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Abstract: The locus coeruleus (LC), the major noradrenergic nucleus of the brain, gives rise to fibres innervating most 

structures of the neuraxis. Recent advances in neuroscience have helped to unravel the neuronal circuitry controlling a 

number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal 

and autonomic activity, which are inseparably linked largely via the involvement of the LC. Alterations in LC activity due 

to physiological or pharmacological manipulations or pathological processes can lead to distinct patterns of change in 

arousal and autonomic function. Physiological manipulations considered here include the presentation of noxious or anxi-

ety-provoking stimuli and extremes in ambient temperature. The modification of LC-controlled functions by drug admini-

stration is discussed in detail, including drugs which directly modify the activity of LC neurones (e.g., via autoreceptors, 

storage, reuptake) or have an indirect effect through modulating excitatory or inhibitory inputs. The early vulnerability of 

the LC to the ageing process and to neurodegenerative disease (Parkinson’s and Alzheimer’s diseases) is of considerable 

clinical significance. In general, physiological manipulations and the administration of stimulant drugs, 2-adrenoceptor 

antagonists and noradrenaline uptake inhibitors increase LC activity and thus cause heightened arousal and activation of 

the sympathetic nervous system. In contrast, the administration of sedative drugs, including 2-adrenoceptor agonists, and 

pathological changes in LC function in neurodegenerative disorders and ageing reduce LC activity and result in sedation 

and activation of the parasympathetic nervous system.  

Key Words: Locus coeruleus, arousal, autonomic function, noxious stimuli, anxiety, Parkinson’s disease, Alzheimer’s disease, 
aging. 

Abbreviations: 6-OHDA, 6-hydroxydopamine; AD, Alzheimer’s disease; BF, Basal forebrain; CR, Caudal raphe; CS, Condi-
tioned stimulus; DMV, Dorsal motor nucleus of the vagus; DR, Dorsal raphe; EDS, Excessive daytime sleepiness; EEG, Elec-
troencephalogram; EMG, Electromyogram; EWN, Edinger-Westphal nucleus; fMRI, Functional magnetic resonance imaging; 
GABA, Gamma-aminobutyric acid; LC, Locus coeruleus; LDT, Laterodorsal tegmental nucleus; MPTP, 1-methyl-4-phenyl- 
1,2,3,6- tetrahydropyridine; PD, Parkinson’s disease; PPT, Pedunculopontine tegmental nucleus; PST, Pupillographic sleepi-
ness test; PVN, Paraventricular nucleus; REM, Rapid eye movement; RVLM, Rostroventrolateral medulla; SWS, Slow wave 
sleep; US, Unconditioned stimulus; VLPO, Ventrolateral preoptic area; VTA, Ventral tegmental area. 

1. BRIEF OUTLINE OF THE ROLE OF THE LOCUS 

COERULEUS IN THE MAINTENANCE OF 

AROUSAL AND REGULATION OF AUTONOMIC 

FUNCTIONS 

 The LC, the largest group of noradrenergic neurones in 
the central nervous system, is a major nucleus involved in 
the neural pathways controlling arousal and autonomic func-
tion. These physiological functions are inseparably linked, 
largely due to the central role of the LC in controlling these 
functions. The LC projects extensively to widespread areas 
of the neuraxis (see Part I) and these projections can result in 
both excitatory effects via the activation of 1-adrenoceptors 
and inhibitory effects via the stimulation of 2-adrenoceptors 
[206]. Therefore, complex changes in the neural circuitry 
underlying arousal and autonomic function result from 
changes in LC activity. 
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1.1. Arousal 

 The LC is recognised as a major wakefulness-promoting 
nucleus [304, 305], where the activity of the LC closely cor-
relates with level of arousal [16, 17, 18, 122, 123, 355, 360]. 
This wakefulness-promoting action results from the dense 
projections from the LC to most areas of the cerebral cortex 
[208] and from the multitude of projections from the LC to 
alertness-modulating nuclei (see Part I). The LC exerts an 
excitatory influence on wakefulness-promoting neurones 
such as cholinergic neurones of the BF [111, 126, 203, 205] 
and of the PPT and LDT nuclei [26], cortically-projecting 
neurones of the thalamus [280, 281] and serotonergic neu-
rones of the DR [219, 309, 375], and an inhibitory influence 
on sleep-promoting GABA-ergic neurones of the BF [268, 
288, 451] and VLPO of the hypothalamus [74, 288, 319]. 
Thus, increases in LC activity result in increases in EEG 
signs of alertness [29] whilst inactivation of the LC reduces 
this EEG activity [30, 91], demonstrating a reduction in 
alertness. Furthermore, the LC exerts a powerful inhibitory 
influence on REM sleep, probably by inhibiting a subgroup 
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of cholinergic neurones in the pedunculopontine tegmental 
nucleus involved in REM sleep [185] (see Part I). Indeed, 
electrical stimulation of the LC has been found to reduce the 
quantity of SWS and REM sleep in a human subject [211], 
demonstrating an increase in wakefulness. A schematic dia-
gram outlining the sleep/arosal neuronal network, highlight-
ing the central position of the LC, is shown in Fig. (1). 

1.2. Autonomic Functions 

 It is also well recognised that the LC plays an important 
role in controlling autonomic functions (see Part I). As a 
major premotor autonomic nucleus, the LC sends direct pro-
jections to the sympathetic preganglionic neurones in the 
spinal cord [208, 316, 489] and parasympathetic pregangli-
onic neurones in the brainstem and spinal cord (EWN: [50, 
255]; salivatory nuclei: [203, 419]; DMV: [309, 457, 490]; 
nucleus ambiguus: [208, 490]; spinal cord: [208, 385, 490, 
506]). It should be noted that the DMV also contains soma-
tomotor neurones to varying degrees in different mammalian 
species [256], and in fact in humans it is almost completely 
somatmotor. [52]. On the other hand, the EWN is an almost 
exclusively preganglonic parasympathetic nucleus in man 
[52]. In general, the LC increases sympathetic activity via
the activation of 1-adrenoceptors on preganglionic sympa-
thetic neurones [248] and reduces parasympathetic activity 
via the activation of 2-adrenoceptors on preganglionic para-
sympathetic neurones [418, 465, 501]. Furthermore, the LC 
also exerts an indirect effect on autonomic activity via pro-
jections to other premotor autonomic nuclei such as the PVN 

[207, 208, 309, 440, 461], the RVLM [470], and the CR 
[174, 208]. It is of interest that while the influence of the LC 
on premotor autonomic neurones in the PVN and CR is exci-
tatory, it is inhibitory on neurones in the RVLM (see Fig. 
(2)). Finally, the LC may modulate autonomic activity by 
projections to the cerebral cortex and amygdala [208, 293], 
structures which are known to influence the activity of pre-
motor sympathetic neurones in the PVN [173, 420] and 
RVLM [437]. The projections of the LC to the amygdala 
[90, 218] and to the PVN [381, 430] have both been linked 
to the autonomic response to stress, consisting of generalised 
sympathetic activation. A schematic diagram outlining the 
autonomic neuronal network, highlighting the central posi-

tion of the LC, is shown in Fig. (2). 

 The activation of the LC results in a well-defined pattern 
of autonomic changes: in tissues receiving a predominantly 
sympathetic innervation (e.g., arterioles and sweat glands) 
there is an increase in activity, whereas in those receiving 
predominantly parasympathetic innervation (e.g., salivary 
glands) there is a decrease in activity. It should be noted that 
the pressor effect observed after LC activation is attenuated 
by the inhibition of the RVLM [470], resulting in only mod-
erate increases in heart rate and blood pressure [412, 482]. 
Furthermore, in a tissue receiving a dual sympathetic/para-
sympathetic innervation (e.g., iris), where the two autonomic 
inputs have opposing effects, the effect of LC activation on 
sympathetic activity is enhanced by the inhibition of the 
parasympathetic output. The consequences of LC activation 

Fig. (1). Schematic diagram of the connections within the arousal-controlling neuronal network. Wakefulness-promoting nuclei (grey): TMN, 

tuberomamillary nucleus; LH/PF, lateral hypothalamic/perifornical area; Th, thalamus; LC, locus coeruleus; VTA, ventral tegmental area; 

PPT, pedunculopontine tegmental nucleus; R, raphe nuclei. Sleep-promoting nucleus (hatched): VLPO, ventrolateral preoptic nucleus. 

GABAergic interneurones, in (white). Neurotransmitters: ACh, acetylcholine; NA, noradrenaline; H, histamine; Ox, orexin; GABA, -

aminobutyric acid; DA, dopamine; 5HT, 5-hydroxytryptamine; Glu, glutamate. Receptors: 1, excitatory 1-adrenoceptors; 2, inhibitory 2-

adrenoceptors; H1, excitatory H1 histamine receptors; 5HT2A and 5HT2C, excitatory 5HT receptors. Neuronal outputs: excitatory (solid ar-

rows) and inhibitory (broken arrows). The wakefulness-promoting nuclei exert a direct activating effect on the cerebral cortex; the VLPO 

promotes sleep by inhibiting the TMN and the LC. The LC promotes wakefulness by stimulating the cerebral cortex and the wakefulness-

promoting neurones of the PPT, and by inhibiting the VLPO. The LC also inhibits the REM-sleep-promoting neurones of the PPT. The raphe 

nucleus promotes wakefulness by activating the cerebral cortex; this effect is attenuated by stimulation of GABAergic interneurones, which 

inhibit the LC and the VTA. The VTA exerts its wakefulness-promoting effect largely via activation of the LC, and the LH/PF largely via

activation of the TMN and the LC. The connections of the LC are reviewed in detail in Part I. The GABAergic interneurones, activated by 

excitatory 5HT2C receptors, are located in the VTA itself [55, 140] and in the vicinity of the LC [140]. Modified with permission from Sza-

badi, 2006. 
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are, therefore, observable as an increase in pupil diameter 
[341, 342], attenuation of the light reflex response [22, 38, 
40], moderate increases in heart rate and blood pressure 
[106, 154, 251, 412, 429, 482], suppression of the baroreflex  

response [192, 401], and a reduction in salivation [446]. The 
modulation of the baroreflex response by the LC may reflect 
to some extent the activity of central adrenergic neurones 
which have been shown to project to the LC (see Section  

Fig. (2). The central role of the locus coeruleus (LC) in the regulation of autonomic functions. Nuclei: PVN, paraventricular nucleus; Pre ggl 

Para, preganglionic parasympathetic neurones; EW, Edinger-Westphal nucleus; Saliv, salivatory nucleus; Pre ggl Symp, preganglionic sym-

pathetic neurones; Symp ggl, sympathetic ganglion; Para ggl, parasympathetic ganglion. Neurotransmitters: NA, noradrenaline; ACh, acetyl-

choline. Receptors: 1 and 2, adrenoceptor subtypes. Symbols: +, excitatory, -, inhibitory. Organs comprising of smooth muscle (e.g., blood 

vessels, iris), or glandular tissue (e.g., sweat glands, salivary glands) receive autonomic (sympathetic and parasympathetic) innervations. 

Both innervations consist of a chain of two neurones (preganglionic and postganglionic) joined in a synapse located in the autonomic gan-

glion. Preganglionic sympathetic neurones are located in the intermediolateral cell column (IML) of the spinal cord whereas the pregangli-

onic parasympathetic neurones are located in brainstem nuclei. Blood vessels (arterioles) and sweat glands receive sympathetic and salivary 

glands parasympathetic inputs whereas the smooth muscles in the iris are controlled by opposing sympathetic and parasympathetic inputs. 

The preganglionic neurones are always cholinergic, the postganglionic sympathetic neurones are noradrenergic, with the exception of those 

innervating the sweat glands which are cholinergic, whereas the postganglionic parasympathetic neurones are always cholinergic. The 

preganglionic neurones are influenced by premotor autonomic nuclei of which three are shown (PVN, vasomotor neurones located in the 

rostroventrolateral medulla, and the LC). The LC plays a pivotal role in autonomic regulation, influencing the activities of preganglionic 

neurones both directly and indirectly via the PVN and vasomotor neurones. The outputs from the LC can activate either excitatory 1-

adrenoceptors or inhibitory 2-adrenoceptors. The output from the LC to the PVN is largely to its parvicellular subdivision; this connection 

plays a relatively minor role. The LC exerts an excitatory effect on preganglionic sympathetic neurones and an inhibitory effect on vasomo-

tor premotor neurones and on preganglionic parasympathetic neurones. The activity of the preganglionic neurones is under the influence of 

the cerebral cortex. The light reflex is a parasympathetically-mediated reflex consisting of the constriction of the pupil in response to a light 

stimulus reaching the retina. The neuronal chain in the reflex includes the pretectal nucleus, the EW, and the ciliary ganglion. The connec-

tions of the LC shown in this figure are discussed in detail in Part I. 
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3.1.4.5 in Part I) and to be sensitve to changes in blood pres-
sure [252]. 

1.3. Correlation between Arousal and Autonomic Func-

tion 

 The central role of the LC in the combined regulation of 
arousal and autonomic function is highlighted by the associa-
tion between the level of arousal in pupillary activity. It has 
been shown that changes in the level of arousal are associ-
ated with changes in pupil diameter [186, 254] and sponta-
neous pupillary fluctuations in darkness [257, 507], and there 
is evidence that the pupillary changes directly reflect LC 

activity [354]. Indeed, the close relationship between level of 
arousal and pupil diameter has been exploited in the PST, 
which records pupil diameter over a period of eleven min-
utes. During the period of recording slow fluctuations appear 
in the diameter of the pupil (“pupillary fatigue waves”), and 
it has been shown that the power of these fluctuations can be 
used as a reliable index of the level of arousal [493]. As there 
is a close parallelism between fluctuations in the firing rates 
of LC neurones and fluctuations in pupil diameter (see Fig. 
(3)), it is likely that the pupillary fatigue waves represent 
fluctuations in LC activity, and thus may provide a direct 

Fig. (3). A: Relationship between pupil diameter and the firing rate of an LC neurone in a monkey. The two recordings were taken simulta-

neously. There was a clear parallelism between fluctuations in pupil diameter and firing rate. Reproduced with permission from Aston-Jones 

and Cohen (2005). B: An example recording from the pupillographic sleepiness test (PST) demonstrating fluctuations in resting pupil diame-

ter (top) and the power spectrum (bottom) over an 11-minute recording period. The data for the total time period are divided into eight equal 

bins for further analysis. The fluctuations in resting pupil diameter are used in the analysis of the pupillary unrest index (PUI), the distance 

for which the margin of the pupil travels in one minute. The mean value of PUI obtained for the whole recording period is shown on the right 

of the figure. Vertical axis: pupil diameter (mm), horizontal axis: time (min). The mean pupil diameter for each bin is displayed above the 

horizontal axis, with the average diameter over the total recording period shown on the right of the figure. The mean PUI for each bin is dis-

played above the recording. The power spectrum is used in a Fast Fourier Transform analysis to derive a measure of total power (arbitrary 

units), shown on the right of the figure. Power (arbitrary units) is displayed along the vertical axis and frequency (Hz) is displayed along the 

horizontal axis for each time-bin individually. The total power for each bin is displayed above the power spectrum. 
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physiological indicator of the functioning of this important 
brainstem nucleus. 

1.4. Scope of the Review 

 The activity of the LC can be altered through a variety of 
physiological manipulations such as the presentation of a 
noxious or anxiety-provoking stimulus or by variations in 
ambient temperature, through pharmacological manipula-
tions such as the administration of drugs which act directly at 
the autoreceptors located on the neurones of the LC, that 
modify the reuptake or storage of noradrenaline, or that act 
indirectly to modify LC activity, through neuronal loss from 
the LC in aging, and through pathological changes that occur 
as a result of neurodegenerative disease (PD, AD) and brain-
stem trauma resulting in coma. In this review we attempt to 
delineate the effects of experimental manipulations and 
pathological changes on LC activity and hence on level of 
arousal and autonomic function. 

