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Fusarium oxysporum pathogenicity genes<p>An insertional mutagenesis screen identifies pathogenicity-related genes in the plant fungal pathogen <it>Fusarium oxysporum</it>.</p>

Abstract

Background: Fusarium oxysporum f. sp. lycopersici is the causal agent of vascular wilt disease in
tomato. In order to gain more insight into the molecular processes in F. oxysporum necessary for
pathogenesis and to uncover the genes involved, we used Agrobacterium-mediated insertional
mutagenesis to generate 10,290 transformants and screened the transformants for loss or
reduction of pathogenicity.

Results: This led to the identification of 106 pathogenicity mutants. Southern analysis revealed that
the average T-DNA insertion is 1.4 and that 66% of the mutants carry a single T-DNA. Using TAIL-
PCR, chromosomal T-DNA flanking regions were isolated and 111 potential pathogenicity genes
were identified.

Conclusions: Functional categorization of the potential pathogenicity genes indicates that certain
cellular processes, such as amino acid and lipid metabolism, cell wall remodeling, protein
translocation and protein degradation, seem to be important for full pathogenicity of F. oxysporum.
Several known pathogenicity genes were identified, such as those encoding chitin synthase V,
developmental regulator FlbA and phosphomannose isomerase. In addition, complementation and
gene knock-out experiments confirmed that a glycosylphosphatidylinositol-anchored protein,
thought to be involved in cell wall integrity, a transcriptional regulator, a protein with unknown
function and peroxisome biogenesis are required for full pathogenicity of F. oxysporum.

Background
Fusarium oxysporum, a soil-borne facultative pathogen with a
worldwide distribution, causes vascular wilt and foot-, root-,

and bulbrot diseases in a wide variety of economically impor-
tant crops [1,2]. F. oxysporum isolates are highly host-specific
and have been grouped into formae speciales according to
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their host range [1]. Recently, F. oxysporum has also been
reported as an emerging human pathogen, causing opportun-
istic mycoses [3-5].

Over the years numerous studies have been performed to
understand F. oxysporum-mediated disease development.
The process of vascular infection has been studied using light,
fluorescence and electron microscopy and can be divided into
several steps: root recognition, root surface attachment and
colonization, penetration of the root cortex, and hyphal pro-
liferation within the xylem vessels. This hyphal proliferation
in vessels causes characteristic disease symptoms, such as
vein clearing, leaf epinasty, wilt and defolation, eventually
leading to death of the host plant. At this stage, F. oxysporum
invades the parenchymatous tissue and starts sporulating on
the plant surface, thereby completing its pathogenic life cycle
[6].

Forward and reverse genetics have improved our understand-
ing of molecular mechanisms involved in pathogenesis. Tar-
geted deletion of genes encoding a mitogen-activated protein
kinase (fmk1) and G-protein subunits  (fga1, fga2) and 
(fgb1) revealed that mitogen-activated protein kinase
(MAPK) and cyclic AMP-protein kinase A (cAMP-PKA) cas-
cades both regulate virulence in F. oxysporum [7-11]. In addi-
tion, several genes necessary for maintenance of cell wall
integrity and full virulence have been identified - encoding
chitin synthases (chs2, chs7, chsV, and chsVb), a GTPase
(rho1), and a -1,3-glucanosyltransferase (gas1) - and it has
been postulated that cell wall integrity might be necessary for
invasive growth and/or resistance to plant defense com-
pounds [12-16]. The degree to which cell wall degrading
enzymes contribute to the infection process is not yet fully
understood. It has been described that Fusarium secretes an
array of cell wall degrading enzymes, such as polygalacturo-
nases, pectate lyases, xylanases and proteases, during root
penetration and colonization [2]. However, inactivation of
individual cell wall degrading enzyme- or protease-encoding
genes (for example, pectate lyase gene pl1, xylanase genes
xyl3, xyl4, and xyl5, polygalacturonase genes pg1, pg5, and
pgx4, and the subtilase gene prt1 [6,17-23]) did not have a
detectable effect on virulence. Deletion of xlnR, which
encodes the transcriptional activator XlnR, a regulator of the
expression of many xylanolytic and cellulolytic genes, had no
effect on virulence either, although expression of xylanase
genes was strongly reduced [24]. On the other hand, targeted
disruption of the carbon catabolite repressor SNF1 did result
in reduced expression of several cell wall degrading enzymes
and virulence [25], indicating that carbon catabolite repres-
sion and, thus, adaptation of the central carbon metabolism
plays a role in pathogenicity.

Also, nitrogen regulation was shown to be important for the
infection process. Inactivation of the global nitrogen regula-
tor Fnr1 abolished the expression of nutrition genes normally
induced during the early phase of infection, and resulted in

reduced pathogenicity [26]. Finally, various genes with
diverse functions have been identified to play a role in patho-
genicity, including those encoding a pH responsive transcrip-
tion factor (pacC), a Zn(II)2Cys6 transcriptional regulator
(FOW2), argininosuccinate lyase (ARG1), a mitochondrial
carrier protein (FOW1), an F-box protein (FRP1), a secreted
protein (SIX1), a chloride channel (CLC1), and a chloride con-
ductance regulatory protein (FPD1) [27-33].

The majority of the above-mentioned genes have been identi-
fied and studied based on the function of homologous genes
in other organisms. To uncover genes necessary during
pathogenesis in an unbiased manner, insertional mutagene-
sis has been used for a number of fungal plant pathogens
[34,35]. This approach has also been applied to F. oxyspo-
rum, although only a limited number of insertion mutants
were generated using restriction enzyme mediated insertion
(REMI) or random plasmid DNA insertion and only a small
number of pathogenicity genes have been identified in this
way [13,28-30,32].

In order to identify many more genes important for the ability
of F. oxysporum to cause disease, and thus to gain a more glo-
bal understanding of the infection process, we used an Agro-
bacterium-mediated insertional mutagenesis approach. This
approach has been successfully used with other plant patho-
genic fungi, like Magnaporthe oryzae, M. grisea and Lept-
osphaeria maculans, to generate large insertional mutant
collections and to identify pathogenicity genes [36-38]. In
this study, a collection of more than 10,000 transformants of
F. oxysporum f. sp. lycopersici was generated, and each
transformant was tested for loss of pathogenicity. To estimate
the probability that a transfer DNA (T-DNA) insertion is
linked to the pathogenicity phenotype and since downstream
analysis is facilitated by single T-DNA integrations, Southern
analysis and thermal asymmetric interlaced PCR (TAIL-PCR)
were performed on all pathogenicity mutants. The outcome
was used to determine T-DNA copy number and integration
patterns and to identify potential pathogenicity genes. Pre-
dicted functions of potential pathogenicity genes allowed ten-
tative identification of molecular processes required for
pathogenesis. For five genes predicted to be involved in some
of these processes, involvement in pathogenicity was verified
by complementation and gene knock-out studies.

