88. Only *sitABCD* was also present on the chromosome. A CH1 mutant with the salmochelin receptor gene (*iroN*) disrupted was slightly less virulent than the wild-type strain, with a decrease in bacteremia of 0.9 log CFU/ml (Table 4). Two other mutants were also constructed: CH19, which lacks both the chromosome- and plasmid-encoded copies of the *sit* operon (double deletions were obtained in one step of mutagenesis), and CH23, which lacks the aerobactin receptor. The virulence of these two mutants was similar to that of the wild-type strain (Table 4).

DISCUSSION

S88, the representative strain of the recently described French meningitis clone O45:K1:H7, harbors only a few of the specific virulence factors, such as the K1 capsule antigen and salmochelin, known to influence the onset of meningitis in newborns (13). The E. coli genomic project ColiScope, which include the sequencing of S88, provides the opportunity to discover new genetic determinants involved in the virulence of this clone. Indeed, we recently demonstrated the major role of the O-antigen gene cluster, which, surprisingly, encodes a new O antigen slightly different from the O45 reference antigen (50). Sequencing of S88 revealed the presence of a large plasmid encoding two bacteriocins: colicin V and colicin Ia. Although ColV plasmids have long been known to contribute to the virulence of ExPEC strains (3, 4, 54, 57, 64, 66), pS88 is the first ColV plasmid of a human ExPEC strain to be entirely sequenced. However, ColV plasmids have also been linked to APEC virulence, and recently an APEC ColV plasmid (pAPEC-O2-ColV) and a related plasmid (pAPEC-O1-ColBM) have been sequenced (34, 35).

Comparison of pS88 with other sequenced plasmids re-

vealed strong homologies with pAPEC-O2-ColV and pAPEC-O1-ColBM. One of the most striking homologies involves a "conserved" virulence region in APEC plasmids. This region contains numerous known or putative virulence determinants (iroBCDEN, iss, etsABC, ompT_P, hlyF, iucABCD/iutA, and sitABCD) but also ORFs of unknown function, which are all present in the three plasmids in a DNA block less than 60 kb long. Several of these virulence genes have been described as chromosomally encoded in pathogenicity islands, including the salmochelin locus in PAI III₅₃₆ (16), the aerobactin locus in PAI I_{CFT073} (65), and the sitABCD locus in Salmonella pathogenicity island 1 (31), or on phage-related DNA, such as iss in several wholly sequenced uropathogenic E. coli (UPEC) genomes (37). In contrast, the three contiguous putative virulence determinants etsABC, $ompT_P$, and hlyF have never been described on the chromosomes of E. coli or related species, including those examined for the ColiScope project. These genes may therefore be plasmid specific and represent a signature for the presence of a virulence plasmid in a given strain. The absence of these three genes in E. coli chromosomes suggests that they were acquired more recently than other virulence traits that have been integrated in either the chromosome or the plasmid. Their marked %GC differences (48%, 43%, and 38%, respectively) indicate that this nucleus was constructed step by step rather than being acquired "en bloc." This is supported by the fact that hlyF can be found alone in plasmid p1658-97 (accession number AF550679) and associated with $ompT_P$ (but without ets) in plasmid pSMS-3-5 (accession number CP000971).

The other region showing strong DNA homology with APEC plasmids was, as expected, the transfer region. However, several interesting features were noted. traY, one of the three regulatory genes of the tra locus, was used initially by Boyd, and since by several other authors, to discriminate between F- and R1-type plasmids (15, 32). Phylogenetic relatedness inferred from publicly available DNA sequences of traY and the two adjacent genes, traJ and traM, clearly show that pS88 may be considered an F-plasmid, like pAPEC-O1-ColBM, while pAPEC-O2-ColV is closer to an R1-type plasmid. None of the other genes, except for traS, could discriminate, owing to their strong homology (traT for instance). Interestingly, traS was paradoxically closer to that of pAPEC-O2-ColV than to that of pAPEC-O1-ColBM. This supports the mosaic structure of the pS88 transfer locus, in keeping with the results of previous tra sequence analyses (15). In contrast to genetic and biochemical mechanisms, we know little of the environmental and physiological factors that affect conjugal transfer, even though they are likely to play an important role (23). The striking segregation of the three regulatory genes, and especially traJ, into two groups may correspond to two different regulatory systems adapted to two different environments or two different lifestyles. Of note, traJ of the R1-like plasmid is known to have a role in the virulence of the major neonatal meningitis clone O18:K1:H7 (represented by strain UTI89 in Fig. 2) (5). In this clone, TraJ contributes significantly to the survival of E. coli K1 inside professional phagocytes (27). Therefore, it would be of interest to determine whether the distantly related pS88 traJ gene (related to an F-like plasmid) has a similar or a different role.