2. PHYSIOLOGICAL MANIPULATION OF LOCUS 

COERULEUS ACTIVITY 

 LC neurone activity is determined by a number of varied 
inputs, as described in our companion paper (see Part I). 
Physiological manipulations, such as the presentation of a 
noxious or anxiety-provoking stimulus or an extreme in am-
bient temperature, can modulate the strength of these inputs, 
and therefore the extent of excitation or inhibition of the 
noradrenergic neurones, to alter the overall activity of the 
LC. The effect on LC activity resulting from these manipula-
tions can often be detected via the measurement of resting 
pupil diameter and/or pupillary reflexes to sudden light stim-
uli, since the LC is so integral to pupillary control [444]; see 
above and Part I. For changes in cortical activity following 
LC activation, see Section 2.1.1. in Part I. 

2.1. Noxious Stimuli 

 The LC is innervated by the sensory neurones of the dor-
sal horn of the spinal cord: this innervation provides a 
method of communicating nociceptive information to this 
nucleus [61, 82, 309]; see 3.1.6, Part I. Neurone activity 
within the LC is increased following the presentation of a 
noxious stimulus, measurable as an increase in electrical 
activity [109, 124, 220, 361, 412] and an increase in c-fos 
expression [56, 326, 327, 340, 394, 462, 478]; see [324] for a 
review. The pattern of LC neurone firing after the presenta-
tion of a noxious stimulus involves an initial burst of activity 
followed by a period of quiescence [420]. Interestingly, mi-
croinjection of the 2-adrenoceptor antagonist idazoxan into 
the LC, which is likely to result in an increase in LC activity 
(see section 3.2, below), has been reported to increase the 
responsiveness of LC neurones to noxious stimulation [420]. 
In addition, noradrenaline levels in both the LC and PVN, a 
projection area of the LC (see 2.2.2.2, part I), are increased 
following noxious stimulation [324, 374, 411], presumably 
as a result of an increase in noradrenaline synthesis in LC 
neurones. Indeed, the PVN has been implicated in pain per-
ception. Interestingly, the increase in LC activity following 
the presentation of a noxious stimulus has been found to in-
hibit neurones of the basolateral nucleus of the amygdala and 
this inhibition may be involved in the formation of emotional 
memories following a noxious event [70]. 

 It is expected that an increase in LC activity following 
noxious stimulation would, in general, increase sympathetic 
and decrease parasympathetic activity (see section 1.2, 
above), and this may be related to the paradigm of pupillary 
reflex dilatation, the best studied autonomic response to nox-
ious stimulation. Pupillary reflex dilatation is observable in 
both experimental animals [177, 231] and human subjects 
[66, 237, 481, 504]. 

 Interestingly, drugs that are known to modify LC activity 
(see 3.2, below) also affect pupillary reflex dilatation in a 
way consistent with the alteration in LC activity. Thus, ma-
nipulations which decrease LC activity in experimental ani-
mals (e.g., monoamine depletion by reserpine and alpha-
methyl-para-tyrosine) antagonise pupillary reflex dilatation 
[175]. However, paradoxically, both an 2-adrenoceptor an-
tagonist, yohimbine [175, 177] and an 2-adrenoceptor ago-
nist, dexmedetomidine [237] have been reported to inhibit 
pupillary reflex dilatation. As the observations with yo-
himbine were made in cats and those with dexmedetomidine 
in humans, these findings can be reconciled by a well-
documented species difference in the pupillary effects of 
drugs interacting with 2-adrenoceptors. It has been shown 
that agonists constrict and antagonists dilate the pupil in man 
but evoke effects in the opposite direction in cats, indicating 
the preferential action of these drugs at pre-synaptic 2-
adrenoceptors in man and post-synaptic 2-adrenoceptors in 
the cat (see 3.2, below). In both man and the cat, the admini-
stration of an 2-adrenoceptor antagonist is expected to acti-
vate the LC and increase its sensitivity to further activation 
by noxious stimulation [409], which would be expected to 
lead to facilitation of pupillary reflex dilatation. However, in 
the cat this effect is likely to be masked by miosis, resulting 
from the activation of the EWN as a result of the blockade of 
post-synaptic inhibitory 2-adrenoceptors, leading to the ap-
parent attenuation of pupillary reflex dilatation. On the other 
hand, the 2-adrenoceptor agonist is expected to reduce LC 
activity and thus attenuate the LC activation resulting from 
the noxious stimulation, manifesting as an apparent reduc-
tion in pupillary reflex dilatation. Indeed, this effect has been 
reported in man [237]. It should be noted that Larson and 
Talke [237] interpreted this finding on the basis of a postu-
lated anti-nociceptive effect of dexmedetomidine, since they 
assumed that the LC had been completely “switched off” by 
the pre-treatment of their subjects with opiates. 

 A well-studied experimental paradigm of sympathetic 
activation by noxious stimulation in human subjects is the 
cold pressor test, evoked by a painful cold stimulus to the 
hand, which leads to both an increase in blood pressure and 
to pupil dilatation [454, 455]. This response has two interest-
ing features. Firstly, it is not accompanied by a reduction in 
light reflex amplitude [455], as would be expected on the 
basis of increased LC activity, which could be predicted to 
lead to enhanced noradrenergic inhibition of the EWN. This 
observation raises the possibility that different populations of 
LC neurones may be responsible for mediating the sympa-
thetic activating and parasympathetic inhibiting effects of the 
LC on pre-ganglionic autonomic neurones (see 5, below), 
where the cold pressor test may influence only the sympa-
thetic pre-autonomic neurones in the LC. Secondly, while 
the increase in blood pressure evoked by the cold pressor test 
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can be antagonised by diazepam, the increase in pupil diame-
ter is resistant to it [189]. This observation may indicate that 
different structures may be involved in mediating the auto-
nomic effects of the cold pressor test, the pupillary effect is 
likely to be mediated by the LC whereas the pressor effect by 
the PVN. Furthermore, while GABAA receptors occur in 
both the LC [71, 216, 314] and the PVN [158, 162, 212, 
467], those in the LC are insensitive to diazepam [71], 
whereas those in the PVN, like GABAA receptors in general, 

probably are sensitive to this drug. 

2.2. Anxiety 

 Anxiety is generally defined as an emotional state evoked 
by threatening stimuli, although pharmacological interven-
tion can also produce increased anxiety levels [443]. It is 
known that the amygdala is critical to the generation of anxi-
ety and anxious responses [90, 218, 242] and there is a two-
way excitatory connection between the amygdala and the LC 
(see Part I). It, therefore, follows that LC activation could be 
expected to lead to anxiety through the activation of the 
amygdala and, conversely, anxiety producing stimuli that 
increase the activity of the amygdala could be expected to 
lead to LC activation. This circular argument makes it diffi-
cult to determine in a given situation whether anxiety is pro-
duced by the activation of the LC or whether the LC is acti-
vated as a result of increased anxiety. In certain situations, 

however, the two processes can be delineated (see below). 

2.2.1. Anxiogenic Effect of LC Activation 

 Electrical stimulation of the LC evokes fear-related be-
havioural responses [365], which can be alleviated by 
clonidine, morphine, and diazepam [365], drugs known to 
suppress LC activity (see sections 3.1 and 3.2). Administra-
tion of the 2-adrenoceptor antagonist yohimbine activates 
the LC (see section 3.2), which in turn produces an increase 
in anxiety [141, 282, 300, 453]. Conversely, bilateral lesions 
of the LC [363] or of the ascending noradrenergic projection 
arising from it [475], lead to a reduction in fear-related re-
sponses. 

2.2.2. LC Activation by States of Anxiety 

 It is well recognized that patients suffering from different 
forms of anxiety disorder show evidence of altered auto-
nomic regulation [443]. Many of the changes reported are 
consistent with increased LC activity, leading to enhance-
ment of sympathetic discharge and inhibition of parasympa-
thetically mediated functions. Thus, it has been reported that 
anxious patients show hypersensitivity of their eccrine sweat 
glands to intradermally injected muscarinic cholinoceptor 
agonists, such as carbachol, a finding indicating increased 
sympathetic activity. Eccrine sweat glands receive a cho-
linergic sympathetic innervation (see Fig. (2)), and their ac-
tivity, and also their sensitivity to cholinoceptor agonists, is 
modulated by impulse traffic in the sympathetic fibres, high 
firing rates being associated with high, and low firing rates 
with low sweat gland activity/sensitivity [443]. Furthermore, 
it has been shown that patients suffering from generalized 
anxiety disorder have attenuated light reflexes [22], consis-
tent with increased noradrenergic inhibition of the EWN 
originating from the LC. 

 Experimental situations of induced fear increase anxiety 
via the activation of the amygdala and lead to LC activation 
[68, 69, 85, 360, 364]. The experimental paradigm of condi-
tioned fear can be used to produce states of fear and anxiety 
in the laboratory and thus can be used to assess the modula-
tion of the LC during these states. Fear conditioning, where a 
neutral stimulus (CS) is temporally associated with an aver-
sive stimulus (US) and thus gains an aversive character it-
self, produces an increase in LC activity as demonstrated by 
increased c-fos expression when the CS is presented alone 
[195, 253]. In addition, rats selectively bred to demonstrate 
high levels of anxiety show increased c-fos expression 
within the LC [376] and in human volunteers subliminal fear 
signals have been found to elicit activity within the LC, as 
detected by functional neuroimaging [250]. 

 The increase in LC activity following the conditioned 
fear paradigm is accompanied by an increase in arousal and 
sympathetic function. For example, REM sleep has been 
observed to concomitantly decrease in response to the pres-
entation of a fear conditioned stimulus [253] and this is con-
sistent with the activation of the LC and the expected in-
crease in arousal. The activation of the sympathetic nervous 
system by conditioned fear results in a variety of changes in 
autonomic activity and in particular there are two measurable 
changes in the pupil: an increase in resting pupil diameter 
and a reduction in the amplitude of the light reflex response 
[36, 38, 39, 40, 42]. Furthermore, it has been reported that 
patients suffering from generalised anxiety disorder have 
attenuated light reflex responses [22]. These pupillary effects 
are likely to reflect the dual influence of LC activation on the 
pupil: the increase in resting pupil diameter may suggest an 
increase in sympathetic outflow and/or a decrease in para-
sympathetic outflow to the iris, whereas the decrease in light 
reflex amplitude is the result of inhibition of the parasympa-
thetic outflow to the iris (see above). Interestingly, of the two 
pupillary effects of conditioned fear, evoked by the threat of 
a mild electric shock, only the reduction in light reflex re-
sponse amplitude was related quantatively to the degree of 
subjective anxiety, whereas the increase in pupil diameter 
was not [42], and only the reduction in light reflex response 
amplitude was susceptible to antagonism by the anxiolytic 
drug diazepam, whereas the increase in pupil diameter was 
not [36, 40]. These observations suggest that conditioned 
fear may preferentially activate the pre-parasympathetic neu-
rones in the LC via the amygdala, leading to the anxiety-
dependent reduction in light reflex response amplitude, 
whereas it may cause some indirect activation of the pre-
sympathetic neurones via the arousal system, resulting in 
some increase in pupil diameter. The differential effects of 
diazepam on the two components of the pupillary anxiety 
response may reflect the fact that diazepam may increase the 
GABAergic inhibition of amygdala neurones, thus leading to 
the attenuation of the fear-induced activation of pre-para-
sympathetic LC neurones, whereas it may not be able to 
modify the activity of pre-sympathetic LC neurones which 
do not contain diazepam-sensitive GABA receptors [71]; see 
also Section 3 and Fig. (6).  

 Stress exposure, which may also be classed as an anxi-
ety-provoking situation, is also associated with enhanced LC 
activity [124] and with increased noradrenaline release [51, 
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453, 101, 322, 323], following the presentation of a stressful 

stimulus in experimental animals, such as the rat and cat 
Indeed, chronic stress exposure produces long-term altera-
tions in LC firing and noradrenaline release [51, 398, 321, 
322]. For reviews on the activation of the central noradren-
ergic system by exposure to stressful stimuli, see refs. 324, 
328; see also Section 2.1. 

 The enhancement of LC activity by stressful stimuli can 
be detected by changes observed in autonomic activity. 
Tasks inducing stress via high levels of cognitive load have 
been found to increase pupil diameter and reduce light reflex 
amplitude compared to no or low cognitive load tasks [426, 
427]. Furthermore, these studies have identified both an in-
crease in sympathetic activity and a decrease in parasympa-
thetic activity in the modulation of pupil diameter following 
the application of a cognitive load, consistent with LC acti-
vation. Recently it has been shown that remembering emo-
tionally-loaded material results in activation of the LC in 
humans, as detected by functional magnetic resonance imag-
ing (fMRI), together with an increase in pupil diameter 
[428]. 

2.2.3. Role of the LC in Mediating Fear Responses 

 It has been proposed that an increase in LC activity me-
diates the behavioural responses associated with fear and 
anxiety [67], and this is supported by observations associat-
ing the increased firing of the LC following the presentation 
of fear-inducing stimuli with behavioural manifestations of 
fear [51]. For example, 2-adrenoceptor knockout mice lack-
ing the physiological brake of LC activity (see section 3.2) 
show both an increase in LC activity and an increase in 
freezing responses in the conditioned fear paradigm [92], 
whilst lesions of the LC attenuate the freezing response both 
to the unconditioned aversive stimulus and to the condi-
tioned cue [306].  

 An interesting possibility that results from the interaction 
of the amygdala and the LC (see above) is that activation of 
the LC may contribute to the fear-potentiated startle re-
sponse. The startle response involves rapid involuntary con-
tractions of facial and skeletal musculature in response to a 
sudden intense stimulus, for example, a loud sound, and this 
reaction is measurable in man as an EMG response from the 
orbicularis oculi muscle (eyeblink startle response). The LC 
is likely to be involved in modulating the startle response 
since the LC projects to the motoneurones in the facial nu-
cleus [208]; see 2.3.5.1, Part I, which innervates the orbicu-
laris oculi muscle. This projection is likely to exert a facilita-
tory influence on the motoneurones as demonstrated by the 
enhancement of motoneurone activity evoked by the ex-
tracellular microiontophoretic application of noradrenaline to 
the facial motoneurones [359, 471, 491]. The administration 
of an 2-adrenoceptor agonist, which reduces LC activity, 
has been found to reduce the startle response [3, 4, 233, 379], 
whereas the 2-adrenoceptor antagonist yohimbine, which is 
known to enhance LC activity [200, 413, 453], enhances the 
amplitude of the acoustic startle response [294]. It is possible 
that this modulation of the startle response arises from the 
withdrawal or potentiation of the excitatory input to the or-
bicularis oculi muscle from the LC, leading to a reduction or 
enhancement in the tone of this muscle respectively [379]. 

Indeed, the wakefulness-promoting drug modafinil, assumed 
to act through enhancing the activity of the LC [184, 383]; 
see also 3.2.1.2, was found to antagonise the reduction in 
startle response amplitude found following clonidine admini-
stration [379]. 

 This startle response can be potentiated by the threat of 
an electric shock, inducing a state of fear via the activation 
of the amygdala [93]. This paradigm is therefore used as an 
important laboratory model of anxiety, both in animals [301, 
369, 408, 498] and humans [11, 144, 147, 210]. The LC may 
contribute to the activation of the startle pathway in the fear-
potentiated startle paradigm in two ways. Firstly, the acous-
tic stimulus itself may prime motoneurone activity via the 
LC: the acoustic stimulus leads to the activation of the cau-
dal pontine reticular nucleus, the major pre-motor integrator 
of the startle response [226], which activates not only the 
facial motoneurones but also the LC [379], which in turn 
results in the facilitation of motoneurone activity (see 
above). Secondly, the activation of the amygdala by fear-
conditioning may increase LC activity (see above) and thus 
the noradrenergic output of this nucleus. In this way, the dual 
excitatory input to the LC from the caudal pontine reticular 
nucleus and the amygdala enhances the tone of the motoneu-
rones of the facial nucleus and contributes to the fear-
potentiated startle response. Interestingly, the administration 
of the 2-adrenoceptor agonist clonidine, which reduces LC 
activity, has been found to result in a reduction in the fear-
potentiated startle response [94], whilst the administration of 
the 2 adrenoceptor antagonist yohimbine, which is known to 
enhance LC activity, enhances the fear-potentiated startle 
response [94]. 