Results
Identification of pathogenicity mutants from a 
collection of F. oxysporum transformants
A collection of 10,290 transformants was generated through
Agrobacterium-mediated transformation using the T-DNA
of pPK2hphgfp as insertional mutagen (Figure 1). All trans-
formants were assessed for loss of pathogenicity in root-dip
bioassays using three seedlings per transformant. Transform-
ants displaying an apparent loss or strong reduction of path-
ogenicity were re-tested, again using three seedlings per
Genome Biology 2009, 10:R4
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transformant. In this way, out of the 10,290 transformants,
145 putative pathogenicity mutants were identified. Subse-
quently, these mutants were assessed in a third root-dip bio-
assay using 20 plants per mutant followed by statistical
analysis. This resulted in the identification of 106 mutants
with a reproducible pathogenicity defect. The pathogenicity
mutants were classified according to severity of pathogenicity
loss, based on the average disease index. The average disease
index caused by the wild-type parent strain (4287) was 3 ±
0.6 (based on 13 independent bioassays). In total, 20 mutants
were classified as non-pathogenic (class 1, disease index = 0),
47 mutants were severely reduced in pathogenicity (class 2,
disease index <1) and 39 mutants were reduced in patho-
genicity (class 3, disease index  1, but still statistically differ-
ent compared to the wild-type infection at a 5% confidence
interval) (Table 1). Thus, 1% of the entire collection of trans-
formants was (severely) reduced in pathogenicity or totally
non-pathogenic on tomato seedlings.

Phenotypic characterization of the pathogenicity 
mutants
The growth phenotype on various carbon sources of each
pathogenicity mutant was determined to assess whether the
reduced pathogenicity phenotype could be attributed to a
metabolic defect. All mutants were grown for seven days on
potato dextrose agar (PDA), Czapek-Dox agar (CDA) and
minimal medium containing as sole carbon source either
sucrose, glycerol, ethanol, malic acid or citric acid. Aberrant
growth phenotypes among the mutants varied from slightly to
severely reduced growth on one or several of the media tested,
slightly reduced growth on all media tested, severely reduced
growth on all media tested to no growth on any media tested
except PDA. In total, 60 of the 106 pathogenicity mutants dis-
played no aberrant growth phenotype. The frequency and
severity of growth phenotypes of the remaining 46 mutants
tended to increase with increased reduction of pathogenicity:
from the mutant classes 1, 2, and 3, respectively, 60%, 53%,
and 23% of the mutants showed a growth phenotype different
from the wild-type strain (Table 1). Nevertheless, eight
mutants with no detectable growth phenotype still showed
complete loss of pathogenicity (class 1).

Analysis of T-DNA integration patterns
To assess the general characteristics of T-DNA integration
into the genome of F. oxysporum and to facilitate selection of
mutants for further analysis, all mutants were analyzed for T-
DNA copy number, mode of T-DNA integration (tandem or
inverted repeats), abortive T-DNA integration events, and the
presence of non-T-DNA (binary vector). In order to discrimi-
nate between these various modes of T-DNA integration the
chromosomal DNA was cut with BglII, which does not cut
within the T-DNA, or BamHI, which cuts once in the T-DNA,
and hybridized with five different probes, notably the gpdA,
trpC, left border (LB), right border (RB) and binary vector
probes (Figure 1a). Examples of various T-DNA integration
patterns observed are depicted in Figure 2a-f. In case of a sin-
gle T-DNA integration, one fragment is observed with either
restriction enzyme or probe (Figure 2a, lanes 1 and 2). A dou-
ble T-DNA integration could result in two integration events
at two different chromosomal locations, resulting in two frag-
ments with either restriction enzyme (Figure 2b, lanes 1 and
2). A double T-DNA integration can also occur at one chromo-
somal location; in this case the T-DNA could be integrated as
a tandem repeat, fused at the LB (Figure 2c), or at the RB
(Figure 2d). An abortive T-DNA integration event or the pres-
ence of non-T-DNA will result in additional fragments in
hybridizations using specific border or binary vector probes,
respectively (Figure 2e,g lanes 3-5).

Taken together, Southern analysis performed on 99 of the 106
pathogenicity mutants revealed that 65, 28, and 6 of the
mutants contained single, double or multiple (three or more)
T-DNA insertions, respectively. This translates to an average
T-DNA copy number of 1.4. Non-T-DNA was present in 4% of
the pathogenicity mutants. These numbers are comparable to
those of the entire transformant collection (a random subset
of 72 out of the 10,290 transformants was analyzed in the
same way; data not shown). In 22 of the mutants in which a
double T-DNA integration had occurred, the two T-DNA cop-
ies had integrated in close proximity of each other or exactly
at the same chromosomal location, leading to inverted
repeats. Only in six mutants with two insertions had the T-
DNAs integrated in two different chromosomal locations.
Finally, based on the results obtained with the LB and RB
probes, we concluded that a LB or RB truncation had
occurred in 13% and 1% of the mutants analyzed, respectively.

Table 1

Classification of pathogenicity phenotypes

Class Pathogenicity phenotype Number of pathogenicity mutants Number of growth mutants

1 Non-pathogenic (DI = 0) 20 12

2 Severely reduced (DI <1) 47 25

3 Reduced (DI  1) 39 9

Total 106 46

DI, disease index.
Genome Biology 2009, 10:R4
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An additional LB or RB was observed in 5% of the mutants.
There was no correlation between severity of pathogenicity
loss and the number of T-DNA insertions (data not shown).

In conclusion, the majority of the mutants carried either a
single T-DNA or a double T-DNA integrated at a single chro-
mosomal position. In addition, no major differences with
regards to the T-DNA copy number and integration pattern
were observed between the pathogenicity mutants and a ran-
dom subset of the entire transformant collection.

Isolation of T-DNA flanking regions
TAIL-PCR was carried out on all pathogenicity mutants to
isolate DNA sequences flanking the T-DNA. Using several dif-
ferent degenerated primers, LB and RB flanking sequences
were obtained for, respectively, 74% and 84% of the patho-
genicity mutants. In total, 89 LB and 109 RB flanking
sequences were isolated. From these LB and RB flanking
sequences, 20% and 18%, respectively, corresponded to
binary vector backbone or other T-DNA sequences. Another
1% of the LB and 4% of the RB flanking sequences were iden-
tical to multiple genomic regions, suggesting that the corre-
sponding T-DNAs were integrated into repetitive sequences.
Excluding these, in total, 70 unique LB and 85 unique RB
flanking sequences were obtained. By comparison to the
genome sequence of F. oxysporum [39], these unique
sequences allowed the localization of the T-DNA integration
sites and identification of putative genes affected by these
integration events.

Deletions and rearrangements
Comparison of Southern and TAIL-PCR data enabled us to
identify complex T-DNA integration events. For 22% of the
pathogenicity mutants, genomic sequences flanking both the
LB and RB were isolated. This revealed that, in most cases,
several nucleotides (4-131 bp) were deleted at the insertion
site. For four additional mutants, the LB and RB sequences
were not located in close proximity of each other in the
genome sequence, even though Southern analysis clearly
indicated that these mutants carry a single T-DNA. In all four
cases the isolated T-DNA flanking regions were located on the

same supercontig, but several kilobases apart from each
other. For two of these mutants we could confirm by PCR that
a region of 4,210 or 9,826 bp was deleted at the insertion site
(data not shown), leading to deletion of a complete open read-
ing frame (ORF; FOXG_08594 and FOXG_10510, respec-
tively). Chromosomal translocations or inversions were
deduced for five pathogenicity mutants. For two mutants
such a chromosomal rearrangement (translocation) could be
confirmed by PCR. These rearrangements were specific for
the mutants, as they were absent in the parental strain (data
not shown). Finally, for four of the pathogenicity mutants
more T-DNA borders were identified in the TAIL-PCR than
was expected based on the Southern analysis. These borders
were integrated in close proximity of each other (<2.5 kb) and
their presence could, therefore, have been missed in the
Southern analysis due to the choice of restriction enzymes.