One particular feature of pS88 is the cooccurrence of the

 $^{^{}b}P < 0.05$ versus S88 bacterial count in experiment 3.

2282 PEIGNE ET AL. INFECT. IMMUN.

two bacteriocins ColV and ColIa. Cells producing two bacteriocins can kill single colicin producers and have fitness advantages, as bacteriocin can be produced under different conditions of stress (25). In a collection of 1,308 animal and human E. coli strains, Jeziorowski and Gordon showed that colicin Ia and colicin V were both present in a given strain more often than would be expected by chance and that the two bacteriocin genes were carried on a single plasmid (32). Based on sequence polymorphism analysis of the two operons and their rate of occurrence, it has been postulated that this coassociation may result from the bacteriocin V operon moving onto colicin Ia plasmids (32). The first complete sequence of a plasmid harboring both bacteriocins throws light on the coevolution of the two bacteriocins. First, we found that the two bacteriocin loci were located close together. This would facilitate their horizontal cotransfer on plasmid DNA segments. Although we observed no mobile genetic elements flanking the ColV and ColIa loci, the locus yacABC upstream of the ColIaencoding genes was partially duplicated downstream of the ColV genes, possibly indicating a recombination event in which the two colicins were acquired in a single step. Therefore, pS88, which resembles pAPEC-O2-ColV and pAPEC-O1-ColBM, may have evolved by cotransfer of bacteriocins Ia and V with a recombination event between two conserved regions, the virulence region and the transfer region. This cotransfer might have provided the host strain with a fitness advantage and have favored the spread of this plasmid to different clonal

Our molecular epidemiology studies of pS88 indicates that the pS88-like plasmid is not restricted to the virulent O45: K1:H7 clone but is also distributed, albeit less frequently, in other E. coli clonal groups such as O18:K1, O1:K1, O2:K1, and O83:K1. Intriguingly, these clones (except for the less extensively studied group O83:K1) may possess the same outer membrane protein profile, designed OMP9 (2, 48, 61, 67). OMP9 is linked to a particular protein (called PCP) encoded by a large IncFI plasmid that has not been further characterized (42). Moreover, OMP9 has never been described in clones O16:K1 and O7:K1, in which we found no pS88-like plasmid. This strongly suggests that pS88 harbors the genes encoding the PCP. We also found that all B2₁ O45:K1:H7 strains, both avian and human, harbor a pS88-like plasmid, further supporting the genetic relatedness of avian and human O45:K1:H7 strains (10). This is consistent with other observations suggesting that avian species may be the source of neonatal meningitis strains (22, 36, 46). The monomorphism of the plasmid content observed here in B2₁ O45:K1 strains and of the chromosomal determinants previously observed in these strains (13) suggests recent clonal emergence. Moreover the high prevalence of pS88-like plasmids among ST29/B21 strains (40/56, 71%) compared to other STs could represent an example of fine-tuning between a plasmid and a particular genetic background. Finally, the role of pS88 does not appear be restricted to meningeal virulence, as some members of the O2:K1 clonal group, known to cause urosepsis but not meningitis (10), also harbor a pS88-like plasmid (Table 1). Thus, the virulence mechanisms of this plasmid may have implications that go beyond a particular clone or pathotype.

To determine whether plasmid pS88 is directly involved in the ability of strain S88 to induce high-level bacteremia, the main step in the pathogenesis of neonatal meningitis, we obtained an S88 variant lacking pS88. The variant produced a far lower level of bacteremia in the rat model (at least 2 log units lower). In order to confirm that the fall in virulence was due to loss of pS88, we reinserted a tagged pS88 in the cured strain S88. The resulting variant was as virulent as the wild-type strain. These results demonstrate the key role of the pS88 plasmid in the virulence of strain S88. Although numerous studies have established a link between the ColV plasmid and the virulence of various avian and human ExPEC strains (56), this is the first direct evidence supporting a role of a ColV plasmid in a specific step of neonatal meningitis, namely, sustained high-level bacteremia. This property may be due in part to the contribution of pS88 in resistance to serum bactericidal activity that we observed.