2.3. Ambient Temperature 

 Preoptic nuclei of the hypothalamus, including the 
VLPO, are intimately involved in temperature regulation 
[108, 387], and neurones in these areas change their activi-
ties in response both to increases and decreases in body tem-
perature [108]. Body temperature in turn may be influenced 
by ambient temperature [15]. Furthermore, neurones in the 
VLPO project profusely to the LC (see 3.1.3.1, Part I). 
Therefore, shifts in ambient temperature induce changes in 
LC activity via the mediation of the anterior hypothalamus.  

 Acute and chronic modulation of ambient temperature 
has different effects on LC activity, acute temperature chan-
ges increasing and chronic exposure decreasing LC activity. 
The increase in LC activity in response to acute cold stress 
has been demonstrated as increases in c-fos expression [223, 
508] and in the activity of the rate-limiting enzyme in 
noradrenaline synthesis, tyrosine hydroxylase [72, 320]. 
Similarly, acute high ambient temperature increases LC neu-
rone activity [295]. Activation of the LC by high ambient 
temperature (40°C) is associated with activation of the sym-
pathetic nervous system, manifesting as increases in body 
temperature, heart rate, carbachol-evoked sweating, and 
physiological finger tremor [15] and a reduction in the re-
covery time of the pupillary light reflex response [247]. 
Some of these sympathetic responses (increases in body 
temperature and heart rate) could be antagonised by 
clonidine [15] consistent with the involvement of the LC. In 
contrast, warm ambient temperature (33°C) has no effect on 
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LC neurone firing [223]. It is of interest to note that acute 
thermal cutaneous stimulation also activates neurones of the 
LC, via the release of excitatory amino acids from the nu-
cleus paragigantocellularis [153]. 

 Chronic cold stress has been found to reduce LC neurone 
activity, measurable as a reduction in tyrosine hydroxylase 
activity and an increase in 2-adrenoceptor mRNA expres-
sion in the LC [113]. Similarly, chronic high ambient tem-
perature reduces LC activity, measurable as a reduction in 
tyrosine hydroxylase activity [130]. 

3. PHARMACOLOGICAL ALTERATIONS OF LO-

CUS COERULEUS ACTIVITY 

 Drugs can modify LC activity either directly by interact-
ing with different aspects of the function of the noradrener-
gic neurones, i.e. by modifying firing rate and/or release via
an action at inhibitory autoreceptors, modifying the storage 
of the neurotransmitter in presynaptic vesicles, and interfer-
ing with the elimination of synaptically released noradrena-
line via the reuptake mechanism. Drugs may also have an 
indirect effect on LC activity via the modification of the ac-
tivities of excitatory or inhibitory inputs to the LC.  

3.1. Drugs with a Direct Action on LC Activity 

3.1.1. Drugs Acting at Autoreceptors 

 LC neurone activity can be modulated via the administra-
tion of drugs that stimulate or block the inhibitory autorecep-
tors located presynaptically on the LC neurones (see 3.2, Part 
I). Autoreceptors occur both on the cell body (somatoden-
dritic autoreceptors) and at the nerve ending (terminal auto-
receptors). The somatodendritic autoreceptors modulate the 
firing rate of the neurone whereas the terminal autoreceptors 
modulate the release of the neurotransmitter. Exposure to the 

2-adrenoceptor agonist clonidine has been used to activate 
these autoreceptors, whilst the 2-adrenoceptor antagonist 
yohimbine has been used to block them. Administration of 
clonidine to the LC hyperpolarises the neuronal membrane 
via an increase in potassium conductance leading to a reduc-
tion of the spontaneous firing rate of the neurones, resulting 
in the inhibition of the LC [5, 6, 114, 273, 303, 438, 439, 
494, 496]. The inhibition of LC activity by clonidine is ac-
companied by a fall in plasma noradrenaline concentration 
[182]. Other 2-adrenoceptor agonists such as dexmede-
tomidine have a similar effect on LC activity [73, 209]. In 
contrast, administration of yohimbine to the LC increases 
neuronal firing [200, 300, 303, 413, 453] and noradrenaline 
release [487]. Other 2-adrenoceptor antagonists (BRL44408, 
RS79948, RX821002) have also been found to have an exci-
tatory influence on the LC, observable as an increase in 
noradrenaline release at LC terminal regions [115]. 

 Noradrenergic pathways arising from the LC may medi-
ate either excitatory effects, via the activation of 1-
adrenoceptors, on the target cells (ie. in the cerebral cortex 
and IML) or inhibitory effects, via the activation of 2-
adrenoceptors located on the target cells (eg. in the VLPO, 
EWN, RVLM) (see Figs. (2) and (4)). Since the inhibitory 
effect is mediated by the same post-synaptic receptors that 
also attenuate the activity of LC neurones in a presynaptic 
location, i.e., 2-adrenoceptors, the net effect of a 2-adreno-

ceptor agonist depends on the relative activation of pre- and 
post-synaptic receptors (see Table 1). We wish to consider 
the effect of clonidine on seven noradrenergic pathways, five 
inhibitory and two excitatory, whose roles in the regulation 
of four functions (arousal, pupil control, blood pressure, sali-
vation) have been extensively studied (see Fig. (4) and Table 
1). There are five sites where clonidine interacts with inhibi-
tory 2-adrenoceptors: LC (autoreceptors; 1), VLPO (2), 
EWN (3), RVLM (4) and salivatory nuclei (5). The “switch-
ing off” of LC activity by clonidine via activation of inhibi-
tory autoreceptors results in attenuation of both the excita-
tory (stimulatory) effects and the inhibitory effects (disin-
hibition) mediated by noradrenergic pathways arising from 
the LC. On the other hand, activation of post-synaptic inhibi-
tory 2-adrenoceptors results in potentiation of the noradren-
ergic inhibition of the target cells in the VLPO, EWN, 
RVLM and salivatory nuclei. The net effect of clonidine on 
an inhibitory noradrenergic pathway therefore will reflect the 
balance between the results of the opposing pre-synaptic and 
post-synaptic effects: if the pre-synaptic effect predominates, 
the result will be attenuation of the function and if the post-
synaptic effect predominates, the effect will be the augmen-
tation of the function. 2-Adrenoceptor antagonists (e.g., 
yohimbine) exert effects on the four functions studied which 
are opposite to those of the agonists, reflecting the blockade 
of both autoreceptors and post-synaptic receptors. 

3.1.1.1. Arousal

2-Adrenoceptor agonists have potent sedative effects 
due to the activation of the autoreceptors on LC neurones 
resulting in the “switching off” of the activity of these neu-
rones. The reduction in LC activity leads to the attenuation 
of the noradrenergic stimulation of the cerebral cortex and 
disinhibition of the VLPO which in turn leads to increased 
inhibition of the wakefulness-promoting histaminergic path-
ways originating from the tuberomamillary nucleus (TMN; 
see 1.1 above and 2.2.2.1 in Part I). It should be noted, how-
ever, that 2-adrenoceptor agonists also activate inhibitory 
post-synaptic 2-adrenoceptors in the VLPO, which is ex-
pected to lead to an increase in the level of arousal. This ef-
fect usually is masked by the presynaptic effect of these 
drugs on LC neurones resulting in a sedative effect. How-
ever, in some species (cats, rats, and mice) the stimulant ef-
fect of 2.-adrenoceptor agonists has been observed (see 
3.1.1.6, below). The sedative effect of clonidine in humans is 
well demonstrated in the laboratory [182, 184, 296, 342, 379, 
421, 486], and it is a known drawback to the clinical use of 
this drug as an anti-hypertensive agent [45, 261]. Other 2-
adrenoceptor agonists, for example dexmedetomidine, have 
also been shown to have pronounced sleep-promoting effects 
[269, 388], and this drug is used clinically as an anaesthetic. 
Interestingly, the opioid analgesic tramadol also possesses 

2-adrenoceptor stimulating activity and completely inhibits 
LC activity [31], and has been shown to be associated with 
sedation as a side effect [243, 249]. These drugs have been 
shown to promote SWS [99]. In contrast to clonidine, the 2-
adrenoceptor antagonist yohimbine has been shown to pos-
sess some alerting effects [342], and the increase in wakeful-
ness has been demonstrated to be associated with cortical 
desynchronisation [99]. 
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3.1.1.2. Pupil Control

2-Adrenoceptor activation in the LC leads to a reduction 
in sympathetically-mediated pupil dilatation due to attenua-
tion of the activity of the coeruleo-spinal pathway and also a 
reduction in noradrenergically-mediated inhibition of the 
EWN (See Fig. (4)). Post-synaptic receptors in the EWN are 
also stimulated by 2-adrenoceptor agonists resulting in an 
increase in noradrenergic inhibition of the EWN. The pupil-
lary effects of clonidine indicate that in man the pre-synaptic 
effect of the drug is likely to predominate (see Table 1). 2-
Adrenoceptor agonists cause a reduction in pupil diameter 
(miosis); [184, 341, 379]. It has been shown that this effect is 
more pronounced in light than in darkness, consistent with 
attenuation of the noradrenergic inhibition of parasympa-
thetic outflow to the iris [444]. In agreement with this obser-
vation, it has been shown that clonidine [39] and dexmede-
tomidine [238] enhance the amplitude of the light reflex re-
sponse. Remarkably,  opiate receptor agonists (eg. mor-
phine) also cause miosis in man, likely to reflect the close 
association between 2-adrenoceptors and  opiate receptors 
on LC neurones (see below, 3.1.1.6). 

 In contrast to clonidine, the 2-adrenoceptor antagonist 
yohimbine increases pupil diameter in human subjects [296, 
341, 342]. Furthermore, like the effect of clonidine on the 
pupil, this effect was light-dependent, suggesting an increase 
in the noradrenergic inhibition of parasympathetic outflow to 
the iris. 

3.1.1.3. Blood Pressure

 The LC exerts both direct and indirect effects on the ac-
tivity of preganglionic sympathetic neurones in the IML. The 
direct effect is mediated via a descending excitatory 
noradrenergic pathway, whereas the indirect effect involves 
the modulation of the activity of other premotor sympathetic 
nuclei (RVLM, caudal raphe nuclei, A5 noradrenergic neu-
rones, C1 adrenergic neurones) projecting to the IML [27, 
422] (see also Section 2.3.2 in Part I). While the noradrener-
gic projections from the LC to the serotonergic neurones of 
the caudal raphe, the A5 noradrenergic and C1 adrenergic 
neurones are likely to be excitatory, the projection to the 
RVLM is inhibitory (see Fig. (4)). The RVLM itself exerts a 
sympathoexcitatory effect via a glutamatergic projection to  

Fig. (4). The central sites of action of 2-adrenoceptor agonists (e.g., clonidine, dexmedetomidine). Nuclei: TMN, tuberomamillary nucleus; 

VLPO, ventrolateral preoptic area; LC, locus coeruleus; PT, pretectal nucleus; SN, salivatory nucleus; EWN, Edinger-Westphal nucleus; 

RVLM, rostroventrolateral medulla; IML, intermediolateral cell column; SaG, salivary ganglion; SG, sympathetic ganglion; SCG, superior 

cervical ganglion; CG, ciliary ganglion. Neurotransmitters: NA, noradrenaline; GABA, -aminobutyric acid; Glu, glutamate; ACh, acetyl-

choline. Receptors: 1 and 2, adrenoceptor subtypes. Neuronal connections are indicated by arrows: solid lines, excitatory; dotted lines, 

inhibitory. The sites at which the LC exerts an inhibitory influence are indicated by numbers: 1. autoreceptors on LC neurones, 2. VLPO, 3. 

EWN, 4. RVLM, 5. SN. For the effects of the consequences of alterations of LC activity on arousal and autonomic function, see text. 
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the IML (see 2.3.2.1, Part I). Therefore, the direct noradren-
ergic projection to the IML and the indirect projection via
the RVLM have opposing effects on blood pressure: the ef-
fect of the stimulation of preganglionic sympathetic neurones 
is counteracted by the removal of the sympathoexcitatory 
influence of the RVLM. 2-Adrenoceptor agonists have ro-
bust hypotensive effects due to the summation of their direct 
sympatholytic effect resulting from simulation of presynaptic 
autoreceptors and augmentation of the noradrenergic inhibi-
tion of the RVLM resulting from activation of post-synaptic 

2-adrenoceptors in this nucleus (see Table 1). The hypoten-
sive effects of clonidine are well documented [15, 45, 126, 
183, 185, 261, 296, 342, 379, 421, 486]. Furthermore, cloni-
dine is marketed as an effective anti-hypertensive drug. 

 The role of the RVLM in mediating the hypotensive ef-
fect of 2-adrenoceptor agonists is well demonstrated [47, 
163, 238]. Indeed, microinjection of clonidine directly into 
the RVLM results in hypotension and it is suggested that 
these neurones are tonically inhibited by 2-adrenoceptor 
activation [474]. The input from the LC is also believed to 
contribute to the baroreceptor reflex pathway outlined above 
through activation of these 2-adrenoceptors [154, 308], and 
this is supported by studies of 2A knockout mice that dem-
onstrate impaired baroreceptor reflex function [308]. Other 

2-adrenoceptor agonists, such as dexmedetomidine also 
exert a pronounced depressor effect [135, 269]. The reduc-
tion in heart rate and blood pressure by dexmedetomidine 

has been found to result from a reduction in sympathetic 
activity [269] and an augmentation of parasympathetic activ-
ity [336], consistent with LC inactivation. 

 Again, yohimbine modifies blood pressure in a direction 
that is opposite to that produced by clonidine: pressor re-
sponses have been reported [148, 204, 342, 483], consistent 
with disinhibition of pre-synaptic autoreceptors in the LC 
and post-synaptic inhibitory receptors in the RVLM. The 
involvement of the RVLM in the hypertensive action of 2-
adrenoceptor antagonists is highlighted by the observation 
that microinjection of methoxy-idazoxan into this area of the 
brainstem resulted in an increase in blood pressure [474]. 

 It should be noted that 2-adrenoceptors also occur in 
peripheral blood vessels where they mediate a vasoconstric-
tor effect [77, 299]. The vasoconstrictor effect of clonidine, 
however, does not lead to an increase in systemic blood pres-
sure since its effect on blood pressure is superseded by the 
central sympathoinhibitory effect of the drug. However, 
when the influence of central sympathoinhibition is disrupted 
due to lesions of the spinal cord, clonidine evokes an in-
crease in blood pressure due to its peripheral vasoconstrictor 
effect [393]. 

3.1.1.4. Salivation

 Salivary glands are controlled mainly by a parasympa-
thetic innervation, the preganglionic neurones in the saliva-

Table 1. Effects of 2-Adrenoceptor Agonists on Central Noradrenergic Pathways 

2-Adrenoceptors 

Activated 

Pathway 

Pre- Post- 

Effect on Pathway Effect Mediated by Pathway Net Effect 

LC  VLPO ++ + Inhibition  Arousal 

LC  Cortex ++ 0 Stimulation  Arousal 

Arousal 

LC  EWN1 ++ + Inhibition  Pupil Diameter 

LC  IML1 ++ 0 Stimulation  Pupil Diameter 

Pupil Diameter 

LC  EWN2 + ++ Inhibition  Pupil Diameter 

LC  IML2 ++ 0 Stimulation  Pupil Diameter 

Pupil Diameter 

LC  RVLM ++ +++ Inhibition  Blood Pressure 

LC  IML ++ 0 Stimulation  Blood Pressure 

Blood Pressure 

LC  Saliv. Nucl. ++ +++ Inhibition  Salivation  Salivation 

1In man, dog and rabbit 
2In cat, rat and mouse 

Abbreviations:

EWN Edinger-Westphal nucleus 

IML intermediolateral cell column of the spinal cord 

LC locus coeruleus 

RVLM rostroventrolateral medulla 

Saliv. Nucl. salivatory nuclei 

VLPO ventrolateral preoptic nucleus 

Pre pre-synaptic 

Post post-synaptic 
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tory nuclei being located in the brainstem (see 2.3.1.2, part 
I). The LC exerts an inhibitory influence on these neurones. 
Clonidine and other 2-adrenoceptor agonists lead to a sub-
stantial reduction in salivary output [15, 45, 184, 207, 261, 
342, 379, 388, 421, 446, 486] consistent with the preferential 
activation of post-synaptic 2-adrenoceptors on salivatory 
neurones (see Table 1). On the other hand, 2-adrenoceptor 
antagonists like yohimbine lead to hypersalivation by block-
ing inhibitory 2-adrenoceptors on salivatory neurones and 
thus attenuating noradrenergic inhibition of the activity of 
these neurones [204, 292, 342, 446]. It should be noted, 
however, that 2-adrenoceptor agonists may reduce and 2-
adrenoceptor antagonists may enhance salivation not only by 
interacting with 2-adrenoceptors on preganglionic neurones 
in the salivatory nuclei but also with release inhibiting 2-
adrenoceptors on the terminals of postganglionic cholinergic 

neurones in the salivary glands [292, 446].  