Identification of putative pathogenicity genes
Only when a T-DNA had integrated in an ORF, or within
1,000 bp up- or downstream of an ORF, was it assumed that
the expression of that gene could be influenced by the T-DNA
insertion and the gene was designated as potentially involved
in pathogenicity. The T-DNA insertions were grouped based
on the distance to the nearest ORF: within an ORF;within
500 bp upstream or 200 bp downstream of an ORF; within
1,000-500 bp upstream or 200-1,000 bp downstream of an
ORF; and within 'intergenic regions' (3,000-1,000 bp up- or
downstream of an ORF). The majority of the insertions (62)
were found in an ORF (Additional data file 1). Of the remain-
ing insertions, 25 (Additional data file 2) were integrated
within 500 bp upstream or 200 bp downstream of an ORF
and 27 (Additional data file 3) within 1,000-500 bp upstream
or 200-1,000 bp downstream of an ORF. A minority of the T-
DNA insertions (11) was located in intergenic regions (Addi-
tional data file 4). Finally, a remaining set of seven T-DNA
insertions was integrated at a distance further than 3,000 bp
from an ORF and was excluded from further analysis. Based
on the F. oxysporum genome map [39], the distribution of the
T-DNA integration sites of the pathogenicity mutants was
determined and no clustering of the potential pathogenicity
genes on the chromosomes was observed (data not shown).

In total, 111 genes potentially involved in pathogenicity were
identified (Additional data files 1-3). For most genes, homo-
logues in other fungi were identified; only four putative genes
were unique to F. oxysporum. Further analysis revealed that
in two of these cases a homologue is present in the closely
related fungus F. verticillioides, which was overlooked in ear-
lier searches due to incorrect annotation of these genes in the
F. oxysporum genome. The remaining two are small ORFs
(100-170 codons) and at present it is not clear whether these
are expressed.

For all putative pathogenicity genes a presumed function for
the corresponding protein was deducted based on blast
searches in combination with functional assignment accord-

T-DNA of pPK2 hphgfpFigure 1
T-DNA of pPK2 hphgfp. LB, left border; PgpdA, Aspergillus nidulans 
glyceraldehyde-3-phosphate dehydrogenase promoter; hphgfp, 
translational fusion of hygromycin B resistance gene and green fluorescent 
protein gene; TtrpC, A. nidulans trpC terminator; RB, right border; B, 
BamHI restriction site.
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B
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ing to MIPS [40] (Additional data files 1-3). Examples of iden-
tified genes and their possible roles in pathogenesis are listed
below.

Three known F. oxysporum pathogenicity genes were identi-
fied: the class V chitin synthase gene chsV, the carbon catabo-
lite derepressing protein kinase gene SNF1, and the
Zn(II)2Cys6 transcription factor gene FOW2 [13,25,29]. The
class V chitin synthase gene and FOW2 were identified more
than once (Additional data files 1-3). The reduced or non-
pathogenic phenotype of the mutants containing a T-DNA
insertion in SNF1 or CHSV correlated well with the published
pathogenicity phenotype of the gene disruption/deletion
strains [13,25]. In contrast to the non-pathogenic phenotype
described for the F. oxysporum f. sp. melonis FOW2 deletion
mutant [29], two independent insertional mutants identified
in this study showed a reduced pathogenicity phenotype. This
could be due to residual activity of FOW2 in these two
mutants due to the location of the T-DNAs, 447 and 690 bp
upstream of the FOW2 start codon.

In total, 23 proteins were categorized as having a putative role
in primary or secondary metabolism, such as metabolism of
amino acids, lipids, vitamin B6 or degradation of aromatic
compounds. One of these showed high homology to man-
nose-6-phosphate isomerase, a protein involved in mannose
synthesis and a known pathogenicity factor in Cryptococcus
neoformans [41]. Several genes were found with a potential
link to degradation of plant material, for example, those
encoding L-threo-3-deoxy-hexulosonate aldolase, an enzyme
involved in catabolism of D-galacturonate, a principal com-
ponent of pectin [42], and catechol dioxygenase and 3-car-
boxy-cis,cis-muconate cyclase, both involved in metabolism
of low-molecular weight aromatic compounds, such as proto-
catechuate and catechol, degradation products of lignin [43-
46]. Also in this class, succinate-semialdehyde dehydroge-
nase [NADP+], an enzyme involved in the GABA-shunt and
found to be up-regulated in F. graminearum when grown on
hop cell wall [47], was identified as a potential pathogenicity
factor. In the categories biogenesis of cellular components,
protein fate (folding, modification, destination), and cellular
transport, transport facilities and transport routes, several
proteins belonging to the same biological process were iden-

tified. Genes for four different peroxisome biogenesis pro-
teins (Pex1, Pex10, Pex12, and Pex26) were identified.
Peroxisomal metabolism has been shown to be important for
pathogenicity of M. grisea and Colletotrichum lagenarium
[48,49]. Furthermore, three mutants with a T-DNA insertion
in a 20S/26S proteasome subunit and three mutants with a T-
DNA insertion in components of the Sec61 protein transloca-
tion complex (SEC61, SEC61, and SEC62) were found, sug-
gesting an important role for protein translocation and
degradation in pathogenesis. Three mutants with insertions
in or close to genes belonging to the category cell rescue,
defense and virulence were identified; these encode a manga-
nese superoxide dismutase (MnSOD), a putative toxin bio-
synthesis protein and a RTA1 like protein, which confers
resistance to aminocholesterols in Saccharomyces cerevisiae
[50]. MnSODs have been shown to play a role in pathogenesis
in C. neoformans and C. bacillisporus [51,52]. However, dele-
tion of the MnSOD gene had no effect on pathogenicity of Col-
letotrichum graminicola and Candida albicans [53,54]. The
putative toxin biosynthesis protein shows homology to the
product of the host-specific AK-toxin gene AKT2 of Alter-
naria alternata (1E-16, 26% identity). Deletion of this gene in
A. alternata abolished the production of AK-toxin and path-
ogenicity [55]. In the category development, a gene with
homology to the developmental regulator flbA, a regulator of
G protein signaling (RGS), was identified. RGS proteins
accelerate the rate of GTP hydrolysis by G proteins and have
been shown to play a role in pathogenicity in C. neoformans,
Cryphonectria parasitica and Metarhizium anisopliae [56-
58]. Finally, scattered over the remaining categories, genes
with roles in ion homeostasis, redox balance, ion/multidrug/
toxin transport and transcriptional regulation were identi-
fied. Ion homeostasis (P-type ATPase), redox balance
(NADH-ubiquinone oxidoreductase) and major facilitator
superfamily (MFS)/ATP-binding cassette (ABC) transporters
have been shown to be important for pathogenesis in various
fungi [59].