In a first attempt to understand the mechanism by which the plasmid contributes to the virulence of S88, we examined the three iron uptake systems encoded by the plasmid, namely, the siderophores salmochelin and aerobactin and the Sit system. Iron is essential for bacterial growth, but its availability within the host is limited (26). We have previously shown that salmochelin is involved in the high-level bacteremia achieved by the representative O18:K1:H7 strain C5 (47), in which this factor is chromosome borne. Hence, we examined whether this siderophore was also involved in the virulence of strain S88. We also investigated the respective virulence roles of the other two plasmid-encoded iron uptake systems, namely, aerobactin and the Sit system. Aerobactin is the most frequent siderophore in neonatal meningitis E. coli (NMEC) strains, after yersiniabactin (18, 13). Although this iron uptake system has been implicated in virulence in several experimental models (21, 24, 43, 60) its role in neonatal meningitis remains to be determined. The *sitABCD* operon, encoding a member of the family of ATP-binding cassette (ABC) proteins initially described for Salmonella enterica, was first functionally characterized as a manganese and iron transporter in an APEC strain (53). This newly described system is required for full virulence of Salmonella enterica serovar Typhimurium and APEC (31, 52). However, little is known of its distribution in human ExPEC strains or its role in their virulence (36, 42, 52).

As previously reported with strain C5 (47), we found that the virulence of strain S88 was attenuated when *iroN* was lacking. In contrast, the absence of aerobactin and the Sit system had no discernible influence on the virulence of strain S88. Our results thus prove the key role of salmochelin in the bacteremic step of E. coli meningitis. However, the lower virulence of the iro-defective mutant (~1 log CFU/ml lower) cannot alone explain the marked loss of virulence observed with the variant lacking the whole plasmid (>2 log CFU/ml). The fact that the loss of the other two siderophores did not influence the level of bacteremia does not totally exclude a role in the virulence of S88, as the *iro* locus may compensate for their loss. Further studies with double and triple mutants are under way. Alternatively, these siderophores may be involved in steps other than sustained bacteremia, such as gut translocation or cerebrospinal fluid invasion. Other iron uptake systems such as yersiniabactin, enterobactin, and the FecaBCD system exist on the S88 chromosome (www.genoscope.fr) and may be able to compensate for the loss of the plasmid-encoded systems. Finally, it is likely that the virulence of the ColV plasmid involves

other determinants. The pS88 plasmid carries two genes, *iss* and *traT*, which play a role in serum survival and resistance to macrophage phagocytosis, respectively. Several other pS88 coding sequences have no homologs and could also encode new virulence determinants.

In conclusion, pS88 shares a similar structure with avian virulence plasmids, pointing to a possible common ancestor. It is an essential meningeal virulence determinant comparable to the K1 capsule and O45_{S88} somatic antigens and is not restricted to the French O45:K1:H7 clone. A comprehensive study of the molecular mechanisms responsible for its virulence may have important implications, possibly beyond the pathogenesis of neonatal meningitis.