3.1.1.5. Temperature

 There is evidence that the VLPO is intimately involved in 
temperature regulation [387] and also that this structure re-
ceives a dense noradrenergic innervation from the LC (see 
2.2.2.1, Part I). Interestingly, the LC is involved in modulat-
ing the hypothalamic regulation of body temperature. It has 
been reported that the LC is involved in lipopolysaccharide-
induced fever [362], which is attenuated by LC lesions [9]. 
Furthermore, LC lesions reduce brain temperature [142] and 
hypothermia induced by hypoxia [112].  

 Clonidine, probably due to a reduction in LC activity, 
leads to a fall in body temperature both in experimental ani-
mals [241, 366, 461, 511] and humans [15, 138]. The hypo-
thermic effect of clonidine is antagonised by yohimbine 
[366, 461] and by high ambient temperature, leading to an 
increase in body temperature [15]. 

3.1.1.6. 2-Adrenoceptor Associations

Opiate Receptors

-Opiate receptors occur on LC neurones (see 3.2 in Part 
I), and opiate peptides (enkephalins, dynorphins) are highly 
concentrated in the LC [120, 297, 513]. It has been shown 
that -opiate receptors are co-localised with 2-adrenoceptors 
in the LC and their activation results in cellular inhibition via
a shared potassium channel [75, 121]; see also 3.2, Part I). 
Morphine, like clonidine, reduces LC neurone activity [395] 
and induces synchronous oscillatory discharges [518]. There-
fore, it is not surprising that there is a considerable pharma-
cological overlap between the actions of 2-adrenoceptor and 
opiate receptor-selective agonists. Thus, it has been reported 
that chronic treatment with morphine results in up-regulation 
of 2-adrenoceptors in the brain [155].  

 Morphine, like clonidine, is highly sedative in man, and 
this effect is likely to be due to attenuation of the activity of 
the LC (see Fig. (4) and Table 1). Indeed, microinjection of 
morphine directly into the LC has been found to reduce 
arousal, observed as an increase in SWS [131]. Other opiate 
receptor agonists have also been found to produce sedation 
(oxycodone [476], tramadol [243, 249], codeine [277]). 

 Morphine, like clonidine, has been observed to reduce 
pupil diameter in man [104, 179, 225, 479], and a ‘pinpoint 
pupil’ is a clinical hallmark of opiate addiction. This effect 
of morphine is consistent with a decrease in LC activity lead-
ing to the disinhibtion of the parasympathetic light reflex 
mechanism. Other opiates share this effect (oxycodone 
[476], tramadol [225, 512], codeine [225, 479]). The close 
association between 2-adrenoceptors and -opiate receptors 
in the pupil control system is highlighted by the observation 
that the 2-adrenoceptor antagonist yohimbine can antago-
nise the mydriatic effect (see 3.2.6, below) of morphine in 
the rat [224]. 

Table 2. Effects of Noradrenaline Reuptake Inhibitors on Central Noradrenergic Pathways 

Pathway Effect on  

Pathway 

Effect Mediated by Pathway Net Effect 

LC  VLPO Inhibition  Arousal 

LC  Cortex Stimulation  Arousal 

Arousal 

LC  EWN Inhibition  Pupil Diameter 

LC  IML Stimulation  Pupil Diameter 

Pupil Diameter 

LC  RVLM Inhibition  Blood Pressure 

LC  IML Stimulation  Blood Pressure 

Blood Pressure 

(minor change) 

LC  Saliv. Nucl. Inhibition  Salivation  Salivation 

Abbreviations: 

EWN Edinger-Westphal nucleus 

IML intermediolateral cell column of the spinal cord 

LC locus coeruleus 

RVLM rostroventrolateral medulla 

Saliv. Nucl. salivatory nuclei 

VLPO ventrolateral preoptic nucleus 
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 An important therapeutic implication of the pharmacol-
ogical association between 2-adrenoceptor and -opiate 
receptor mediated mechanisms is the usefulness of the 2-
adrenceptor agonists clonidine and lofexidine to alleviate the 
opiate withdrawal syndrome [143]. Indeed, it has been 
shown that the LC plays an important role in the processes 
underlying opiate withdrawal [20, 228, 236]. 

Imidazoline Receptors

 Clonidine and some other 2-adrenoceptor agonists with 
an imidazoline structure may interact not only with 2-
adrenoceptors but also with imidazoline receptors [46, 329]. 
Imidazoline receptors have been subdivided into three sub-
types (I1, I2 and I3) [165]. I1-imidazoline receptors have been 
shown to occur in the RVLM, and it has been proposed that 
these receptors are the most important in mediating the car-
diovascular effects of I1-receptor agonists, such as moxo-
nidine. The co-localisation of 2-adrenoceptors and imida-
zoline receptors may be restricted to the RVLM since imida-
zoline receptors have not been identified in the LC [447] and 
there is evidence suggesting that they may also be absent 
from salivatory nuclei since moxonidine does not reduce 
salivation [156]. The depressor effect of non-selective drugs, 
such as clonidine, would reflect an action both at imidazoline 
receptors and 2-adrenoceptors in the RVLM [156] and at 2-
adrenoceptors in the LC. On the other hand, selective (non-
imidazoline) antihypertensive drugs would exert their de-
pressor effect by stimulating 2-adrenoceptors in the LC. It 
should be noted, however, that the nature of imidazoline 
receptors as an entity has been questioned and the relation-
ship to 2-adrenoceptors remains controversial [164, 229]. 

3.1.1.7. Relationship between Pre-synaptic and Post-

synaptic Effects

2-Adrenoceptors and -opiate receptors occur both pre-
synaptically in the LC and post-synaptically on target cells 
receiving a noradrenergic innervation from the LC (see Fig. 
(4)). The effect of agonists acting at these receptors will be 
determined by the relationship of the effects resulting from 
the activation of receptors at the pre-synaptic and post-
synaptic sites. In the case of arousal and pupil diameter regu-
lation, the action of the agonists at the two sites leads to op-
posing effects: activation of 2-adrenoceptors or -opiate 
receptors in the LC results in sedation and pupil constriction, 
whereas activation of the same receptors in the target cells 
(VLPO and EWN, respectively) leads to increase in alertness 
and pupil dilatation. Interestingly there is a remarkable spe-
cies difference regarding the action of 2-adrenoceptor and 

-opiate receptor agonists on arousal and pupil diameter, and 
this species difference is likely to reflect the preponderance 
of the action of these drugs at either pre-synaptic or post-
synaptic receptors (see Table 3). Thus, while the 2-adreno-
ceptor and -opiate receptor agonists are uniformly sedative 
in man, dog and rabbit, they often have alerting effects, usu-
ally demonstrated as EEG activation, in cats, rats and mice. 
It should be noted; however, that sedative effects of 2-
adrenoceptor agonists have also been demonstrated in cats 
[280], rats [305], and mice [167], and there is evidence that 
the activation of presynaptic 2-adrenoceptors in the LC is 
responsible for this effect [168, 305]. There is also a species 
difference regarding the pupillary effect of yohimbine: whilst 

in humans it produces mydriasis, in cats and rats it evokes 
miosis [177]. 

 As pre- and post-synaptic receptors exist in all the spe-
cies studied, it is likely that in man, dog and rabbit where the 
presynaptic effect predominates this reflects the generally 
higher sensitivity of pre-synaptic autoreceptors compared to 
post-synaptic receptors, leading to preferential activation of 
pre-synaptic receptors at lower dosage levels of 2-adreno-
ceptor and  opiate receptor agonist. The presence of post-
synaptic receptor activation in these species is highlighted by 
the observation that pupil dilatation has been observed in two 
human patients with high plasma morphine concentrations 
[397], and clonidine, while it is highly sedative in dogs at 
smaller doses, evokes behavioural stimulation at higher dos-
age levels [180]. However, in the cat, rat and the mouse 
where the post-synaptic effect usually predominates, it is 
likely that the pre-synaptic effect is masked by the conse-
quences of post-synaptic receptor activation. 

3.1.2. Drugs Interacting with Reuptake 

 Reuptake of released noradrenaline into the nerve termi-
nal is the principle way of terminating the synaptic action of 
the transmitter. Reuptake involves the operation of an active 
membrane pump (noradrenaline transporter; [10, 53, 274]. 
Inhibitors of the transporter result in attenuation of reuptake 
leading to potentiation of the effect of the transmitter on the 
post-synaptic cell. Inhibitors of noradrenaline reuptake are 
expected to enhance the post-synaptic effects of LC activa-
tion in each target area. We shall consider the same four 
functions (i.e., arousal, pupil control, blood pressure control, 
salivation) as discussed in relation to modulation by autore-
ceptors (see 3.2 above and Fig. (4)). 

 The noradrenaline transporter has been indentified on 
noradrenergic neurones in the LC using the highly selective 
noradrenaline uptake inhibitor nisoxetine [405, 456]. 
Noradrenaline uptake inhibitors can influence the removal of 
noradrenaline released from dendrites in the LC leading to 
increased activation of inhibitory autoreceptors via the in-
creased noradrenaline concentration resulting in a reduction 
in LC activity [145]. This effect, however, is likely to be 
superseded by the effect of noradrenaline uptake inhibition at 
the nerve terminals since while both amphetamine [7, 86] 
and cocaine [89, 348, 349, 350] reduce the activity of the 
LC, they also increase the concentration of noradrenaline in 
the synaptic gap at the target areas of noradrenergic termi-
nals [86] leading to increases in LC-mediated functions such 
as arousal and pupil diameter (see below).  

3.1.2.1. Arousal

 Inhibition of noradrenaline uptake at the excitatory nora-
drenergic synapses in the cerebral cortex and in wakefulness-
promoting nuclei, together with a similar action at inhibitory 
noradrenergic synapses in the VLPO, is expected to lead to 
an increase in arousal. Noradrenaline uptake inhibition in 
general has been associated with an alerting effect. Thus, it 
has been shown that the noradrenaline uptake inhibitors in-
deloxazine [403] and S33005 [62] increase alertness in ex-
perimental animals. 

 Although the psychostimulant actions of amphetamine 
and cocaine are usually attributed to the blockade of the re-



266    Current Neuropharmacology, 2008, Vol. 6, No. 3 Samuels and Szabadi 

uptake of dopamine, these drugs are also potent inhibitors of 
noradrenaline reuptake [495]. These drugs produce robust 
increases in arousal (amphetamine [157, 171]; cocaine [492]). 
The wakefulness-promoting drug modafinil, which is not 
classified as a psychostimulant, also increases alertness [184, 
187, 380]; see 3.1, above) and inhibits the reuptake of both 
dopamine and noradrenaline [262], and the site at which 
noradrenaline uptake inhibition may be most relevant has 
been identified as the inhibitory noradrenergic synapse on 
VLPO neurones [128]. 

 A number of antidepressants have been developed whose 
only or principal action is the inhibition of noradrenaline 
reuptake (e.g., reboxetine, venlafaxine, atomoxetine, du-
loxetine). Some of these drugs also have, albeit relatively 
weak, alerting effects. Reboxetine has been claimed to be an 
“activating” antidepressant improving social activity in de-
pressed patients [98] and both reboxetine and atomoxetine 
are used as alternatives to psychostimulants in the treatment 
of attention deficit hyperactivity disorder [517]. Reboxetine 
has also been shown to increase arousal and suppress REM 
sleep in rats [227]. Phentermine, an anorectic agent used in 
the treatment of obesity, also inhibits noradrenaline and do-
pamine reuptake and has been shown to increase wakeful-
ness in rats [371]. 

3.1.2.2. Pupil Control

 Inhibition of noradrenaline uptake is expected to potenti-
ate the noradrenergic excitation of preganglionic sympathetic 
neurones in the IML, the stimulant effect of noradrenline at 
the neuroeffector junction in the iris, and the noradrenergic 
inhibition of the EWN. Indeed, both amphetamine [151, 157, 
176, 351] and cocaine [202, 351, 497] have been demon-

strated to increase pupil diameter consistent with such an 
action. Furthermore, there is evidence that amphetamine-
induced pupil dilatation is related to the inhibition of para-
sympathetic output [224], consistent with an increase in the 
noradrenergic inhibition of the EWN. 

 It has been shown that both reboxetine [445] and ven-
lafaxine [41] cause an increase in pupil diameter and inhibit 
the light reflex response. Although the increase in pupil di-
ameter may simply reflect noradrenaline reuptake in the iris, 
leading to the enhancement of sympathetically-mediated 
pupil dilatation, the inhibition of the light reflex demon-
strates the involvement of an action at the noradrenergic syn-
apse on EWN neurones. Consistent with these findings, the 
predominantly noradrenergic tricyclic antidepressant de-
sipramine also increases pupil diameter [406] and inhibits 
the light reflex [459]; however, these effects may have been 
contaminated by an interaction of the drug with muscarinic 
cholinoceptors. 

3.1.2.3. Blood Pressure

 Noradrenaline uptake inhibition is expected to lead to 
augmentation of blood pressure [279], partly due to potentia-
tion of the central sympathoexcitatory effect of the noradren-
ergic input to preganglionic sympathetic neurones and partly 
to potentiation of noradrenergically-mediated vasoconstric-
tion in the periphery. This pressor effect is expected to be 
attenuated by potentiation of the noradrenergic inhibition of 
the RVLM. This attenuation is likely to be significant since 
noradrenaline reuptake inhibitors result in only moderate 
increases in blood pressure.  

 Administration of both amphetamine [59, 157, 264, 307] 
and cocaine [178, 284, 307] is associated with increases in 

Table 3. Effects of 2-Adrenoceptor and -Opiate Receptor Agonists on Arousal and Pupil Diameter  

Arousal Pupil Diameter 

Pre-synaptic Action Dominant

2-adrenoceptor agonist      [182]        [39, 76, 184, 341, 379] Man 

-opiate receptor agonist      [131]        [225, 286, 334, 343, 344, 345] 

2-adrenoceptor agonist      [84]        [396] Dog 

-opiate receptor agonist      [502]         [396] 

2-adrenoceptor agonist no information available          [8] Rabbit 

-opiate receptor agonist      [278]         [450] 

Post-synaptic Action Dominant

2-adrenoceptor agonist      [245]         [231, 232] Cat 

-opiate receptor agonist      [95, 221]         [80] 

2-adrenoceptor agonist      [357]         [137, 166, 169, 175, 231] Rat 

-opiate receptor agonist      [12, 484]         [224] 

2-adrenoceptor agonist      [159]         [167, 168] Mouse 

-opiate receptor agonist      [215]         [230] 

References are indicated in square brackets. 
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blood pressure. Reboxetine [445], venlafaxine [2] and du-
loxetine [458] have all been reported to cause modest in-
creases in blood pressure.  

3.1.2.4. Salivation

 Potentiation of the noradrenergic inhibition of the saliva-
tory nuclei, as a result of noradrenaline reuptake inhibition, 
is expected to result in a reduction in salivary output. Indeed, 
both reboxetine [445] and venlafaxine [2] have been shown 
to reduce salivation. These observations show that a reduc-
tion in salivation by an antidepressant is not necessarily due 
to muscarinic cholinoceptor blockade in the salivary glands, 
as generally assumed, but may reflect the interaction of the 
drug with central noradrenergic mechanisms [445]. 