Confirmation of a role of peroxisome and cell wall 
biogenesis genes in pathogenicity through 
complementation
For three pathogenicity mutants a complementation study
was performed to assess whether the pathogenicity pheno-

T-DNA integration patterns in pathogenicity mutantsFigure 2 (see previous page)
T-DNA integration patterns in pathogenicity mutants. (a) Representative transformant with a single T-DNA integration, resulting in one fragment 
with either restriction enzyme or probe (lanes 1 and 2). (b) Representative transformant with a double unlinked T-DNA integration, resulting in two 
fragments with either restriction enzyme or probe (lanes 1 and 2). (c) Representative transformant with a double inverted T-DNA integration fused at the 
LB, resulting in one fragment in the BglII digestion hybridized with the gpdA or trpC probe (BglII, lanes 1 and 2), one fragment of 8.4 kb in the BamHI 
digestion when hybridized with the gpdA probe (BamHI, lane 1) and two fragments when hybridized with the trpC probe (BamHI, lane 2). (d) 
Representative transformant with a double inverted T-DNA integration fused at the RB, resulting in one fragment in the BglII digestion when hybridized 
with the gpdA or trpC probe (BglII, lanes 1 and 2), a fragment of 2.2 kb in the BamHI digestion when hybridized with the trpC probe (BamHI, lane 2) and two 
fragments when hybridized with the gpdA probe (BamHI, lane 1). (e) Representative transformant with a single T-DNA integration and a second aborted 
T-DNA integration event. (f) Representative transformant with more than one T-DNA and with binary vector DNA. Blots were hybridized with gpdA 
(lane 1), trpC (lane 2), LB (lane 3), RB (lane 4) and pPZP (lane 5) probes. This figure is a composition of different blots, which results in minor differences in 
apparent fragment sizes. The negative results for the pPZP probe for the transformants depicted in (b-f) are omitted for clarity.
Genome Biology 2009, 10:R4
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type was indeed due to the T-DNA insertion. These are path-
ogenicity mutants 35F4 (class 2), 83A1 (class 3) and 51D10
(class 3), which are (severely) reduced in pathogenicity (Addi-
tional data file 1). Mutant 35F4 contains a single T-DNA
insertion in the first exon of FOXG_02084, which encodes a
protein similar to Peroxin26 (hereafter FoPex26). Reminis-
cent of other Peroxin26 proteins, which are carboxy-termi-
nally anchored integral peroxisomal membrane proteins
[60], FoPex26 also contains a transmembrane region located
near the carboxyl terminus (411-433 amino acids) [61,62].
Mutant 83A1 contains two T-DNAs integrated in close prox-
imity to each other. One RB was isolated using TAIL-PCR and
was found to be integrated in the ORF of gene FOXG_08300,
which encodes a protein similar to Peroxin12 (hereafter
FoPex12). Similar to other Peroxin12 proteins, FoPex12 con-
tains a pex2/pex12 amino-terminal region (pfam04757) and
a carboxy-terminal RING finger domain (pfam00097). Both
pex mutants grew normally on rich medium (PDA), but were
severely reduced in growth on minimal medium (CDA), pos-
sibly due to lack of amino acids and vitamins, and, as
expected for peroxisomal biogenesis mutants, on medium
containing fatty acids as sole carbon source (Additional data
file 5). Mutant 51D10 contains two T-DNA insertions located
in close proximity (2.2 kb) to each other with one T-DNA
being truncated. Two RB flanks were isolated with TAIL-PCR.
One RB had integrated 801 bp upstream of FOXG_05014,
which encodes a conserved hypothetical protein. The second
RB had integrated into FOXG_05013, which encodes a pro-
tein with homology to Saccharomyces cerevisiae Dcw1p.
FOXG_05013 is up-regulated in F. oxysporum f. sp. vasinfec-
tum during infection of cotton [63]. Therefore, this gene was
selected for complementation of the mutant phenotype. Sim-
ilar to Dcw1p, the protein encoded by FOXG_05013 (hereaf-
ter FoDcw1) is putatively glycosylphosphatidylinositol (GPI)-
anchored and belongs to the family of alpha-1,6-mannanases
(glycosyl hydrolase family 76, pfam03663) [61,62]. The path-
ogenicity mutant displayed no growth abnormalities when
grown on various carbon sources.

For FoPex26, FoPex12 and FoDcw1 complementation con-
structs were generated containing the complete ORF, 650-
1,000 bp upstream and 500 bp downstream sequences. These
complementation constructs were introduced in the corre-
sponding pathogenicity mutants through Agrobacterium-
mediated transformation and ectopic integration of the com-
plementation construct was verified by PCR (Additional data
file 6). For all three pathogenicity mutants, introduction of an
intact copy of the corresponding gene restored the disease
causing capacity in five independent transformants (Figure
3). Disease index levels of the complementation mutants were
comparable to the disease index of the wild-type infection and
in all cases significantly different from the disease index of the
corresponding pathogenicity mutant (Figure 4). In addition,
the reduced growth phenotype of the Peroxin mutants 35F4
and 83A1 on CDA and fatty acids was complemented in the
transformants (Additional data file 5). In conclusion, comple-

mentation confirmed that the observed pathogenicity defect
in the pathogenicity mutants analyzed was due to the disrup-
tion of FOXG_02084, FOXG_08300 and FOXG_05013 and
that the proteins FoPex26, FoPex12 and FoDcw1 play a cru-
cial role during infection of tomato by F. oxysporum.

Gene replacement confirms a role in pathogenesis for 
two out of four genes analyzed
To obtain additional information on the link between T-DNA
insertions and phenotypes, we decided to perform a gene
knock-out study for four potential pathogenicity genes. The
first mutant chosen was 18C4 (disease index <1). This mutant
carries a single T-DNA insertion and both the LB and RB were
isolated by TAIL-PCR. Analysis revealed that a deletion of
seven nucleotides occurred at the insertion point and that the
T-DNA was inserted 600 bp upstream of FOXG_08602. This
gene encodes a protein of 242 amino acids, showing homol-
ogy to spherulin, a protein thought to be involved in tissue
desiccation or hydration [64]. The second mutant, 46D7 (dis-
ease index approximately 2), carries a single T-DNA with a
truncation of the left border. As a result, only the RB was iso-
lated by TAIL-PCR and analysis revealed that it was inserted
18 bp upstream of FOXG_03318. This gene encodes a protein
of 586 amino acids with homology to transcriptional regula-
tor Cti6. Like other Cti6 proteins, the protein encoded by
FOXG_03318 (hereafter FoCti6) contains a PHD finger motif
(pfam00628) and a nuclear localization signal (RRRKR at
amino acid 68) [61,62]. The third mutant, 54E6 (disease
index approximately 1), contains a single T-DNA and, based
on the isolated LB and RB in the TAIL-PCR, a 19 nucleotide
deletion at the insertion point. The T-DNA was inserted in
FOXG_09487, which encodes a hypothetical protein with no
known domains. Finally, the fourth mutant chosen, 86A9
(disease index <1), contains two T-DNAs integrated in close
proximity (approximately 600 bp) of each other. This mutant
also contains a chromosomal rearrangement. Three borders
were isolated by TAIL-PCR: one RB was inserted 322 bp
upstream of FOXG_09637, and two LBs were inserted 133 bp
upstream and into FOXG_02054, respectively. FOXG_09637
encodes a hypothetical protein of 387 amino acids with no
known domains. FOXG_02054 encodes a hypothetical pro-
tein of 156 amino acids containing a DUF1183 domain of
unknown function (pfam06682) and an amino-terminal sig-
nal peptide (amino acids 1-18) [62]. FOXG_02054 was cho-
sen as a target for the gene knock out study since it contains a
T-DNA insertion in the ORF and is, therefore, the more likely
candidate in this mutant.