REFERENCES

- Abbott, J. C., D. M. Aanensen, K. Rutherford, S. Butcher, and B. G. Spratt. 2005. WebACT—an online companion for the Artemis Comparison Tool. Bioinformatics 21:3665–3666.
- Achtman, M., A. Mercer, B. Kusecek, A. Pohl, M. Heuzenroeder, W. Aaronson, A. Sutton, and R. P. Silver. 1983. Six widespread bacterial clones among *Escherichia coli* K1 isolates. Infect. Immun. 39:315–335.
- Aguero, M. E., and F. C. Cabello. 1983. Relative contribution of ColV plasmid and K1 antigen to the pathogenicity of *Escherichia coli*. Infect. Immun. 40:359–368.
- Aguero, M. E., G. de la Fuente, E. Vivaldi, and F. Cabello. 1989. ColV increases the virulence of *Escherichia coli* K1 strains in animal models of neonatal meningitis and urinary infection. Med. Microbiol. Immunol. (Berlin) 178:211–216.
- Badger, J. L., C. A. Wass, S. J. Weissman, and K. S. Kim. 2000. Application
 of signature-tagged mutagenesis for identification of *Escherichia coli* K1
 genes that contribute to invasion of human brain microvascular endothelial
 cells. Infect. Immun. 68:5056–5061.
- Bagdasarian, M., A. Bailone, M. M. Bagdasarian, P. A. Manning, R. Lurz, K. N. Timmis, and R. Devoret. 1986. An inhibitor of SOS induction, specified by a plasmid locus in *Escherichia coli*. Proc. Natl. Acad. Sci. USA 83:5723– 5726.
- Barbe, V., D. Vallenet, N. Fonknechten, A. Kreimeyer, S. Oztas, L. Labarre, S. Cruveiller, C. Robert, S. Duprat, P. Wincker, L. N. Ornston, J. Weissenbach, P. Marliere, G. N. Cohen, and C. Medigue. 2004. Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res. 32:5766–5779.
- Bedford, H., J. de Louvois, S. Halket, C. Peckham, R. Hurley, and D. Harvey. 2001. Meningitis in infancy in England and Wales: follow up at age 5 years. BMJ 323:533–536.
- Bidet, P., F. Mahjoub-Messai, J. Blanco, J. Blanco, M. Dehem, Y. Aujard, E. Bingen, and S. Bonacorsi. 2007. Combined multilocus sequence typing and O serogrouping distinguishes *Escherichia coli* subtypes associated with infant urosepsis and/or meningitis. J. Infect. Dis. 196:297–303.
- Bidet, P., A. Metais, F. Mahjoub-Messai, L. Durand, M. Dehem, Y. Aujard, E. Bingen, X. Nassif, and S. Bonacorsi. 2007. Detection and identification by PCR of a highly virulent phylogenetic subgroup among extraintestinal pathogenic *Escherichia coli* B2 strains. Appl. Environ. Microbiol. 73:2373–2377.
- Bingen, E., B. Picard, N. Brahimi, S. Mathy, P. Desjardins, J. Elion, and E. Denamur. 1998. Phylogenetic analysis of *Escherichia coli* strains causing neonatal meningitis suggests horizontal gene transfer from a predominant pool of highly virulent B2 group strains. J. Infect. Dis. 177:642–650.
- Bonacorsi, S., and E. Bingen. 2005. Molecular epidemiology of *Escherichia coli* causing neonatal meningitis. Int. J. Med. Microbiol. 295:373–381.
- Bonacorsi, S., O. Clermont, V. Houdouin, C. Cordevant, N. Brahimi, A. Marecat, C. Tinsley, X. Nassif, M. Lange, and E. Bingen. 2003. Molecular analysis and experimental virulence of French and North American *Escherichia coli* neonatal meningitis isolates; identification of new virulent clone. J. Infect. Dis. 187:1895–1906.
- Bonacorsi, S., S. Lefevre, O. Clermont, V. Houdouin, A. Bourrillon, C. Loirat, Y. Aujard, and E. Bingen. 2005. *Escherichia coli* strains causing urinary tract infection in uncircumcised infants resemble urosepsis-like adult strains. J. Urol. 173:195–197.
- Boyd, E. F., C. W. Hill, S. M. Rich, and D. L. Hartl. 1996. Mosaic structure of plasmids from natural populations of *Escherichia coli*. Genetics 143:1091– 1100
- 16. Brzuszkiewicz, E., H. Bruggemann, H. Liesegang, M. Emmerth, T. Olschlager, G. Nagy, K. Albermann, C. Wagner, C. Buchrieser, L. Emody, G. Gottschalk, J. Hacker, and U. Dobrindt. 2006. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic *Escherichia coli* strains. Proc. Natl. Acad. Sci. USA 103:12879–12884.
- 17. Chuba, P. J., M. A. Leon, A. Banerjee, and S. Palchaudhuri. 1989. Cloning