3.1.3. Drugs Interacting with Storage 

 Noradrenaline is stored in synaptic vesicles in the nerve 
terminal, and its accumulation in the storage vesicles is via
an active membrane pump (vesicular monoamine transporter 
2, VMAT2; [516]). VMAT2 is not specific for noradrena-
line, and is responsible for transporting also dopamine and 
serotonin into storage vesicles in the appropriate nerve ter-
minals. VMAT2 is inhibited by some drugs such as reserpine 
and tetrabenazine, leading to the initial release of the mono-
amine followed by depletion of the stores, resulting in reduc-
tion/cessation of release [107]. While dopaminergic neurones 
show preferential sensitivity to depletion by tetrabenazine 
[449]; [132], reserpine leads to near equal depletion of all 
three monoamines [406]. The depletion of noradrenaline 
from central noradrenergic neurones leads to the “switching 
off” of the LC system, whereas depletion of noradrenaline 
from peripheral noradrenergic neurones results in a marked 
sympatholytic action [436].  

 Early work with the depleting agents carried out in the 
1960s has described the consequences of noradrenaline de-
pletion on functions mediated by the LC system, and more 
recent information relating to the functional neuroanatomy of 
the system (see Fig. (4)) enables us to interpret these effects. 
Thus, administration of reserpine leads to sedation [436], 
which may be related to reductions in the excitatory influ-
ence of the LC on the cerebral cortex and other wakefulness-
promoting nuclei and of the noradrenergic inhibition of the 
sleep-promoting VLPO. The “switching off” of the nora-
drenergic inhibition of the EWN is expected to lead to in-
creased activity of this preganglionic parasympathetic nu-
cleus. Indeed, it has been shown that reserpine causes miosis, 
which is more pronounced at ambient illumination than in 
darkness, and potentiates the light reflex [43]. Reserpine also 
leads to marked hypotension, presumably due to the combi-
nation of its central and peripheral sympatholytic effects 
[436]. Reserpine-induced noradrenaline depletion has also 
been demonstrated to be associated with an increase in sali-
vary output [43], which is likely to be due to the removal of 
the tonic noradrenergic inhibition of salivatory nuclei. 

3.2. Drugs Indirectly Modifying LC Activity 

 As reviewed in Part I, the LC receives afferent inputs 
from a large number of sources. In this section we wish to 
restrict ourselves to reviewing modifications in LC activity 
by afferent inputs arising from the sleep-arousal network 
(see Fig. (1)). Stimulant and sedative drugs, apart from di-

rectly influencing LC activity (see 3.1, above), often exert an 
indirect effect on the LC via acting at different sites in the 
sleep-arousal network.  

3.2.1. Stimulant Drugs 

3.2.1.1. Adenosine Receptor Antagonists

 Adenosine accumulates during wakefulness and plays a 
role in the initiation of sleep, via activation of A1 and A2

adenosine receptors [117, 466]. The sleep-inducing effect of 
adenosine is mediated partly via inhibition of wakefulness-
promoting nuclei [287] and partly via stimulation of sleep-
promoting nuclei [129, 190], which are known to project to 
the LC (see Fig. (2)).  

 Caffeine is an adenosine receptor antagonist which is 
widely available and used extensively in the general popula-
tion as a wakefulness-enhancing compound. The drug pro-
duces robust increases in arousal [25, 54, 213, 335, 488, 522] 
and has been shown to enhance LC activity [28, 100]. Ad-
ministration of caffeine also produces increases in heart rate 
[194], blood pressure [194, 315, 464] and temperature [229], 
consistent with activation of the sympathetic nervous system. 
Interestingly, caffeine antagonises the sedative and auto-
nomic effects of clonidine [417], a drug known to reduce LC 
activity (see 3.1, above).  

3.2.1.2. Drugs Interacting with the Mesocoerulear Pathway

 The dopaminergic system plays an important role in the 
maintenance of arousal [258] and psychostimulants such as 
amphetamine and cocaine are potent activators of this system 
by inhibiting the dopamine transporter and facilitating do-
pamine release [48, 368]. The alerting effect of dopaminer-
gic drugs may partly be mediated via the LC since it has 
been shown that this nucleus receives excitatory inputs both 
from the VTA (mesocoerulear pathway) and vPAG (see 
3.1.4.1 and 3.1.4.4, Part I). 

 Modafinil is a novel wakefulness-promoting drug used in 
the treatment of EDS in narcolepsy [468, 469] and it has 
been shown to alleviate the EDS associated with a number of 
other conditions (PD [310]; idiopathic hypersomnia [199]; 
night shift sleep disorder [480]; obstructive sleep apnoea 
[325]; multiple sclerosis [358]; myotonic dystrophy [260]; 
depression [96]; schizophrenia [370]; sleep deprivation 
[346]; and drug-induced sedation [485]. Modafinil has been 
found to enhance the activity of the dopaminergic system by 
increasing extracellular levels of dopamine [102, 298, 499] 
possibly by an action at the dopamine transporter [262, 310]. 
Consequently, it has been proposed that modafinil may po-
tentiate LC activity via the enhancement of dopaminergic 
activity within the mesocoerulear pathway originating in the 
VTA [377, 383, 384]. It should be noted however, that mo-
dafinil failed to modify LC activity in anaesthetised animals 
[7] where the baseline firing rate of the neurones is very low. 
It has been suggested that this study should be repeated in 
awake animals where the LC fires at a higher rate and may 
be more sensitive to modafinil [383].  

 Modafinil’s pharmacological effects are consistent with 
those associated with increased LC activity (see 3.1 and Fig. 
(4), above). Modafinil has been found to increase arousal in 
healthy volunteers [184, 187, 379, 488], together with signs 
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of sympathetic activation, including increases in pupil di-
ameter [184, 187. 379], heart rate and blood pressure [187, 
264, 377, 379], and body temperature [283, 346]. Interest-
ingly, there is little evidence of a concomitant decrease in 
parasympathetic activity, since light reflex amplitude and 
salivary output are not affected by the drug [184, 187, 377, 
379]. This observation suggests that the mesocoerulear 
pathway may preferentially activate the pre-sympathetic neu-
rones in the LC (see 5 and Fig. (6), below). 

 Amisulpride is an antipsychotic with an antagonistic ac-
tion at D2 dopamine receptors. D2 dopamine receptors have 
been shown to occur both pre-synaptically on dopaminergic 
neurones (autoreceptors) and post-synaptically: the pre-
synaptic receptors inhibit the firing of the neurone [21], 
whereas the post-synaptic receptors may mediate either exci-
tatory or inhibitory effects on the post-synaptic cell. The pre-
synaptic receptors are generally more sensitive to both ago-
nists and antagonists than the post-synaptic receptors, and 
amisulpride has a preferential action at the pre-synaptic auto-
receptors [291, 337]. In this respect amisulpride differs from 
most other antipsycotics which although block D2 dopamine 
receptors [222, 432], do not show any selectivity for the pre-
synaptic site [222, 291, 337]. In the case of the mesocoeru-
lear pathway, the preferential blockade of inhibitory pre-
synaptic receptors would increase the activity of the VTA 
neurones. As the dopamine released onto LC neurones is 
likely to interact with excitatory D2 dopamine receptors, the 
activity of the LC would increase leading to increase in alert-
ness. Indeed, amisulpride has been shown to possess some 
mild alerting effects [331], in contrast to antipsychotics with-
out pre-synaptic D2 dopamine receptor selectivity which have 

no alerting effect and are usually sedative in action [222].

3.2.2. Sedative Drugs 

3.2.2.1. GABA Receptors

 GABA is the major inhibitory neurotransmitter in the 
brain, and it exerts its action by interacting with three types 
of receptor (GABAA, GABAB, and GABAC). A major class 
of sedative drug, the benzodiazepines, interact with specific 
benzodiazepine receptors which are closely associated with 
the GABAA receptor. Activation of benzodiazepine receptors 
leads to potentiation of the inhibitory actions of GABA [289, 
347]. As most sleep-promoting neurones utilise GABA as 
their neurotransmitter, benzodiazepines act by enhancing the 

influence of sleep-promoting systems. 

 It has been shown that benzodiazepines reduce the firing 
rate of LC neurones [239, 382, 410], and it has been pro-
posed that the LC may play an important role in mediating 
the sedative effects of these drugs [240]. However, the re-
duction in LC activity after administration of benzodiazepi-
nes is unlikely to be due to potentiation of the inhibitory ac-
tion of GABA on LC neurones since the GABAA receptors 
on these neurones are not sensitive to benzodiazepines [71]. 
Therefore, the suppression of LC activity by benzodiazepi-
nes is likely to reflect enhancement of GABAergic inhibition 
at other sites in the sleep-arousal network, e.g., in the cere-
bral cortex and TMN, structures with excitatory inputs to the 
LC (see 3.1.1 and 3.1.3.4, Part I). The benzodiazepine diaze-

pam has been found to attenuate the stress-induced increases 
in noradrenaline turnover at sites such as the hypothalamus, 
amygdala, hippocampus and cerebral cortex [197], all areas 
which receive noradrenergic innervation originating in the 
LC. Interestingly, chronic diazepam administration enhances 
LC activity [338] and this over-activity may form part of the 
circuitry underlying benzodiazepine dependence and with-
drawal. 

 It is generally recognised that there is a close relationship 
between the level of arousal and pupil diameter: sedation is 
known to be associated with miosis, as observed for the 2-
adrenoceptor agonists and opiates (see 3.1, above), and pupil 
diameter is often used by anaesthetists to monitor the depth 
of anaesthesia (p 779-781 in ref. [254]). The anatomical sub-
strate of this relationship is likely to be the LC (see 1.3, 
above). Therefore, it is surprising that the benzodiazepines, 
while highly sedative, do not cause any change in pupil di-
ameter [186, 189], although they reduce LC activity (see 
above) and induce fluctuations in the firing rate of LC neu-
rones as reflected in the enhancement of pupillary fatigue 
waves [189]. These observations suggest that the benzodi-
azepines, apart from reducing LC activity, may also have a 
direct effect on the pupil control mechanism which masks 
the miosis expected from the reduction in LC activity. This 
mechanism has been suggested to be enhanced sympatheti-
cally-mediated mydriasis resulting from reduced inhibition 
of the IML due to potentiation of GABA-mediated inhibition 
of descending inhibitory bulbospinal pathways and inhibi-
tory interneurones [189]. 

3.2.2.2. Mesocoerulear Pathway

 As discussed above, LC activity is influenced by a do-
paminergic input from the VTA, the mesocoerulear pathway, 
operating via D2 dopamine receptors (see 3.2.1.2, above). 
Pre-synaptic autoreceptors play an important role in modu-
lating the activity of VTA neurones, their activation leading 
to a decrease and their inhibition to an increase in neuronal 
activity. D2 dopamine receptor agonists, with a preferential 
affinity for the autoreceptor, lead to attenuation of the dopa-
minergic facilitation of LC activity resulting in lowering of 
the level of arousal [217, 373, 377, 378, 380]. Indeed, it has 
been shown that D2 dopamine receptor agonists used in the 
treatment of PD have profound sedative effects (for example, 
pramipexole [161]; ropinirole [116]; pergolide [463]; bro-
mocriptine and cabergoline [333]; piribedil [452]: apomor-
phine [244]). These drugs are likely to exert their therapeutic 
effects via the activation of dopamine receptors within the 
striatum [217, 373]. 

 Pramipexole is a dopamine D2 receptor agonist which has 
been shown to possess robust sedative effects in healthy vol-
unteers [387, 388, 390]. However, paradoxically pramipex-
ole-induced sedation was associated with an increase rather 
than a decrease in pupil diameter as would be expected on 
the basis of reduced LC activity. The increase in pupil di-
ameter was accompanied by a reduction in light reflex ampli-
tude, indicating a reduction in the parasympathetic outflow 
to the iris. It was proposed that the mydriatic effect of pra-
mipexole might reflect the operation of a putative excitatory 
pathway from the VTA to the EWN (“meso-pupillomotor”  



Functional Neuroanatomy of the Noradrenergic Locus Coeruleus Current Neuropharmacology, 2008, Vol. 6, No. 3    269

pathway) whose “switching off” by autoreceptor stimulation 
would be responsible for the attenuation of parasympathetic 
activity [387, 388, 390]. Interestingly, this proposal is sup-
ported by the effect of the D2 autoreceptor antagonist amisul-
pride, which caused miosis and an increase in light reflex 
amplitude [388]. 

4. AGE-DEPENDENT ALTERATIONS OF LOCUS 

COERULEUS ACTIVITY 

 Neurone density within the LC decreases with age due to 
a progressive loss of noradrenergic neurones, both in animals 
[83, 246, 434] and humans [65, 265, 460, 477]. This neurone 
loss is uniformly diffuse across the LC, without preferential 
reduction in any restricted area [270]. In addition, the re-
maining neurones within the LC show shrinkage of the peri-
karya and a subsequent decrease in cell size [65, 83]. Ageing 
cells within the LC also exhibit mitochondrial and ribosomal 
alterations and these changes have been suggested to pro-
duce disruptions in the absorption of nutrients, protein syn-
thesis, energy supply, transport of materials and message 
exchange [83]. The age-dependent decline in LC activity 
may be accentuated via an indirect mechanism. The ageing 
brain also shows a reduction in orexin B-immunoreactive 
axons within the LC accompanied by a decline in tyrosine 
hydroxylase mRNA in the LC, a marker of noradrenergic 
activity [105].  

 It has been observed that the number of LC neurones 
projecting to areas such as the frontal cortex and the hippo-
campus declines with age, but that a certain degree of axonal 
branching occurs to maintain noradrenaline levels at target 
areas [196, 197, 403]. However, despite this branching, the 
loss of noradrenergic LC axons innervating the frontal cortex 
has been found to result in fewer synapses [198], and 
changes in the electrophysiological properties of the remain-
ing LC axon terminals have been observed [404]. Decreased 
binding in the LC of nisoxetine, a noradrenaline uptake in-
hibitor, has been observed in aged humans [456] and this 
decrease is likely to be related to the loss of LC neurones, 
and thus a reduction in noradrenaline transporters at nerve 
terminals. Similarly, in an aged rat nisoxetine-sensitive 
noradrenaline uptake inhibition was attenuated, again repre-
senting a decline in noradrenergic transporters at axon termi-
nals [405]. In addition to a loss of transporters, 2-adreno-
ceptor responsiveness in the LC is reduced with ageing. In 
aged rats microinjections of clonidine and yohimbine into 
the LC, where these drugs have a localised effect on presyn-
aptic inhibitory autoreceptors, do not modify alertness level, 
in contrast to the sedative and wakefulness-promoting ef-
fects, respectively, observed in younger rats [99, 312, 313]. 
Thus, these various disruptions in the functioning of the LC 
with age result in an overall deficiency in noradrenergic neu-
rotransmission [34].  

 Memory impairment in old age has been related to the 
loss of LC function with ageing [272]. For example, reduc-
tions in cortical noradrenaline transmission with age have 
been associated with deficits in spatial learning and memory 
[78] and a significant correlation has been observed between 
the extent of neurone loss in the LC with age and the degree 
of memory impairment on an inhibitory avoidance task in 
mice [246]. 

 This influence of ageing on LC activity can be observed 
in changes in pupillary function. Resting pupil diameter is 
reduced with age [37, 352, 416, 431], with pupil diameters of 
1 mm or less becoming more prevalent [423], and this is 
consistent with a deficit in the sympathetic nervous system 
resulting from reduced LC activity. A decline in the sympa-
thetic outflow to the iris in old age is further demonstrated by 
reductions in the amplitude and velocity of the darkness re-
flex response and prolongation of the recovery time of the 
light reflex response [37]. However, the parameters of the 
light reflex response may also be altered in old age [37, 352, 
390, 431], suggesting that the aging process may affect both 
the sympathetic and parasympathetic controls of the pupil. 
The role of the LC in the age-related sympathetic deficit in 
pupillary control is highlighted by the fact that there is a par-
allelism between the monotonic decline in pupil size [416] 
and cell numbers in the LC [265] with age. The age-related 
decline in LC neurone numbers is likely to be accelerated in 
AD, resulting in accentuation of the sympathetic deficits of 
pupil control present in elderly people (see 5.2, below).