For all four genes, a gene replacement construct was intro-
duced into the wild-type strain and transformants that had
undergone homologous recombination were identified by
PCR (Additional data files 7-10). Five independent deletion
mutants for each gene were assessed in a root dip bioassay to
determine their pathogenicity phenotype. Deletion of
FOXG_08602 and FOXG_02054 did not have an effect on
pathogenicity. The deletion mutants displayed a disease
Genome Biology 2009, 10:R4
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Peroxisomal biogenesis proteins Pex12 and Pex26 and cell wall protein Dcw1 are necessary for full pathogenicityFigure 3
Peroxisomal biogenesis proteins Pex12 and Pex26 and cell wall protein Dcw1 are necessary for full pathogenicity. Plant phenotypes three 
weeks after mock inoculation (H2O) or inoculation with F. oxysporum wild type 4287, pathogenicity mutant 35F4, 35F4 complementation transformant 
02084-2, pathogenicity mutant 83A1, 83A1 complementation transformant 08300-14, pathogenicity mutant 51D10, and 51D10 complementation 
transformant 05013-3.
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Peroxisomal biogenesis proteins Pex12 and Pex26 and cell wall protein Dcw1 are necessary for full pathogenicityFigure 4
Peroxisomal biogenesis proteins Pex12 and Pex26 and cell wall protein Dcw1 are necessary for full pathogenicity. Average disease index 
of 20 plants three weeks after mock inoculation (H2O) or inoculation with F. oxysporum wild type 4287, pathogenicity mutants 35F4, 83A1, 51D10 and 
their complemented counterparts 02084-2 to -14, 08300-2 to -15, and 05013-1 to -13, respectively. Error bars indicate standard deviation and capital 
letters define statistically different groups (ANOVA, p = 0.95).
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index that was significantly higher than the corresponding
insertional mutagenesis strain and was similar to the disease
index obtained with the wild-type strain (Figure 5a,c). In con-
trast, we were able to confirm a role of FOXG_03318 and
FOXG_09487 in pathogenicity. Deletion of either of these
genes led to reduced pathogenicity (Figure 5b,d). Although
the deletion mutants belong to statistically different groups,
they were all significantly different from the wild-type strain
(Figure 5b,d). Some of the apparent differences in patho-
genicity between the different deletion mutants may be due to
randomly introduced, minor (epi)genetic differences. How-
ever, a mutation or an epigenetic modification in the culture
used for transformation influencing our results can be
excluded since the cultures we used for transformations were
not derived from a single spore but were derived from the
same mass of mycelium as the wild type control. Therefore,
selection of a random mutation affecting pathogenicity of all
transformants but not the wild-type control is essentially
excluded. In addition, the reduced phenotype in disease caus-

ing ability between the mutants and the wild type is reproduc-
ible. In conclusion, two lines of evidence support the notion
that the tagged genes are involved in pathogenicity: first, the
isolation of the original insertional mutant carrying a muta-
tion in or close to the ORF of this gene; and second, the veri-
fication of the pathogenicity phenotype in five gene deletion
transformants generated independently. Thus, FoCti6 and
hypothetical protein FOXG_09487 are required for full path-
ogenicity of F. oxysporum towards tomato.

Discussion
Agrobacterium-mediated transformation is a well estab-
lished tool for insertional mutagenesis in plants, such as Ara-
bidopsis thaliana and Oryza sativa [65-67]. When it was
demonstrated that this transformation system could also be
used for the introduction of DNA into yeast and filamentous
fungi [68,69], a new possibility for insertional mutagenesis,
besides restriction enzyme mediated insertion (REMI) and

Transcription factor Cti6 and FOXG_09487 are required for full pathogenicity, whereas FOXG_08602 and FOXG_02054 are notFigure 5
Transcription factor Cti6 and FOXG_09487 are required for full pathogenicity, whereas FOXG_08602 and FOXG_02054 are not. (a-d) 
Average disease index of 20 plants three weeks after mock inoculation (H2O) or inoculation with F. oxysporum wild type 4287, pathogenicity mutant 18C4 
and FOXG_08602 deletion strains KO#2, 10, 21, 24, and 29 (a); mutant 46D7 and FOXG_03318 deletion strains KO#1, 15, 17, 20, and 21 (b); mutant 54E6 
and FOXG_09487 deletion strains KO#12, 13, 17, 18, and 20 (c); and mutant 86A9 and FOXG_02054 deletion strains KO#1, 4, 5, 6, and 7 (d). Error bars 
indicate standard deviation and capital letters define statistically different groups (ANOVA, p = 0.95).
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transposon-based methodologies, became available as a tool
for large-scale insertional mutagenesis in fungi. Agrobacte-
rium-mediated insertional mutagenesis has since been suc-
cessfully used to identify pathogenicity factors in several
plant-pathogenic fungi [36-38,70,71]. In this study, Agrobac-
terium-mediated insertional mutagenesis was used to gener-
ate pathogenicity mutants of F. oxysporum f. sp. lycopersici
to identify novel genes required for pathogenesis. In total,
10,290 transformants were generated and assessed for loss of
pathogenicity on Solanum lycopersicon (tomato). Out of
these, 106 tranformants (1%) displayed a reproducible non-
pathogenic or (severely) reduced pathogenicity phenotype
and 111 potential pathogenicity genes were identified. Assum-
ing a genome size of 61 Mb, 17,735 genes [39], and random T-
DNA insertion events, and taking into consideration that sev-
eral variables are unknown (such as the exact number and
length of transcription units, the average distance to an ORF
for an insertion to affect gene expression, the number of
essential genes and the role of chromatin state (gene activity)
on the likelihood of T-DNA insertion), we estimate a genome
coverage of 30-40%. Indeed, several confirmed or potential
pathogenicity genes were identified more than once, such as
those encoding chitin synthase V (three times), developmen-
tal regulator FlbA (twice), a hypothetical protein with homol-
ogy to Ryp1 (three times), carboxy-cis,cis,muconate cyclase
(twice) and transcription factor FOW2 (twice), indicating that
some redundancy is present in this collection of transform-
ants. However, most known F. oxysporum pathogenicity
genes (14 to18 out of the 20 known genes would have been
possible to identify in our screen; see Introduction) were not
identified in our screen, which underlines the incompleteness
of our collection. Our estimations of the average T-DNA copy
number, the percentages of single T-DNA integrations, trun-
cations of the LB and RB, non-T-DNA insertions and chromo-
somal rearrangements and deletions of more than 1 kb are
similar to what has been observed in insertional mutant col-
lections generated with A. tumefaciens in other fungi, as well
as in plants [36-38,65,67,72-77]. This indicates that the proc-
ess of T-DNA integration into the genome of F. oxysporum is
essentially similar to that observed in other organisms. Taken
together, we conclude that Agrobacterium-mediated inser-
tional mutagenesis is well suited for creating F. oxysporum
mutants with desired phenotype(s).

In this study, only when a T-DNA was inserted in an ORF, or
within 1 kb up- or downstream of an ORF, was it assumed that
expression of the gene could be influenced by the T-DNA
insertion and the gene was marked as a potential pathogenic-
ity gene. This resulted in the identification of 111 potential
pathogenicity genes (Additional data files 1-3). Among these,
several encode known pathogenicity factors, underscoring
the effectiveness of Agrobacterium-mediated insertional
mutagenesis to identify pathogenicity factors in F. oxyspo-
rum. However, from other insertional mutagenesis screens, it
is known that not every T-DNA insertion is linked to the
mutant phenotype. For C. neoformans and M. grisea the per-

centage of tagged mutants ranged from 53% to 93%
[38,70,78]. Therefore, it should be kept in mind that some of
the genes identified might not be involved in pathogenicity, as
demonstrated by deletion of FOXG_08602 and
FOXG_02054. Nevertheless, functional categorization of the
entire list of genes indicated that certain metabolic pathways
(amino acid and lipid metabolism), cell wall integrity, and
certain cellular processes (protein translocation and degrada-
tion) appear to be important for full pathogenicity of F.
oxysporum. A striking observation was that mutants
impaired in primary metabolism or mutants with a severe
growth phenotype on CDA (the selective medium) were iden-
tified. We hypothesize that although the selection medium
does not support auxotrophic growth, these mutants were
still able to grow due to the presence of non-transformed fun-
gal hyphae and A. tumefaciens cells, which might have served
as a nutrient supply. Comparison of our list of potential path-
ogenicity genes to 672 potential pathogenicity genes pub-
lished for M. grisea [79] revealed five common (that is,
orthologous) genes. Only those T-DNA insertions located
within 1,000 bp of an ORF were included in the comparison.
The common genes were the known pathogenicity genes for
chitin synthase V (chsV), a GTPase activating protein
(FOXG_07699), a RNA polymerase II transcription mediator
(FOXG_08531), a pyridoxine biosynthesis protein involved
in vitamin B6 metabolism (FOXG_08652) and a Ca2+ per-
mease/membrane transporter involved in calcium homeosta-
sis (FOXG_11097). The fact that these genes were found in
insertional mutagenesis screens in two plant-pathogenic
fungi points strongly towards a conserved requirement of
these proteins for colonization of living plants.