- and DNA sequence of plasmid determinant *iss*, coding for increased serum survival and surface exclusion, which has homology with lambda DNA. Mol. Gen. Genet. **216**:287–292.
- Clermont, O., S. Bonacorsi, and E. Bingen. 2001. The Yersinia high-pathogenicity island is highly predominant in virulence-associated phylogenetic groups of Escherichia coli. FEMS Microbiol. Lett. 196:153–157.
- Datsenko, K. A., and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97:6640–6645.
- de Louvois, J., S. Halket, and D. Harvey. 2005. Neonatal meningitis in England and Wales: sequelae at 5 years of age. Eur. J. Pediatr. 164:730–734.
- Dozois, C. M., F. Daigle, and R. Curtiss, 3rd. 2003. Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic *Escherichia coli* strain. Proc. Natl. Acad. Sci. USA 100:247–252.
- Ewers, C., G. Li, H. Wilking, S. Kiessling, K. Alt, E. M. Antao, C. Laturnus, I. Diehl, S. Glodde, T. Homeier, U. Bohnke, H. Steinruck, H. C. Philipp, and L. H. Wieler. 2007. Avian pathogenic, uropathogenic, and newborn meningitis-causing *Escherichia coli*: how closely related are they? Int. J. Med. Microbiol. 297:163–176.
- Garcia-Quintanilla, M., F. Ramos-Morales, and J. Casadesus. 2008. Conjugal transfer of the *Salmonella enterica* virulence plasmid in the mouse intestine. J. Bacteriol. 190:1922–1927.
- 24. Ginns, C. A., M. L. Benham, L. M. Adams, K. G. Whithear, K. A. Bettelheim, B. S. Crabb, and G. F. Browning. 2000. Colonization of the respiratory tract by a virulent strain of avian *Escherichia coli* requires carriage of a conjugative plasmid. Infect. Immun. 68:1535–1541.
- Gordon, D. M., and C. L. O'Brien. 2006. Bacteriocin diversity and the frequency of multiple bacteriocin production in *Escherichia coli*. Microbiology 152:3239–3244.
- Griffiths, E. 1999. Iron in biological systems, p. 1–26. In J. Bullen and E. Griffiths (ed.), Iron and infection. Wiley, Chichester, United Kingdom.
- 27. Hill, V. T., S. M. Townsend, R. S. Arias, J. M. Jenabi, I. Gomez-Gonzalez, H. Shimada, and J. L. Badger. 2004. TraJ-dependent *Escherichia coli* K1 interactions with professional phagocytes are important for early systemic dissemination of infection in the neonatal rat. Infect. Immun. 72:478–488.
- Holt, D. E., S. Halket, J. de Louvois, and D. Harvey. 2001. Neonatal meningitis in England and Wales: 10 years on. Arch. Dis. Child Fetal Neonatal ed. 84:F85–F89.
- Houdouin, V., S. Bonacorsi, P. Bidet, J. Blanco, F. De La Rocque, R. Cohen, Y. Aujard, and E. Bingen. 2008. Association between mortality of *Escherichia coli* meningitis in young infants and non-virulent clonal groups of strains. Clin. Microbiol. Infect. 14:685–690.
- Houdouin, V., S. Bonacorsi, N. Brahimi, O. Clermont, X. Nassif, and E. Bingen. 2002. A uropathogenicity island contributes to the pathogenicity of *Escherichia coli* strains that cause neonatal meningitis. Infect. Immun. 70: 5865–5869.
- Janakiraman, A., and J. M. Slauch. 2000. The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of *Salmonella typhimurium*. Mol. Microbiol. 35:1146–1155.
- Jeziorowski, A., and D. M. Gordon. 2007. Evolution of microcin V and colicin Ia plasmids in *Escherichia coli*. J. Bacteriol. 189:7045–7052.
- Johnson, J. R., M. A. Kuskowski, T. T. O'Bryan, and J. N. Maslow. 2002. Epidemiological correlates of virulence genotype and phylogenetic background among *Escherichia coli* blood isolates from adults with diverse-source bacteremia. J. Infect. Dis. 185:1439–1447.
- Johnson, T. J., S. J. Johnson, and L. K. Nolan. 2006. Complete DNA sequence of a ColBM plasmid from avian pathogenic *Escherichia coli* suggests that it evolved from closely related ColV virulence plasmids. J. Bacteriol. 188:5975–5983.
- Johnson, T. J., K. E. Siek, S. J. Johnson, and L. K. Nolan. 2006. DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian *Escherichia coli* strains. J. Bacteriol. 188:745– 758
- 36. Johnson, T. J., Y. Wannemuehler, S. J. Johnson, A. L. Stell, C. Doetkott, J. R. Johnson, K. S. Kim, L. Spanjaard, and L. K. Nolan. 2008. Comparison of extraintestinal pathogenic *Escherichia coli* strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl. Environ. Microbiol. 74:7043–7050.
- Johnson, T. J., Y. M. Wannemuehler, and L. K. Nolan. 2008. Evolution of the iss gene in Escherichia coli. Appl. Environ. Microbiol. 74:2360–2369.
- Kim, K. S. 2003. Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat. Rev. Neurosci. 4:376–385.
- Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 5:150–163.
- Le Gall, T., O. Clermont, S. Gouriou, B. Picard, X. Nassif, E. Denamur, and O. Tenaillon. 2007. Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic group *Escherichia coli* strains. Mol. Biol. Evol. 24:2373–2384.
- McCabe, W. R., B. Kaijser, S. Olling, M. Uwaydah, and L. A. Hanson. 1978. *Escherichia coli* in bacteremia: K and O antigens and serum sensitivity of strains from adults and neonates. J. Infect. Dis. 138:33–41.