5. PATHOLOGICAL ALTERATIONS OF LOCUS CO-

ERULEUS ACTIVITY 

 Alongside the physiological and pharmacological ma-
nipulations that can produce changes in the activity of the 
LC, pathological changes associated with various diseases 
can alter LC neurone functioning. Pathological changes in 
the LC have been noted in a number of neurodegenerative 
diseases, including PD [514], AD [44], Huntington’s disease 
[521], progressive supranuclear palsy [266], Lewy body dis-
ease [435], Down’s syndrome [271], Pick’s disease [13], and 
amyotrophic lateral schlerosis [318]. In this review we focus 
our attention on the most common of these: PD and AD. In 
addition, the possible contribution of disruption to LC neu-
rone function in brainstem coma is discussed. 

5.1. Parkinson’s Disease 

 PD is a progressive neurodegenerative disorder associ-
ated with motor deficits that include muscular rigidity, 
bradykinesia, resting tremor, postural instability and hypoki-
nesia. These deficits have been largely related to the degen-
eration of dopaminergic neurones in the pars compacta of the 
substantia nigra that project to the striatum, leading to a re-
duction in dopamine content within the striatum. However, 
there is evidence that the noradrenergic neurones of the LC 
are also important in this disorder [63, 136, 272]. A signifi-
cant loss of LC neurones has been observed post-mortem in 
PD [32, 133, 332, 356, 472] and also indicated by a reduc-
tion in the neuromelanin signal localised to the LC using 
MRI in living patients ([386]; see 4.5, below). Indeed, neu-
rone loss from the LC has been found to be more extensive 
than that from the substantia nigra [514], with Lewy body 
formation commencing in a number of areas including the 
LC before any pathology occurs in the substantia nigra [49, 
97].  

 In addition to a loss of LC neurones, PD is also associ-
ated with morphological changes to the surviving neurones 
in the LC, including changes in the size and shape of both 
pre- and postsynaptic components of synapses, polymor-
phisms of the synaptic vesicles, changes in the morphology 
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of the mitochondria, swelling of the cell bodies, inclusion of 
Lewy bodies, and shortening and thinning of the dendrites 
with absent or reduced arborisations [23, 64, 332]. 

 It is known that the LC sends an excitatory noradrenergic 
projection to the striatum-projecting neurones of the substan-
tia nigra [79, 146], activating the dopaminergic neurones via
activation of 1-adrenoceptors [146]. Interestingly, lesions of 
the LC result in an increase in the loss of dopaminergic neu-
rones from the substantia nigra induced by the neurotoxin 6-
OHDA [35, 425], indicating that the noradrenergic neurones 
from the LC have a neuroprotective effect on the dopaminer-
gic neurones of the substantia nigra. In addition, in monkeys 
with MPTP induced PD, lesions of the LC impair the recov-
ery of the motor deficits that usually occurs at 9 weeks post-
treatment [276], supporting the involvement of the LC in the 
progression of PD. It, therefore, seems likely that the nora-
drenergic neurones of the LC have both neuromodulatory 
effects on dopaminergic neurones of the substantia nigra, 
important for maintaining or facilitating the nigrostriatal 
pathway, and neuroprotective effects on these dopaminergic 
neurones, resulting in neurodegeneration when the LC is 
compromised and contributing to the development of PD 
[272, 424].  

 Sleepiness in PD has been found to be related to the pa-
thology of the disease alongside any sedation induced by 
pharmacological treatment [14] and it is likely that this 
sleepiness results from the reduction in LC activity that oc-
curs as a result of the neurone loss described above. In addi-
tion, the degree of LC neurone loss has been associated with 
the incidence of dementia in PD [520] and this association 
may be related to the loss of LC neurones involved in the 
circuitry underlying executive functioning (see Part I). In 
support of this suggestion, noradrenaline levels in the LC 
have been found to be reduced post-mortem in PD patients 
who also suffered from dementia compared to PD patients 
who had no clinical signs of dementia [60]. Alongside the 
sleepiness and dementia discussed above, depression and 
anxiety in PD may also be associated with the loss of LC 
neurones, resulting from a reduction in noradrenergic inner-
vation of the limbic system [367]. 

 Pharmacological studies suggest that 2-adrenoceptor 
antagonists could be used therapeutically in an attempt to 
increase LC neurone activity in PD. For example, in a pri-
mate model of PD administration of the 2-adrenoceptor an-
tagonist idazoxan improved motor abnormalities [33]. This 
possibility requires further investigation. 

5.2. Alzheimer’s Disease 

 AD is a progressive neurodegenerative disorder associ-
ated with a decline in cognitive functions including memory, 
language, attention, judgement and executive function (for 
example, planning and organisation). These deficits have 
primarily been related to dysfunction within the cholinergic 
system, particularly in the nucleus basalis. However, there is 
considerable evidence that dysfunction within the LC is also 
important in this disorder, since a significant loss of nora-
drenergic LC neurones can be observed post-mortem [58, 63, 
64, 125, 133, 201, 259, 267, 272, 275, 433, 448, 472, 503]. 
This loss of LC neurones is greater than that observed in the 

case of normal ageing ([460]; see below) and interestingly 
there is significantly more neurone loss from the LC than 
from the cholinergic neurones in the nucleus basalis [267, 
514]. It has been proposed that LC neurone degeneration 
may contribute to the development and progression of AD, 
since in amyloid-containing amyloid precursor protein 23 
(APP23) transgenic mice, a model of AD pathology, LC 
lesions augmented amyloid plaque deposits in the projection 
areas of the LC and increased memory deficits compared to 
non-transgenic mice who also received LC lesions [172]. 
The root cause of the loss of neurones from the LC in AD is 
unclear, but may be associated with the formation of neu-
rofibrillary tangles, since neurofibrillary tangles have been 
identified within the LC [58, 503]. In addition, increased 
levels of the neurotoxic monoamine oxidase A metabolite of 
noradrenaline, 3,4-dihydroxyphenylglycolaldehyde, has been 
observed in the LC in AD and may contribute to this neurone 
loss [57]. It appears, however, that the LC neurone loss is not 
related to the over-expression of beta-amyloid protein [134]. 

 Alongside the reduction in LC neurone density, mean 
brain noradrenaline concentration is lower in AD sufferers 
than in healthy controls [181] and cortical noradrenaline lev-
els have been found to be reduced [201, 275]. In contrast, 
noradrenaline levels measured from the cerebro-spinal fluid 
are significantly higher in AD than in controls [110], and this 
may result from an increase in activity of some surviving 
neurones in order to compensate for the extensive neurode-
generation [181, 448]. Pathological changes are observable 
within these surviving LC neurones, however, where cell 
somata are reported as swollen and misshapen and dendrites 
are shorter and less branching [64]. 

 The mechanism by which LC neurone loss contributes to 
AD development is unclear. In non-disease states noradrena-
line from the LC may directly influence cell bodies of the 
nucleus basalis to increase acetylcholine release [272, 415, 
509] and may modulate cortical cholinergic transmission via
activation of 2-adrenoceptors on cholinergic terminals of 
cortically-projecting nucleus basalis neurones, again to in-
crease acetylcholine release [170]. Therefore, a reduction in 
noradrenaline release from the LC in AD would result in a 
reduction in cholinergic neurotransmission. In addition, a 
loss of cholinergic innervation of the LC has been observed 
in AD [433] and this may contribute to the reduced LC func-
tioning in AD discussed above. 

 As noradrenaline depletion studies using a neurotoxin to 
lesion the LC have found deficits in attention, learning and 
memory [272], neuronal loss in the LC may contribute to the 
cognitive decline in AD. It has been reported that as patho-
logical changes in the LC occur early in AD, the early cogni-
tive changes in the disorder may be related to LC degenera-
tion [150]. LC degeneration is progressive during the course 
of the illness and there is a positive correlation between the 
duration of illness and the magnitude of LC neurone loss 
[133]. Furthermore, there are also positive correlations be-
tween the magnitude of LC neurone loss and dementia sever-
ity [44] and between the reduction in noradrenaline concen-
tration in the cerebral cortex and cognitive impairment [275]. 
Interestingly, patients with a history of depression had sig-
nificantly lower neurone numbers within the LC [125]. The 
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LC may thus be a possible therapeutic target to alleviate the 
cognitive deficits in AD. It has been reported that transcuta-
neous electrical nerve stimulation (TENS), using the same 
stimulus parameters which have been shown to increase LC 
activity in experimental animals, results in improvements of 
both cognitive functions and behaviour in patients suffering 
from AD [389]. This observation opens the way to consider 
retrograde vagus nerve stimulation as a possible indication 
for AD, and indeed preliminary reports indicate that this pro-
cedure may have beneficial effects on cognitive functions in 
patients suffering from AD [285, 414]. The electrical stimu-
lation of the left vagus nerve is well established as a thera-
peutic procedure both in epilepsy [149] and treatment-
resistant depression [301]. Interestingly, it has been shown 
that vagus nerve stimulation leads to increases in the firing 
rates of noradrenergic neurones in the LC and serotonergic 
neurones in the dorsal raphe nucleus [103]. 

 It may be expected that a reduction in LC activity, which 
is likely to occur from the earliest stages of AD, would be 
reflected in deficits in a number of LC-mediated functions. 
Indeed, there is evidence of a sympathetic deficit in AD pa-
tients, affecting sweat gland activity and pupillary function. 
A reduction in impulse traffic in sympathetic fibres innervat-
ing eccrine sweat glands results in hyposensitivity of the 
glands to intradermally injected carbachol ([443], see also 
2.2.2), and it has been reported that patients suffering AD 
show reduced responsiveness of their sweat glands to car-
bachol, compared to age- and sex-matched control subjects 
[235]. It has also been reported that patients suffering from 
mild/moderate AD have reduced pupil diameters and attenu-
ated darkness reflex responses in comparison to age matched 
healthy controls, indicating reduced sympathetic function, 
consistent with a reduction in LC activity [353]. 

 Patients with AD may show enhanced sensitivity of their 
pupils to the mydriatic effect of topically applied tropi-
camide, a muscarinic cholinoceptor antagonist [391]. Al-
though this observation has been related to degenerative 
changes in the EWN seen in AD [392], it is more likely to 
reflect the loss of LC activity. It has recently been found that 
administration of clonidine, a drug known to “switch off” LC 
activity (see 3.1.1), results in augmentation of tropicamide-
evoked mydriasis in healthy volunteers [188]. This observa-
tion also suggests that administration of a single dose of 
clonidine is likely to enhance the sensitivity of the “tropi-
camide” eye-drop test in AD, providing possible means for 
the early detection of developing brain degeneration [188]. 

 Reduction in LC activity in AD is also expected to be 
reflected in the level of alertness of AD patients. Indeed, it 
has been reported that patients suffering from AD have re-
duced flicker fusion frequency thresholds compared to age-
matched healthy controls [87, 88], indicating a decline in the 
level of arousal, consistent with a reduction in LC activity in 

AD. 

 It has been reported that both saccadic [118, 183, 184, 
191] and smooth pursuit [119, 191, 234, 510] eye move-
ments are impaired in AD. Eye movements are controlled by 
an intricate neural network involving brainstem nuclei and 
the cerebral cortex and degenerative changes in several sites 
in this network may explain the eye movement deficiency 

reported in AD [372]. However, it is of interest that a reduc-
tion in LC activity may also contribute to the eye movement 
disorders. The LC sends an excitatory output to the oculomo-
tor nuclear complex (see 2.3.5.4, Part I), and there is phar-
macological evidence that drugs modifying LC activity lead 
to alterations in eye movements. Thus, 2-adrenoceptor ago-
nists (dexmedetomidine, clonidine), which “switch off” the 
LC, reduce peak saccadic velocity in healthy volunteers [1, 
139, 154], whilst 2-adrenoceptor antagonists (ethoxyida-
zoxan), which potentiate LC activity, increase peak saccadic 
velocity in healthy volunteers [81]. Furthermore, sedative 
drugs in general reduce peak saccadic velocity [24, 473], 
consistent with a reduction in LC activity evoked by these 

drugs.  

5.3. Brainstem Coma 

 The presence of coma following brainstem stroke has 
been linked to lesions of nuclei located in the pons, in par-
ticular with the LC [330]. In this study, patients with brain-
stem damage without coma had no damage, or very little 
unilateral damage, to these areas in the tegmentum including 
the LC. Thus, lesions in the upper pons which include the LC 
are implicated in the causation of coma in humans, consis-
tent with the wakefulness-promoting functions of this nu-

cleus. 

5.4. Imaging of Neuromelanin in Humans 

 The LC and the substantia nigra are visible to the naked 
eye when the brain is dissected since both nuclei contain a 
pigment, neuromelanin [515, 519]. It has recently become 
possible to image the substantia nigra [386] and the LC [386, 
399, 400] see Fig. (5)) using neuromelanin-magnetic reso-
nance imaging. The contrast ratio between the neuromelanin-
containing nuclei and the surrounding brain tissue is used as 
an index of neuromelanin concentration. Preliminary reports 
indicate that in PD the neuromelanin content is reduced both 
in the substantia nigra and the LC compared to healthy con-
trols [386] and the neuromelanin content in the LC shows an 
inverted-U relationship with age, highest levels being ob-
servable in middle aged individuals [399]. Furthermore, a 
reduction in neuromelanin signal in the LC has been reported 
in patients suffering from depression [400]. These encourag-
ing reports should be followed up by further work aimed at 
clarifying the relationship between neuromelanin content and 
cell numbers in the LC, since while the number of LC neu-
rones has been reported to decline with age and the devel-
opment of neurodegenerative diseases (see above), the neu-
romelanin concentration of pigmented nuclei seems to in-
crease with the advancement of age [515]. Finally, the most 
important question is how neuromelanin content can be re-
lated to LC activity. 

CONCLUSIONS 

 It is apparent that manipulations of a physiological, 
pharmacological or pathological nature produce consistent 
alterations in LC activity, affecting both arousal state and 
autonomic function. Clearly, the LC is a major nucleus in the 
central regulation of these functions and reliable outcomes 
from changes in LC activity can be observed, especially on 
pupillary measures. In general, the physiological manipula-
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tions discussed above (anxiety, noxious/painful stimulation, 
extreme ambient temperature) increase LC activity and thus 
result in heightened arousal and changes in autonomic func-
tion consistent with sympathetic activation (for example, 
pupil dilatation). Similarly, administration of drugs such as 
stimulants, 2-adrenoceptor antagonists and noradrenaline 
uptake inhibitors increase the influence of the LC on areas 
receiving noradrenergic innervation. In contrast, administra-
tion of sedatives and 2-adrenoceptor agonists reduce LC 
activity and result in a decrease in arousal and produce sym-
patholytic effects (for example, pupil constriction). Likewise, 
LC neurone loss in aging, PD, AD, and brainstem coma re-
sults in decreases in arousal and a reduction in activity of the 
sympathetic nervous system. It is of interest to note that the 
pathological changes within the LC that occur in PD and AD 
are similar in nature and thus these disorders may form two 
poles of a spectrum of neurodegenerative disease related to 
loss of LC neurones [272, 339]. Overall it is clear that the 
LC is centrally involved in controlling the regulation of 
arousal and autonomic function, and thus any manipulation 
(physiological, pharmacological or pathological) which al-
ters LC activity will have consequences on aspects of this 
control.  

 The pattern of the consequences of LC activation by dif-
ferent variables suggests that there may be separate popula-
tions of LC neurones associated with sympatho-excitatory 
and parasympathetic-inhibitory effects (Fig. (6)). Thus, nox-
ious stimulation (see 2.1, above) and enhancement of the 
activity of the mesocoerulear pathway by the wakefulness-
promoting drug modafinil (see 3.2.1, above) result in the 
relatively selective activation of pre-sympathetic LC neu-
rones since these variables increase pupil diameter without 
any inhibition of the light reflex response. Indeed, modafinil 
has no influence on salivary output, a parasympathetically-
mediated function. On the other hand anxiety (see 2.2, 
above), probably via activation of the amygdala, leads to 

preferential activation of pre-parasympathetic LC neurones 
leading to inhibition of the light reflex and reduction in sali-
vation.  