The link between T-DNA insertion and pathogenicity pheno-
type was confirmed for five of seven genes tested either by
complementation or gene knock-out. Complementation of
two pathogenicity mutants (Pex12 and Pex26) with the corre-
sponding genes completely restored the capacity to cause dis-
ease on tomato seedlings, indicating that peroxisomal
function is important for pathogenicity of F. oxysporum. Per-
oxisomes are single membrane bound organelles possessing
multiple metabolic functions in filamentous fungi, including
-oxidation of fatty acids, peroxide detoxification and occlu-
sion of septal pores [80-82]. More than 20 peroxin proteins
involved in peroxisome biogenesis have been identified in
fungi [60]. Mutations in peroxin genes usually result in the
absence of normal peroxisomes, mislocalization of peroxiso-
mal matrix proteins and inability to perform specific bio-
chemical reactions, such as fatty acid catabolism [60]. Four
different pex genes, PEX1, PEX10, PEX12, and PEX26, were
identified as potential pathogenicity genes in this study. The
four peroxins encoded by these genes are all involved in dock-
ing and translocation of receptor-cargo moieties across the
peroxisomal membrane [60,83]. It can therefore be assumed
that inactivation of any one of these peroxins disturbs perox-
isomal function, as shown by the reduced growth of these
mutants on fatty acids. Peroxisomal function and fatty acid
Genome Biology 2009, 10:R4
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metabolism have been shown to play a role during fungal
pathogenesis in C. lagenarium, M. grisea, and Ustilago may-
dis [38,48,49,84,85]. Inactivation of PEX6 in C. lagenarium
and M. grisea resulted in disturbed peroxisomal function,
formation of aberrant appressoria, and failure to penetrate
the host cuticle [48,49,85]. Failure to penetrate the host cuti-
cle was attributed to the aberrant appressoria, which were
smaller in size and severely reduced in melanization, and to
the absence of appressorium lipolysis [48,49,85]. We here
show that peroxisomal function is also necessary for patho-
genesis of a root infecting fungus that lacks appressoria. It
could still be that peroxisomal function is necessary for effi-
cient root penetration. Given the incomplete loss of patho-
genicity, the insertion mutants would then penetrate the root
cortex at a reduced efficiency. Another possibility is that per-
oxisomal function is necessary for proper utilization of host
nutrients during in planta growth as has been postulated for
U. maydis [84]. A third possibility is that F. oxysporum pex
mutants are more sensitive to cytoplasmic leakage during in
planta growth due to absence of woronin bodies. Woronin
bodies have been identified as a special class of peroxisomes
and disruption of peroxisomal function also disturbs the bio-
genesis of woronin bodies [80,81,86]. Combined loss of per-
oxisomal function and woronin bodies has been observed in a
M. grisea PEX6 deletion mutant [49].

Another process that has been shown to be important for
pathogenicity of F. oxysporum is maintenance of cell wall
integrity [12-16]. We also identified genes with a function in
cell wall assembly as potential pathogenicity genes, such as
those encoding chitin synthase V, mannose-6-phosphate iso-
merase and a GPI-anchored protein with homology to S. cer-
evisiae Dcw1p. For the first two proteins it was demonstrated
earlier that their function is required for pathogenesis and/or
for maintaining cell wall integrity in various filamentous
fungi [13,41,87,88]. We show here that introduction of the F.
oxysporum DCW1 gene into the dcw1 pathogenicity mutant
restores pathogenicity, thereby confirming that FoDcw1 is
also necessary for pathogenesis. In S. cerevisiae, the absence
of Dcw1p leads to defects in bud growth and cell polarity. In
addition, an aberrant cell wall with increased chitin content
was observed and it was hypothesized that Dcw1p is necessary
for normal biogenesis of the cell wall [89,90]. It could be that
disturbance of FoDcw1 function in F. oxysporum also leads to
a weakened cell wall. This in turn could lead to less efficient
penetration of the root cortex, reduced in planta growth and/
or an increased sensitivity to plant defense mechanisms.
Alternatively, it could be that an altered cell wall induces host
defense responses through exposure or release of molecular
patterns that are recognized by the host. The dcw1 mutant
was not disturbed in superficial root colonization and was not
more sensitive to the cell wall disturbing reagents glucanex
and SDS or to high concentrations of sorbitol. However, a
minor swelling of the hyphae was observed when the mutant
was grown in the presence of calcofluor white (data not
shown), indicating that cell wall integrity may be disturbed to

some extent in this mutant. Overall, FoDCW1 is not required
for normal development, since no effect on growth on various
carbon sources or on sporulation was observed.

Another gene verified here to be important for F. oxysporum
pathogenicity is FOXG_09487, which encodes a conserved
hypothetical protein. Further studies should be performed to
determine what role this protein plays during pathogenicity.
Finally, we were able to verify that FoCTI6 is required for full
pathogenicity. Its product, FoCti6, is likely involved in tran-
scriptional regulation based on homology to S. cerevisiae
Cti6. Papamichos-Chronakis et al. [91] studied the role of
Cti6 in transcriptional activation and repression in S. cerevi-
siae by using the GAL1 promoter as a model and they showed
that Cti6 simultaneously interacts with the transcriptional co-
repressor complex Cyc8-Tup1 and the co-activator SAGA
(Spt-Ada-Gcn5-acetytransferase) complex. Co-repressor
complex Cyc8-Tup1 controls many physiological pathways,
such as glucose repression, hypoxia, and cell type specific
expression [92]. The SAGA complex functions as a co-activa-
tor complex through histone-post-translational modification
and gene regulation [93]. Interestingly, one of the F. oxyspo-
rum pathogenicity mutants identified in this study has com-
pletely lost FOXG_08594. The product of this gene shows
high homology to one of the components of the SAGA com-
plex, Spt3. This protein has been shown to be required for C.
albicans virulence and to play opposite roles in filamentous
growth in S. cerevisiae and C. albicans [94]. We hypothesize
that in F. oxysporum, certain genes required for pathogenesis
are under transcriptional regulation of FoCti6 and possibly
the SAGA complex.