2284 PEIGNE ET AL. INFECT. IMMUN.

 Mercer, A. A., G. Morelli, M. Heuzenroeder, M. Kamke, and M. Achtman. 1984. Conservation of plasmids among *Escherichia coli* K1 isolates of diverse origins. Infect. Immun. 46:649–657.

- Montgomerie, J. Z., A. Bindereif, J. B. Neilands, G. M. Kalmanson, and L. B. Guze. 1984. Association of hydroxamate siderophore (aerobactin) with *Escherichia coli* isolated from patients with bacteremia. Infect. Immun. 46:835–838
- Morales, C., M. D. Lee, C. Hofacre, and J. J. Maurer. 2004. Detection of a novel virulence gene and a Salmonella virulence homologue among Escherichia coli isolated from broiler chickens. Foodborne Pathog. Dis. 1:160–165.
- Mori, H., A. Kondo, A. Ohshima, T. Ogura, and S. Hiraga. 1986. Structure and function of the F plasmid genes essential for partitioning. J. Mol. Biol. 192:1–15
- 46. Moulin-Schouleur, M., C. Schouler, P. Tailliez, M. R. Kao, A. Bree, P. Germon, E. Oswald, J. Mainil, M. Blanco, and J. Blanco. 2006. Common virulence factors and genetic relationships between O18:K1:H7 Escherichia coli isolates of human and avian origin. J. Clin. Microbiol. 44:3484–3492.
- 47. Negre, V. L., S. Bonacorsi, S. Schubert, P. Bidet, X. Nassif, and E. Bingen. 2004. The siderophore receptor IroN, but not the high-pathogenicity island or the hemin receptor ChuA, contributes to the bacteremic step of *Escherichia coli* neonatal meningitis. Infect. Immun. 72:1216–1220.
- Ott, M., L. Bender, G. Blum, M. Schmittroth, M. Achtman, H. Tschape, and J. Hacker. 1991. Virulence patterns and long-range genetic mapping of extraintestinal *Escherichia coli* K1, K5, and K100 isolates: use of pulsed-field gel electrophoresis. Infect. Immun. 59:2664–2672.
- Picard, B., C. Journet-Mancy, N. Picard-Pasquier, and P. Goullet. 1993.
 Genetic structures of the B2 and B1 *Escherichia coli* strains responsible for extra-intestinal infections. J. Gen. Microbiol. 139:3079–3088.
- Plainvert, C., P. Bidet, C. Peigne, V. Barbe, C. Medigue, E. Denamur, E. Bingen, and S. Bonacorsi. 2007. A new O-antigen gene cluster has a key role in the virulence of the *Escherichia coli* meningitis clone O45:K1:H7. J. Bacteriol. 189:8528–8536.
- Ruppe, E., P. Bidet, C. Verdet, G. Arlet, and E. Bingen. 2006. First detection
 of the Ambler class C 1 AmpC beta-lactamase in *Citrobacter freundii* by a
 new, simple double-disk synergy test. J. Clin. Microbiol. 44:4204–4207.
- 52. Sabri, M., M. Caza, J. Proulx, M. H. Lymberopoulos, A. Bree, M. Moulin-Schouleur, R. Curtiss III, and C. M. Dozois. 2008. Contribution of the SitABCD, MntH, and FeoB metal transporters to the virulence of avian pathogenic *Escherichia coli* O78 strain chi7122. Infect. Immun. 76:601–611.
- Sabri, M., S. Leveille, and C. M. Dozois. 2006. A SitABCD homologue from an avian pathogenic *Escherichia coli* strain mediates transport of iron and manganese and resistance to hydrogen peroxide. Microbiology 152:745–758.
- Sansonetti, P. J., D. J. Kopecko, and S. B. Formal. 1981. Shigella sonnei plasmids: evidence that a large plasmid is necessary for virulence. Infect. Immun. 34:75–83.
- 55. Saul, D., A. J. Spiers, J. McAnulty, M. G. Gibbs, P. L. Bergquist, and D. F.