Fig. (6). Schematic diagram to illustrate the hypothesis of two 

populations of locus coeruleus (LC) neurones. Sympathetic premo-

tor neurones (shown as blank area) are preferentially activated by 

noxious stimuli from collaterals of ascending pain pathways and the 

dopaminergic neurones of the ventral tegmental area (VTA) (meso-

coerulear pathway), whereas parasympathetic premotor neurones 

(shown as shaded area) are preferentially activated by anxiety via

an output to the LC from the amygdala (Amyg). The sympathetic 

premotor neurones have a stimulatory effect on sympathetic activity 

(Symp Activity) and level of arousal whereas the parasympathetic 

premotor neurones exert an inhibitory influence on parasympathetic 

activity (Para Activity) (see text for details). 

Fig. (5). Magnetic resonance image showing a cross-section of the upper pons displaying the loci coerulei (LC). A picture was taken in a

healthy human subject with the modification of the method of Sasaki et al., 2006, on a 3-tesla scanner to obtain neuromelanin signal to iden-

tify LC. The loci coerulei are shown by the small white areas in the bottom corners of the fourth cerebral ventricle, indicated by black ar-

rows. By courtesy of Professor D. Auer, Queen’s Medical Centre, Nottingham. 
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 In conclusion, recent developments in the functional neu-
roanatomy of the central noradrenergic system have enabled 
the rational interpretation of the effects of a number of cen-
trally-acting drugs. Conversely, many drugs have proved to 
be useful tools in the dissection of the complex neural net-
work regulating arousal and autonomic activity. This fruitful 
relationship between functional neuroanatomy and pharma-
cological probes is likely to grow further with the develop-
ment of neuroanatomical research tools of higher resolution 
and drugs with increasing selectivity and specificity. 

REFERENCES 

[1] Aantaa, R. (1991) Assessment of the sedative effects of dexmede-
tomidine, an alpha 2-adrenoceptor agonist, with analysis of sac-

cadic eye movements. Pharmacol. Toxicol., 68, 394-398. 
[2] Abdelmawla, A.H., Langley, R.W., Szabadi, E., Bradshaw, C.M. 

(1999) Comparison of the effects of venlafaxine, desipramine, and 
paroxetine on noradrenaline- and methoxamine-evoked constriction 

of the dorsal hand vein. Br. J. Clin. Pharmacol., 48, 345-354. 
[3] Abduljawad, K.A.J., Langley, R.W., Bradshaw, C.M., Szabadi, E. 

(1997) Effects of clonidine and diazepam on the acoustic startle re-
sponse and on its inhibition by ‘prepulses’ in man. J. Psychophar-

macol., 11, 29-34. 
[4] Abduljawad, K.A.J., Langley, R.W., Bradshaw, C.M., Szabadi, E. 

(2001) Effects of clonidine and diazepam on prepulse inhibition of 
the acoustic startle response and the N1/P2 auditory evoked poten-

tial in man. J. Psychopharmacol., 15, 237-242. 
[5] Abercrombie, E.D., Jacobs, B.L. (1987) Microinjected clonidine 

inhibits noradrenergic neurons of the locus coeruleus in freely 
moving cats. Neurosci. Lett., 76, 203-208. 

[6] Aghajanian, G.K., VanderMaelen, C.P. (1982) Alpha 2-adreno-
ceptor- mediated hyperpolarization of locus coeruleus neurons: in-

tracellular studies in vivo. Science, 15, 1394-1396. 
[7] Akaoka, H., Roussel, B., Lin, J.S., Chouvet, G., Jouvet, M. (1991) 

Effect of modafinil and amphetamine on the rat catecholaminergic 
neuron activity. Neurosci. Lett., 123, 20-22. 

[8] Allen, R.C., Langman, M.E. (1976) The intra-ocular pressure re-
sponse of conscious rabbits to clonidine. Invest. Ophthalmol., 15,

815-823. 
[9] Almeida, M.C., Steiner, A.A., Coimbra, N.C., Branco, L.G.S. 

(2004) Thermoeffector neuronal pathways in fever: a study in rats 
showing a new role for the locus coeruleus. J. Physiol., 558, 283-

294. 
[10] Amara, S.G., Kuhar, M.J. (1993) Neurotransmitter transporters: 

Recent progress. Ann. Rev. Neurosci., 16, 73-93. 
[11] Ameli, R., Ip, C., Grillon, C. (2001) Contextual fear-potentiated 

startle conditioning in humans: Replication and extension. Psycho-
physiology, 38, 383-390. 

[12] Arankowsky-Sandoval, G., Gold, P.E. (1995) Morphine-induced 
deficits in sleep patterns: Attenuation by glucose. Neurobiol. 

Learn. Mem., 64, 133- 138. 
[13] Arima, K., Akashi, T. (1990) Involvement of the locus coeruleus in 

Pick’s disease with or without Pick body formation. Acta Neuropa-
thologica, 79, 629-633. 

[14] Arnulf, I., Konofal, E., Merino-Andreu, M., Houeto, J.L., Mesnage, 
V., Welter, M.L., Lacomblez, L., Golmard, J.L., Derenne, J.P., 

Agid, Y. (2002) Parkinson’s disease and Sleepiness. Neurology, 58,
1019-1024. 

[15] Arya, D.K., Langley, R.W., Szabadi, E., Bradshaw, C.M. (1997) 
Comparison of the effects of high ambient temperature and 

clonidine on autonomic functions in man. Naunyn Schmiedeberg’s 
Arch. Pharmacol., 355, 376-383. 

[16] Aston-Jones, G. (2005) Brain structures and receptors involved in 
alertness. Sleep. Med., 6 (Suppl. 1), S3-S7. 

[17] Aston-Jones, G., Bloom, F.E. (1981) Activity of norepinephrine-
containing locus coeruleus neurons in behaving rats anticipates 

fluctuations in the sleep-waking cycle. J. Neurosci., 1, 876-886. 
[18] Aston-Jones, G., Chiang, C., Alexinsky, T. (1991) Discharge of 

noradrenergic locus coeruleus neurons in behaving rats and mon-
keys suggests a role in vigilance. Prog. Brain Res., 88, 501-520. 

[19] Aston-Jones, G., Cohen, J.D. (2005) An integrative theory of locus 
coeruleus-norepinephrine function: adaptive gain and optimal per-

formance. Ann. Rev. Neurosci., 28, 403-450. 
[20] Aston-Jones, G., Hirata, H., Akaoka, H. (1997) Local opiate with-

drawal in locus coeruleus in vivo. Brain Res., 765, 331-336. 
[21] Bagetta, G., De Sarro, G., Priolo, E., Nistico, G. (1988) Ventral 

tegmental area: site through which dopamine D2-recepor agonists 
evoke behavioural and electrocortical sleep in rats. Br. J. Pharma-

col., 95, 860-866. 
[22] Bakes, A., Bradshaw, C.M., Szabadi, E. (1990) Attenuation of the 

pupillary light reflex in anxious patients. Br. J. Clin. Pharmacol., 
30, 377-381. 

[23] Baloyannis, S.J., Costa, V., Baloyannis, I.S. (2006) Morphological 
alterations of the synapses in the locus coeruleus in Parkinson’s 

disease. J. Neurol. Sci., 248, 35-41. 
[24] Barrett, S.L., Bell, R., Watson, D., King, D.J. (2004) Effects of 

amisulpride, risperidone and chlorpromazine on auditory and visual 
latent inhibition, prepulse inhibition, executive function and eye 

movements in healthy volunteers. J. Psychopharmacol., 18, 156-
172. 

[25] Barry, R.J., Rushby, J.A., Wallace, M.J., Clarke, A.R., Johnstone, 
S.J., Zlojutro, I. (2005) Caffeine effects on resting-state arousal. 

Clin. Neurophysiol., 116, 2693-2700. 
[26] Bay, K.D., Mamiya, K., Good, C.H., Skinner, R.D., Garcia-Rill, E. 

(2006) Alpha-2 adrenergic regulation of pedunculopontine nucleus 
neurons during development. Neuroscience, 141, 769-779. 

[27] Benarroch, E.E. (1992) Central neurotransmitters and neuromodu-
lators in cardiovascular regulation. In: Bannister, R., Mathias, C.J. 

Eds. Autonomic Failure. 3rd Edition. Oxford, Oxford University 
Press, pp. 36-53. 

[28] Bennett, H.J., Semba, K. (1998) Immunohistochemical localization 
of caffeine-induced c-Fos protein expression in the rat brain. J. 

Comp. Neurol., 401, 89-108. 
[29] Berridge, C.W., Foote, S.L. (1991) Effects of locus coeruleus acti-

vation on electroencephalographic activity in neocortex and hippo-
campus. J. Neurosci., 11, 3135-3145. 

[30] Berridge, C.W., Page, M.E., Valentino, R.J., Foote, S.L. (1993) 
Effects of locus coeruleus activation on electroencephalographic 

activity in neocortex and hippocampus. Neuroscience, 55, 381-393. 
[31] Berrocoso, E., Micó, J.A., Ugedo, L. (2006) In vivo effect of tra-

madol on locus coeruleus neurons is mediated by 2-adrenoceptors 
and modulated by serotonin. Neuropharmacology, 51, 146-153. 

[32] Bertrand, E., Lechowicz, W., Szpak, G.M., Dymecki, J. (1997) 
Qualitative and quantitative analysis of locus coeruleus neurons in 

Parkinson’s disease. Folia Neuropathol., 35, 80-86. 
[33] Bezard, E., Brefel, C., Tison, F., Peyro-Saint-Paul, H., Ladure, P., 

Rascol, O., Gross, C.E. (1999) Effect of the 2 adrenoreceptor an-
tagonist, idazoxan, on motor disabilities in MPTP-treated monkey. 

Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 23, 1237-1246. 
[34] Bickford-Wimer, P.C., Parfitt, K., Hoffer, B.J., Freedman, R. 

(1987) Desipramine and noradrenergic neurotransmission in aging: 
failure to respond in aged laboratory animals. Neuropharmacology,

26, 597-605. 
[35] Bing, G., Zhang, Y., Watanabe, Y., McEwen, B.S., Stone, E.A. 

(1994) Locus coeruleus lesions potentiate neurotoxic effects of 
MPTP in dopaminergic neurons of the substantia nigra. Brain Res., 

668, 261-265. 
[36] Bitsios, P., Philpott, A., Langley, R.W., Bradshaw, C.M., Szabadi, 

E. (1999) Comparison of the effects of diazepam on the fear-
potentiated startle reflex and the fear-inhibited light reflex in man. 

J. Psychopharmacol., 13, 226-234. 
[37] Bitsios, P., Prettyman, R., Szabadi, E. (1996) Changes in auto-

nomic function with age: A study of pupillary kinetics in healthy 
young and old people. Age Ageing 25, 432-438. 

[38] Bitsios, P., Szabadi, E., Bradshaw, C.M. (1996) The inhibition of 
the light reflex by the threat of an electric shock: a potential labora-

tory model of human anxiety. J. Psychopharmacol., 10, 279-287. 
[39] Bitsios, P., Szabadi, E., Bradshaw, C.M. (1998) The effects of 

clonidine on the fear-inhibited light reflex. J. Psychopharmacol.,
12, 137-145. 

[40] Bitsios, P., Szabadi, E., Bradshaw, C.M. (1998) Sensitivity of the 
fear- inhibited light reflex to diazepam. Psychopharmacology, 135,

93-98. 



274    Current Neuropharmacology, 2008, Vol. 6, No. 3 Samuels and Szabadi 

[41] Bitsios, P., Szabadi, E., Bradshaw, C.M. (1999) Comparison of the 
effects of venlafaxine, paroxetine and desipramine on the pupillary 

light reflex in man. Psychopharmacology, 143, 286-292. 
[42] Bitsios, P., Szabadi, E., Bradshaw, C.M. (2004) The fear-inhibited 

light reflex: importance of the anticipation of an aversive event. Int. 
J. Psychophysiol., 52, 87-95. 

[43] Bogdanski, D.F., Sulser, F., Brodie, B.B. (1961) Comparative 
action of reserpine, tetrabenazine and chlorpromazine on central 

parasympathetic activity: effects on pupillary size and lacrimation 
in rabbit and on salivation in dog. J. Pharmacol. Exp. Ther., 132,

176-182. 
[44] Bondareff, W., Mountjoy, C.Q., Roth, M., Rossor, M.N., Iverson, 

L.L., Reynolds, G.P., Hauser, D.L. (1987) Neuronal degeneration 
in locus coeruleus and cortical correlates of Alzheimer disease. 

Alzheimer Dis. Assoc. Disord., 1, 256-262. 
[45] Bostock, M.I. (1975) A clinical trial of clonidine (Catapres) in 

private practice. N. Z. Med. J., 81, 6-8. 
[46] Bousquet, P., Greney, H., Bruban, V., Schann, S., Ehrhardt, J.D., 

Monassier, L., Feldman, J. (2003) I(1) imidazoline receptors in-
volved in cardiovascular regulation: where are we and where are 

we going? Ann. N.Y. Acad. Sci., 1009, 228-233. 
[47] Bousquet, P., Guertzenstein, P.G. (1973) Localization of the central 

cardiovascular action of clonidine. Br. J. Pharmacol., 49, 573-577. 
[48] Boutrel, B., Koob, G.F. (2004) What keeps us awake: the neuro-

pharmacology of stimulants and wakefulness-promoting medica-
tions. Sleep, 27, 1181-1194. 

[49] Braak, H., Del Tredici, K., Rüb, U., de Vos, R.A.I., Jansen Steur 
E.N.H., Braak, E. (2003) Staging of brain pathology related to spo-

radic Parkinson’s disease. Neurobiol. Aging, 24, 197-211. 
[50] Breen, L.A., Burde, R.M., Loewy, A.D. (1983) Brainstem connec-

tions to the Edinger-Westphal nucleus of the cat: a retrograde tracer 
study. Brain Res., 261, 303-306. 

[51] Bremner, J.D., Krystal, J.H., Southwick, S.M., Charney, D.S. 
(1996) Noradrenergic mechanisms in stress and anxiety: I. preclini-

cal studies. Synapse, 23, 28-38. 
[52] Brodal, P. (2004) The Central Nervous System. Oxford, Oxford 

University Press. 
[53] Brownstein, M.J., Hoffman, B.J. (1994) Neurotransmitter trans-

porters. Recent Prog. Horm. Res., 49, 27-42. 
[54] Bruce, M., Scott, N., Lader, M., Marks, V. (1986) The psycho-

pharmacological and electrophysiological effects of single doses of 
caffeine in healthy human subjects. Br. J. Clin. Pharmacol., 22, 81-

87. 
[55] Bubar, M.J., Cunningham, K.A. (2007) Distribution of serotonin 5-

HT2C receptors in the ventral tegmental area. Neuroscience, 146,
286-297. 

[56] Bullitt, E. (1990) Expression of c-fos-like protein as a marker for 
neuronal activity following noxious stimulation in the rat. J. Comp. 

Neurol., 296, 517- 530. 
[57] Burke, W.J., Li, S.W., Schmitt, C.A., Xia, P., Chung, H.D., Gilles-

pie, K.N. (1999) Accumulation of 3,4-dihydroxyphenylglycolal-
dehyde, the neurotoxic monoamine oxidase A metabolite of nore-

pinephrine, in locus ceruleus cell bodies in Alzheimer’s disease: 
mechanism of neuron death. Brain Res., 816, 633-637. 

[58] Busch, C., Bohl, J., Ohm, T.G. (1997) Spatial, temporal and nu-
meric analysis of Alzheimer changes in the nucleus coeruleus. Neu-

robiol. Aging, 18, 401-406. 
[59] Caldwell, J.A. Jr. (1996) Effects of operationally effective doses of 

dextroamphetamine on heart rates and blood pressures of army 
aviators. Mil. Med., 161, 673-678. 

[60] Cash, R., Dennis, T., L’Heureux, R., Raisman, R., Javoy-Agid, F., 
Scatton, B. (1987) Parkinson’s disease and dementia: norepineph-

rine and dopamine in locus coeruleus. Neurology, 37, 42-46. 
[61] Cedarbaum, J.M., Aghajanian, G.K. (1978) Afferent projections to 

the rat locus coeruleus as determined by a retrograde tracing tech-
nique. J. Comp. Neurol., 178, 1-16. 