Conclusion
Large scale Agrobacterium-mediated insertional mutagene-
sis was used successfully to identify novel pathogenicity genes
in F. oxysporum. About one in a hundred transformants was
reduced in pathogenicity and 111 potential pathogenicity
genes were identified. Functional categorization of the poten-
tial pathogenicity genes indicate that certain metabolic path-
ways, cell wall integrity, and a subset of cellular processes
seem to be important for full pathogenicity of F. oxysporum
on tomato. In addition, knock-out and complementation
studies confirmed that a GPI-anchored protein thought to be
involved in cell wall integrity, a transcriptional regulator, a
protein with unknown function and peroxisomal function are
required for full pathogenicity. Verification and characteriza-
tion of additional potential pathogenicity genes is in progress.
Together, these efforts should lead to a comprehensive pic-
ture of the molecular requirements for pathogenicity of a
root-invading fungus.
Genome Biology 2009, 10:R4
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Materials and methods
Strains, plant material, media, culture conditions
F. oxysporum f. sp. lycopersici strain 4287 (race 2), used as
the parent strain for fungal transformation, was obtained
from A Di Pietro, Universidad de Córdoba, Spain. It was
stored as a monoconidial culture at -80°C and revitalized on
potato dextrose agar (PDA, Difco, Le Pont de Claix, France) at
25°C. Agrobacterium tumefaciens EHA105 [95] was used for
Agrobacterium-mediated transformation of F. oxysporum
and was grown in Luria broth medium [96] containing 20 g/
ml rifampicin at 28°C. Introduction of the plasmids into the
Agrobacterium strain was performed as described by Mat-
tanovich et al. [97]. Escherichia coli DH5 alpha (Invitrogen,
Breda, The Netherlands) was used for construction, propaga-
tion, and amplification of the plasmids and was grown in
Luria broth medium at 37°C containing either 100 g/ml
ampicillin or 50 g/ml kanamycin depending on the resist-
ance marker of the plasmid used. Plant line Moneymaker
ss590 (Gebr. Eveleens b.v., Aalsmeer, The Netherlands) was
used to assess pathogenicity of F. oxysporum strains and
transformants.

Construction of insertional mutagenesis 
transformation vector
The insertional mutagenesis transformation vector
pPK2hphgfp contains between the left and right T-DNA bor-
der an in-frame fusion of the hygromycin resistance gene with
green fluorescent protein (GFP) under the control of the
Aspergillus nidulans glyceraldehyde-3-phosphate dehydro-
genase (gpdA) promoter and A. nidulans trpC terminator.
pPK2hphgfp was constructed in a two-step approach. First,
plasmid pPK2 [98] was amplified entirely by PCR using prim-
ers HPH-Fwd2-ApaI and HPH-End-ApaI-f (Additional data
file 11) in order to introduce an ApaI restriction site before the
stop codon of the hph gene. The pPK2ApaI PCR fragment was
digested with ApaI and ligated, resulting in plasmid
pPK2hphApaI. The gfp coding sequence was amplified by
PCR using primers GFP-f-ApaI and GFP-r-ApaI (Additional
data file 11) with plasmid pGPDGFP [99] as a template. The
gfp PCR fragment was digested with ApaI and cloned into
pPK2hphApaI previously linearized with ApaI, resulting in
pPK2hphgfp.

Construction of complementation constructs
Three complementation constructs containing the ORFs of
FOXG_05013, FOXG_02084, and FOXG_08300 and
sequences of several hundred base-pairs up- and downstream
of them were constructed. Using pfu polymerase (Fermentas,
St. Leon-Rot, Germany) and the primer pairs FOXG_05013f-
XbaI/FOXG_05013r-AscI, FOXG_02084f-AscI/FOXG_020
84r-XbaI and FOXG_08300f-XbaI/FOXG_08300r-AscI
(Additional data file 11), PCR products were generated corre-
sponding to the ORF of FOXG_05013 together with sequence
740 bp upstream and 500 bp downstream of it, to the ORF of
FOXG_02084 together with sequence 649 bp upstream and
500 bp downstream of it, and to the ORF of FOXG_08300

together with sequence 1,000 bp upstream and 500 bp down-
stream of it, respectively. The PCR products were cloned into
pGEM-T Easy (Promega, Leiden, The Netherlands) and
sequenced on an ABI PRISM genetic analyzer using an ABI
PRISM BigDye Terminator kit (Applied Biosystems, Nieu-
wekerk a/d IJssel, The Netherlands) and the corresponding
FOXG primers listed in Additional data file 11. Subsequently,
pGEMtFOXG_02084, pGEMtFOXG_05013 and pGEMtFOX
G_08300 were digested with XbaI and AscI and the FOXG
XbaI/AscI fragments were cloned into XbaI/AscI-digested
pRW1p [100], resulting in pRW1pFOXG_02084,
pRW1pFOXG_05013 and pRW1pFOXG_08300, respec-
tively.

Construction of gene disruption constructs
Gene disruption constructs containing a hygromycin resist-
ance cassette and sequences of FOXG_08602, FOXG_03318,
FOXG_09487 and FOXG_02054 including several base-
pairs upstream and downstream of them were generated.
PCR products corresponding to the upstream and down-
stream sequences were generated using pfu polymerase (Fer-
mentas) and the primer pairs FOXG_08602-f3/
FOXG_08602-r3 and FOXG_08602-f4/FOXG_08602-r4,
FOXG_03318-f1/FOXG_03318-r1 and FOXG_03318-f2/
FOXG_03318-r2, FOXG_09487-f1/FOXG_09487-r1 and
FOXG_09487-f2/FOXG_09487-r2 and 86A9pro_fw/
86A9pro_rev and 86A9term_fw/86A9term_rev (Additional
data file 11). The PCR products were cloned into pGEM-T
Easy (Promega) and sequenced on an ABI PRISM genetic
analyzer using ABI PRISM BigDye Terminator kit (Applied
Biosystems), using M13forward and M13reverse primers for
sequencing. Subsequently, an AscI/HindIII- or KpnI/PacI-
digested fragment corresponding to the FOXG_08602 pro-
moter and terminator region, a KpnI/PacI- or HindIII/XbaI-
digested fragment corresponding to the FOXG_03318 termi-
nator or promoter region, a KpnI/PacI- or HindIII/XbaI-
digested fragment corresponding to the FOXG_09487 termi-
nator or promoter region, or a KpnI/PacI- or AscI/XbaI-
digested fragment corresponding to the FOXG_02054 termi-
nator or promoter region were sequentially cloned in pRW2h
[100], resulting in pRW2hFOXG_08602KO, pRW2hFOXG_
03318KO, pRW2hFOXG_09487KO or pRW2hFOXG_02054
KO, respectively.

Fungal transformation, pathogenicity and growth 
assays
Agrobacterium-mediated transformation of F. oxysporum f.
sp. lycopersici was performed as described by Mullins et al.
[101] with minor adjustments [102]. Depending on the selec-
tion marker used, transformants were selected on Czapek
Dox agar (CDA, Oxoid, Basingstoke, Hampshire, England)
containing 100 g/ml Hygromycin (Duchefa, Haarlem, The
Netherlands) or on CDA containing 0.1 M TrisHCl pH 8 and
100 g/ml Zeocin (InvivoGen, Toulouse, France).
Genome Biology 2009, 10:R4
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Plant infection was performed using 9- to 11-day-old seed-
lings (Moneymaker ss590) and following the root-dip inocu-
lation method [103]. For the high throughput three-plants-
in-one-pot bioassays, the inoculum was prepared by growing
the independent F. oxysporum transformants on PDA
medium for 5 to 6 days followed by collection of microconidia
using 5 ml of sterilized water. The conidial suspensions were
collected in 24-well plates (one transformant per well) and in
each well three uprooted tomato seedlings were incubated for
about one minute. Subsequently, the three seedlings were
planted in one container (12 cm in diameter) containing pot-
ting soil. After three weeks the degree of infection was deter-
mined by visual inspection.