- **Hill.** 1989. Nucleotide sequence and replication characteristics of RepFIB, a basic replicon of IncF plasmids. J. Bacteriol. **171**:2697–2707.
- 56. Skyberg, J. A., T. J. Johnson, J. R. Johnson, C. Clabots, C. M. Logue, and L. K. Nolan. 2006. Acquisition of avian pathogenic *Escherichia coli* plasmids by a commensal *E. coli* isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infect. Immun. 74: 6287–6292
- Smith, H. W., and M. B. Huggins. 1976. Further observations on the association of the colicine V plasmid of *Escherichia coli* with pathogenicity and with survival in the alimentary tract. J. Gen. Microbiol. 92:335–350.
- Stumpe, S., R. Schmid, D. L. Stephens, G. Georgiou, and E. P. Bakker. 1998. Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of *Escherichia coli*. J. Bacteriol. 180:4002–4006.
- Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.
- Tivendale, K. A., J. L. Allen, C. A. Ginns, B. S. Crabb, and G. F. Browning. 2004. Association of iss and iucA, but not tsh, with plasmid-mediated virulence of avian pathogenic Escherichia coli. Infect. Immun. 72:6554–6560.
- 61. Tschäpe, H., H. Steinrück, P. Buchholz, R. Prager, E. Tietze, G. Seltmann, and J. Hacker. 1990. Molecular analysis of *Escherichia coli* from neonatal infections and its epidemiological implication, p. 224–234. *In* E. Gravel, L. Stern, I. Syllim-Rapoport, and R. Waver (ed.), Research in perinatal medicine II. Verlag Gesundheit, Berlin, Germany.
- Unhanand, M., M. M. Mustafa, G. H. McCracken, Jr., and J. D. Nelson. 1993. Gram-negative enteric bacillary meningitis: a twenty-one-year experience. J. Pediatr. 122:15–21.
- 63. Vallenet, D., L. Labarre, Z. Rouy, V. Barbe, S. Bocs, S. Cruveiller, A. Lajus, G. Pascal, C. Scarpelli, and C. Medigue. 2006. MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res. 34:53–65.
- Waters, V. L., and J. H. Crosa. 1991. Colicin V virulence plasmids. Microbiol. Rev. 55:437–450.
- 65. Welch, R. A., V. Burland, G. Plunkett, 3rd, P. Redford, P. Roesch, D. Rasko, E. L. Buckles, S. R. Liou, A. Boutin, J. Hackett, D. Stroud, G. F. Mayhew, D. J. Rose, S. Zhou, D. C. Schwartz, N. T. Perna, H. L. Mobley, M. S. Donnenberg, and F. R. Blattner. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic *Escherichia coli*. Proc. Natl. Acad. Sci. USA 99:17020–17024.
- Williams, P. H. 1979. Novel iron uptake system specified by ColV plasmids: an important component in the virulence of invasive strains of *Escherichia coli*. Infect. Immun. 26:925–932.
- Wullenweber, M., L. Beutin, S. Zimmermann, and C. Jonas. 1993. Influence of some bacterial and host factors on colonization and invasiveness of *Escherichia coli* K1 in neonatal rats. Infect. Immun. 61:2138–2144.

Editor: F. C. Fang