For the standard bioassay the inoculum was prepared by
growing F. oxysporum for 5 days in NO3 medium (0.15%
Yeast Nitrogen Base, 3% sucrose, 100 mM KNO3) at 25°C and
shaking at 150 rpm. Cultures were then filtered through one
layer of Miracloth (Calbiochem, Darmstadt, Germany), cen-
trifuged and washed with sterile water, and adjusted to a con-
centration of 107 conidia/ml. The uprooted seedlings (20 per
fungal strain) were incubated for about one minute in the
conidial suspension and individually planted in a container
(12 cm in diameter) containing potting soil. The inoculated
plants were grown in a random block design (five replicates
per block). After three weeks, the degree of vascular browning
and the weight above the cotyledons were determined for
each plant. Disease index was scored on a scale from 0 to 4 (0,
healthy plant; 1, slightly swollen hypocotyl; 2, one brown vas-
cular bundle in hypocotyl; 3, two or three brown vascular
bundles and/or severe growth distortion (small plant and/or
asymmetric development); 4, more than three brown vascu-
lar bundles and/or very small wilted plant or dead). Statistical
analysis (ANOVA and Fisher post hoc test) was performed
using StatView™SE+ v1.03.

All transformants tested in the standard bioassay were also
subjected to growth tests. For this purpose 2 l of the conidial
suspension (107 conidia/ml) was spotted on CDA, PDA, and
minimal medium (0.17% Yeast Nitrogen Base, 50 mM KNO3

and 1.5% bacto agar (Difco)) supplemented either with 1%
ethanol, glycerol, malic acid pH 6.0, citric acid pH 6.0,
sucrose or no carbon source. After an incubation period of 7
days at 25°C the transformants were scored based on colony
diameter and growth phenotype in comparison to the wild
type strain. The growth assay of the pex mutants on minimal
medium containing 1% Tween20, oleic acid or olive oil was
performed as described above.

Isolation of T-DNA flanking regions
TAIL-PCR was used to isolate genomic DNA flanking the
inserted T-DNA from those transformants that were signifi-
cantly reduced in pathogenicity. The TAIL-PCR conditions
were adapted from the protocol described by Mullins et al.
[101] and are described in Additional data file 12. The primers
for isolating the RB flanking regions and arbitrary degenerate

primer AD1 were described by Mullins et al. [101]. Primers
used for isolating the LB flanking regions and additional
degenerate primers used in this study are listed in Additional
data file 11. Depending on the degenerate primer used, the
final concentration of the primers in the TAIL-PCR were 0.4
M specific primer and 4 M degenerate primer for AD1 or
AD4 or 0.2 M specific primer and 1.5 M degenerate primer
for AD2, AD3, AD6, AD7, or AD8. The tertiary TAIL-PCR
product(s) of each transformant was/were purified using
Qiaquick columns (Qiagen, Hilden, Germany) and ligated
into pGEM-T Easy (Promega). Colony PCR was used to iden-
tify the correct clones using primers M13forward and
M13reverse (Additional data file 11). The PCR products from
the colony PCR were sequenced on an ABI PRISM genetic
analyzer using ABI PRISM BigDye Terminator kit (Applied
Biosystems) and M13forward and M13reverse as sequence
primers. After in silico removal of T-DNA border sequences,
the sequences of the TAIL-PCR product were used to search
for nucleotide and amino acid similarities by BLASTN and
BLASTX algorithms, respectively, against the Fusarium
group genome database [39] and NCBI [104].

Molecular analysis of the transformants
F. oxysporum was grown in 50 ml NH4 medium (0.17% Yeast
Nitrogen Base, 3% sucrose, 50 mM (NH4)2SO4) for 5 days at
25°C shaking at 175 rpm. Mycelium was harvested by filtra-
tion through Miracloth, washed with deionized water and
freeze-dried overnight. Genomic DNA was isolated as
described by Kolar et al. [105] with minor adjustments.
Briefly, 2 ml DNA-extraction buffer (0.2 M TrisHCL pH 8.5,
0.25 M NaCl, 0.05 M EDTA pH 8.0, 48 mg/ml sodium 4-ami-
nosalicylate dihydrate (PAS, Sigma-Aldrich, Zwijndrecht,
The Netherlands), 8 mg/ml Triisopropylnaphthalenesulfonic
acid sodium (TIPS, Sigma-Aldrich) and 2 ml water-saturated
phenol-chloroform (1:1) was added to ground mycelium,
mixed and centrifuged for 30 minutes at 3,500 rpm and 4°C.
DNA was precipitated from the aqueous phase with 0.7 vol-
ume isopropanol and 0.1 volume 4 M NaCl and centrifugation
for 30 minutes at 3,500 rpm and 4°C. The pellet was resus-
pended in 400 l TE buffer (10 mM TrisHCL pH7.5, 1 mM
EDTA pH 8.0) and extracted three times with water-satu-
rated phenol:chloroform (1:1). DNA was then precipitated
with 2 volumes 96% ethanol and 0.1 volume 3 M NaAc. The
DNA was finally dissolved in 100 l deionized water.

For Southern analysis, 10 g genomic DNA of each trans-
formant was digested with 20 U BglII or 20 U BamHI over-
night at 37°C. The samples were loaded on a 1% 0.5× Tris-
borate/EDTA gel and run for 18 h at 45 V. The digested DNA
was transferred to Hybond-N+ (Amersham Pharmacia,
Diegem, Belgium) as described by Sambrook et al. [96]. The
probes used for Southern analysis were a 1,744 bp NheI-NcoI
and a 780 bp BamHI-HindIII fragment of plasmid
pPK2hphgfp corresponding to the gpdA promoter and a part
of the hygromycin resistance gene (hph) and trpC terminator,
respectively. Plasmid pPZP201BK [106] was used for detec-
Genome Biology 2009, 10:R4
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tion of the binary backbone. For the detection of the left and
right T-DNA border 381 bp and 327 bp PCR products were
generated using primers LB-f and pPK2-LB1 and primers
pPK2-RB1 and RB-r, respectively [101] (Additional data file
11). The plasmid pPK2hphgfp was used as template DNA for
this PCR. The DecaLabel™ DNA Labeling Kit (Fermentas)
was used to label probes with [-32P]dATP. Hybridization
was done overnight at 65°C in 0.5 M sodium phosphate
buffer, pH 7.2, containing 7% SDS and 1 mM EDTA. Blots
were washed with 0.2 × SSC, 0.1% SDS. Hybridization signals
were visualized by phosphorimaging (Molecular Dynamics,
Diegem, Belgium).
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The following additional data are available with the online
version of this paper. Additional data file 1 is a table listing
pathogenicity mutants with a T-DNA insertion in an ORF.
Additional data file 2 is a table listing pathogenicity mutants
with a T-DNA insertion within 500 bp up- or 200 bp down-
stream of an ORF. Additional data file 3 is a table listing path-
ogenicity mutants with a T-DNA insertion within 1,000-500
bp up- or 200-1,000 bp downstream of an ORF. Additional
data file 4 is a table listing pathogenicity mutants with a T-
DNA insertion in an 'intergenic' region (defined as 3,000-
1,000 bp up- or downstream of an ORF). Additional data file
5 is a figure showing that the growth of the pex mutants is dis-
turbed on minimal medium and fatty acids. Additional data
file 6 is a figure depicting the method and analysis of trans-
formants complemented with FOXG_02084, FOXG_08300
or FOXG_05013.

Additional data file 7 is a figure depicting the method and
analysis of transformants deleted for FOXG_08602. Addi-
tional data file 8 is a figure depicting the method and analysis
of transformants deleted for FOXG_03318. Additional data
file 9 is a figure depicting the method and analysis of trans-
formants deleted for FOXG_09487.

Additional data file 10 is a figure depicting the method and
analysis of transformants deleted for FOXG_02054. Addi-

tional data file 1111 is a table listing primer sequences used for
PCR and sequencing. Additional data file 12 is a table listing
the conditions used for TAIL-PCR.
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