[62] Cespuglio, R., Rousset, C., Debilly, G., Rochat, C., Millan, M.J. 
(2005) Acute administration of the novel serotonin and noradrena-

line reuptake inhibitor, S33005, markedly modifies sleep-wake cy-
cle architecture in the rat. Psychopharmacology (Berl.), 181, 639-

652. 
[63] Chan-Palay, V. (1991) Alterations in the locus coeruleus in demen-

tias of Alzheimer’s and Parkinson’s disease. Prog. Brain Res., 88,
625-630. 

[64] Chan-Palay, V., Asan, E. (1989) Alterations in catecholamine 
neurons of the locus coeruleus in senile dementia of the Alz-

heimer’s type and in Parkinson’s disease with and without demen-
tia and depression. J. Comp. Neurol., 287, 373-392. 

[65] Chan-Palay, V., Asan, E. (1989) Quantitation of catecholamine 
neurons in the locus coeruleus in human brains of normal young 

and older adults and in depression. J. Comp. Neurol., 287, 357-372. 
[66] Chapman, C.R., Oka, S., Bradshaw, D.H., Jacobson, R.C., Donald-

son, G.W. (1999) Phasic pupil dilation response to noxious stimula-
tion in normal volunteers: Relationship to brain evoked potentials 

and pain report. Psychophysiology, 36, 44-52. 
[67] Charney, D.S., Deutch, A. (1996) A functional neuroanatomy of 

anxiety and fear: implications for the pathophysiology and treat-
ment of anxiety disorders. Crit. Rev. Neurobiol., 10, 419-446. 

[68] Charney, D.S., Redmond, D.E. Jr. (1983) Neurobiological mecha-
nisms in human anxiety. Neuropharmacology, 22, 1531-1536. 

[69] Charney, D.S., Woods, S.W., Nagy, L.M., Southwick, S.M., Krys-
tal, J.H., Heninger, G.R. (1990) Noradrenergic function in panic 

disorder. J. Clin. Psychiatry, 51 (Suppl A), 5-11. 
[70] Chen, F.-J., Sara, S.J. (2007) Locus coeruleus activation by foot 

shock or electrical stimulation inhibits amygdala neurons. Neuro-
science, 144, 472- 481. 

[71] Chen, C.L., Yang, Y.R., Chiu, T.H. (1999) Activation of rat locus 
coeruleus neuron GABA(A) receptors by propofol and its potentia-

tion by pentobarbital or alphaxalone. Eur. J. Pharmacol., 386, 201-
210. 

[72] Cheng, S.-Y., Glazkova, D., Serova, L., Sabban, E.L. (2005) Effect 
of prolonged nicotine infusion on response of rat catecholamine 

biosynthetic enzymes to restraint and cold stress. Pharmacol. Bio-
chem. Behav., 82, 559- 568. 

[73] Chiu, T.H., Chen, M.J., Yang, Y.R., Yang, J.J., Tang, F.I. (1995) 
Actions of dexmedetomidine on rat locus coeruleus neurones: in-

tracellular recording in vitro. Eur. J. Pharmacol., 285, 261-268. 
[74] Chou, T.C., Bjorkum, A.A., Gaus, S.E., Lu, J., Scammell, T.E., 

Saper, C.B. (2002) Afferents to the ventrolateral preoptic nucleus. 
J. Neurosci., 22, 977- 990. 

[75] Christie, M.J. (1991) Mechanisms of opioid actions on neurons of 
the locus coeruleus. Prog. Brain Res., 88, 197-205. 

[76] Clifford, J.M., Day, M.D., Orwin, J.M. (1982) Reversal of 
clonidine induced miosis by the alpha 2-adrenoceptor antagonist 

RX 781094. Br. J. Clin. Pharmacol., 14, 99-101. 
[77] Coffman, J.D. (1992) 2-adrenergic and serotonergic receptors and 

forearm venous compliance in normal human subjects. J. Cardio-
vasc. Pharmacol., 19, 996-999. 

[78] Collier, T.J., Greene, J.G., Felten, D.L., Stevens, S.Y., Steece Col-

lier, K. (2004) Reduced cortical noradrenergic neurotransmission is 

associated with increased neophobia and impaired spatial memory 
in aged rats. Neurobiol. Aging, 25, 209-221. 

[79] Collingridge, G.L., James, T.A., MacLeod, N.K. (1979) Neuro-
chemical and electrophysiological evidence for a projection from 

the locus coeruleus to the substantia nigra. J. Physiol, 290, 44P. 
[80] Corpas, I., de Andrés, I. (1991) Morphine effects in brainstem-

transected cats: I. EEG and ‘sleep-wakefulness’ in the isolated 
forebrain. Behav. Brain Res., 44, 11-19. 

[81] Coupland, N.J., Bailey, J.E., Wilson, S.J., Potter, W.Z., Nutt, D.J. 
(1994) A pharmacodynamic study of the alpha 2-adrenergic recep-

tor antagonist ethoxidazoxan in healthy volunteers. Clin. Pharma-
col. Ther., 56, 420-429. 

[82] Craig, A.D. (1992) Spinal and trigeminal lamina I input to the locus 
coeruleus anterogradely labeled with Phaseolus vulgaris leucoag-

glutinin (PHA-L) in the cat and monkey. Brain Res., 584, 325-328. 
[83] Cui, Z.T., Zhang, T.M., Su, Z.H., Yen, W.W. (1988) Morphologi-

cal changes in locus coeruleus of albino rats in relation to aging. 
Acta Anat. (Basel), 131, 207-209. 

[84] Cullen, L.K. (1996) Medetomidine sedation in dogs and cats: a 
review of its pharmacology, antagonism and dose. Br. Vet. J., 152,

519-535. 
[85] Cullinan, W.E., Herman, J.P., Battaglia, D.F., Akil, H., Watson, 

S.J. (1995) Pattern and time course of immediate early gene ex-
pression in rat brain following acute stress. Neuroscience, 64, 477-

505. 
[86] Curet, O., De Montigny, C., Blier, P. (1992) Effect of desipramine 

and amphetamine on noradrenergic neurotransmission: electro-
physiological studies in the rat brain. Eur. J. Pharmacol., 221, 59-

70. 



Functional Neuroanatomy of the Noradrenergic Locus Coeruleus Current Neuropharmacology, 2008, Vol. 6, No. 3    275

[87] Curran, S., Wattis, J. (2000) Critical flicker fusion threshold: a 
potentially useful measure for the early detection of Alzheimer’s 

disease. Hum. Psychopharmacol. Clin. Exp., 15, 103-112. 
[88] Curran, S., Wilson, S., Musa, S., Wattis, J. (2004) Critical flicker 

fusion threshold in patients with Alzheimer’s disease and vascular 
dementia. Int. J. Geriatr. Psychiatry, 19, 575-581. 

[89] Curtis, A.L., Conti, E., Valentino, R.J. (1993) Cocaine effects on 
brain noradrenergic neurons of anesthetized and unanesthetized 

rats. Neuropharmacology, 32, 419-428. 
[90] Damasio, A.R. (1998) Emotion in the perspective of an integrated 

nervous system. Brain Res. Rev., 26, 83-86. 
[91] Danysz, W., Dyr, W., Plaznik, A., Kostowski, W. (1989) The effect 

of microinjections of clonidine into the locus coeruleus on cortical 
EEG in rats. Pol. J. Pharmacol. Pharm., 41, 45-50. 

[92] Davies, M.F., Tsui, J.Y., Flannery, J.A., Li, X., DeLorey, T.M., 
Hoffman, B.B. (2003) Augmentation of the noradrenergic system 

in alpha-2 adrenergic receptor deficient mice: anatomical changes 
associated with enhanced fear memory. Brain Res., 986, 157-165. 

[93] Davis, M. (1998) Are different parts of the extended amygdala 
involved in fear versus anxiety? Biol. Psychiatry, 44, 1239-1247. 

[94] Davis, M., Redmond, D.E., Baraban, J.M. (1979) Noradrenergic 
agonists and antagonists: effects on conditioned fear as measured 

by the potentiated startle paradigm. Psychopharmacology (Berl.),
65, 111-118. 

[95] de Andrés, I., Corpas, I. (1991) Morphine effects in brainstem-
transected cats: II. Behavior and sleep of the decerebrate cat. Be-

hav. Brain Res., 44, 21- 26. 
[96] DeBattista, C., Doghramji, K., Menza, M.A., Rosenthal, M.H., 

Fieve, R.R.; Modafinil in Depression Study Group (2003) Adjunct 
modafinil for the short-term treatment of fatigue and sleepiness in 

patients with major depressive disorder: a preliminary double-
blind, placebo-controlled study. J. Clin. Psychiatry, 4, 1057-1064. 

[97] Del Tredici, K., Rub, U., De Vos, R.A., Bohl, J.R., Braak, H. 
(2002) Where does Parkinson disease pathology begin in the brain? 

J. Neuropathol. Exp. Neurol., 61, 413-426. 
[98] De Maio, D., Johnson, F.N. (2000) The clinical efficacy of reboxet-

ine in the treatment of depression. Rev. Contemp. Pharmacother.,
11, 303-320. 

[99] De Sarro, G.B., Bagetta, G., Ascioti, C., Libri, V., Nistico, G. 
(1988) Microinfusion of clonidine and yohimbine into locus coer-

uleus alters EEG power spectrum: effects of aging and reversal by 
phosphatidylserine. Br. J. Pharmacol., 95, 1278-1286. 

[100] Deurveilher, S., Lo, H., Murphy, J.A., Burns, J., Semba, K. (2006) 
Differential c-Fos immunoreactivity in arousal-promoting cell 

groups following systemic administration of caffeine in rats. J. 
Comp. Neurol., 498, 667-689. 

[101] Dishman, R. K, Renner, K.J, White-Welkley, J.E, Burke,K.A, 
Burmell, B.N. (2000) Treadmill exercise training augment brain 

norepinephrine response to familiar and novel stress. Brain Res. 
Bull., 52, 337-342. 

[102] Dopheide, M.M., Morgan, R.E., Rodvelt, K.R., Schachtman, T.R., 
Miller, D.K. (2007) Modafinil evokes striatal [3H]dopamine release 

and alters the subjective properties of stimulants. Eur. J. Pharma-
col., 568, 112-123. 

[103] Dorr, A.E., Debonnel, G. (2006) Effect of vagus nerve stimulation 
of serotonergic and noradrenergic transmission. J. Pharmacol. Exp. 

Ther., 318, 890-898. 
[104] Dortch-Carnes, J., Russell, K.R. (2006) Morphine-induced reduc-

tion of intraocular pressure and pupil diameter: role of nitric oxide. 
Pharmacology, 77, 17-24 

[105] Downs, J.L., Dunn, M.R., Borok, E., Shanabrough, M., Horvath, 
T.L., Kohama, S.G., Urbanski, H.F. (2007) Orexin neuronal 

changes in the locus coeruleus of the aging rhesus macaque. Neu-
robiol. Aging, 28, 1286-1295. 

[106] Drolet, G., Gauthier, P. (1985) Peripheral and central mechanisms 
of the pressor response elicited by stimulation of the locus coer-

uleus in the rat. Can. J. Physiol. Pharmacol., 63, 599-605. 
[107] Eiden, L.E. (2000) The vesicular neurotransmitter transporters: 

current perspectives and future prospects. FASEB J., 14, 2396-
2400. 

[108] Ekimova, I.V. (2003) Changes in the metabolic activity of neurons 
in the anterior hypothalamic nuclei in rats during hyperthermia, fe-

ver, and hypothermia. Neurosci. Behav. Physiol., 33, 455-460. 

[109] Elam, M., Svensson, T.H., Thoren, P. (1986) Locus coeruleus 
neurons and sympathetic nerves: activation by cutaneous sensory 

afferents. Brain Res., 366, 254-261. 
[110] Elrod, R., Peskind, E.R., DiGiacomo, L., Brodkin, K.I., Veith, 

R.C., Raskind, M.A. (1997) Effects of Alzheimer’s disease severity 
on cerebrospinal fluid norepinephrine concentration. Am. J. Psy-

chiatry, 154, 25-30. 
[111] España, R.A., Berridge, C.W. (2006) Organisation of noradrenergic 

efferents to arousal-related basal forebrain structures. J. Comp. 
Neurol., 496, 668-683. 

[112] Fabris, G., Anselmo-Franci, J.A., Branco, L.G. (1999) Role of 
nitric oxide in hypoxia-induced hyperventilation and hypothermia: 

participation of the locus coeruleus. Braz. J. Med. Biol. Res., 32,
1389-1398. 

[113] Featherby, T., Lawrence, A.J. (2004) Chronic cold stress regulates 
ascending noradrenergic pathways. Neuroscience, 127, 949-960. 

[114] Fernández-Pastor, B., Mateo, Y., Gómez-Urquijo, S., Meana, J.J. 
(2005) Characterization of noradrenaline release in the locus coer-

uleus of freely moving awake rats by in vivo microdialysis. Psy-
chopharmacology (Berl), 180, 570-579. 

[115] Fernández-Pastor, B., Meana, J.J. (2002) In vivo tonic modulation 
of the noradrenaline release in the rat cortex by locus coeruleus 

somatodendritic 2-adrenoceptors. Eur. J. Pharmacol., 442, 225-
229. 

[116] Ferreira, J.J., Galitzky, M., Thalamus, C., Tiberge, M., Montastruc, 
J.L., Sampaio, C., Rascol, O. (2002) Effect of ropinirole on sleep 

onset: a randomised, placebo-controlled study in healthy volun-
teers. Neurology, 58, 460-462. 

[117] Fisone, G., Borgkvist, A., Usiello, A. (2004) Caffeine as a psycho-
motor stimulant: mechanism of action. Cell Mol. Life Sci., 61, 857-

872. 
[118] Fletcher, W.A., Sharpe, J.A. (1986) Saccadic eye movement dys-

function in Alzheimer’s disease. Ann. Neurol., 20, 464-471. 
[119] Fletcher, W.A., Sharpe, J.A. (1988) Smooth pursuit dysfunction in 

Alzheimer’s disease. Neurology, 38, 272-277. 
[120] Fodor, M., Görcs, T. J., Palkovits, M. (1992) Immunohistochemical 

study on the distribution of neuopeptides within the pontine teg-
mentum - particularly the parabrachial nuclei and the locus coer-

uleus of the human brain. Neuroscience, 46, 891-908. 
[121] Foote, S.L., Aston-Jones, G.S. (1995) Pharmacology and Physiol-

ogy of Central Noradrenergic Systems. In: Bloom, F.E., Kupfer, 
D.J. Eds, Psychopharmacology: The Fourth Generation of Pro-

gress. New York, Raven Press. pp. 335-345. 
[122] Foote, S.L., Aston-Jones, G., Bloom, F.E. (1980) Impulse activity 

of locus coeruleus neurons in awake rats and monkeys is a function 
of sensory stimulation and arousal. Proc. Natl. Acad. Sci. USA, 77,

3033-3037. 
[123] Foote, S.L., Berridge, C.W., Adams, L.M., Pineda, J.A. (1991) 

Electrophysiological evidence for the involvement of the locus co-
eruleus in alerting, orienting, and attending. Prog. Brain Res., 88,

521-532. 
[124] Foote, S.L., Bloom, F.E., Aston-Jones, G. (1983) Nucleus locus 

coeruleus: new evidence of anatomical and physiological specific-
ity. Physiol. Rev., 63, 844-914. 

[125] Forstl, H., Levy, R., Burns, A., Luthert, P., Cairns, N. (1994) Dis-
proportionate loss of noradrenergic and cholinergic neurons as 

cause of depression in Alzheimer’s disease- a hypothesis. Pharma-
copsychiatry, 27, 11-15. 

 [126] Fort, P., Khateb, A., Pegna, A., M hlethaler, M., Jones, B.E. 
(1995) Noradrenergic modulation of cholinergic nucleus basalis 

neurons demonstrated by in vitro pharmacological and immunohis-
tochemical evidence in the guinea-pig brain. Eur. J. Neurosci., 7,

1502-1511. 
[127] Fyhrquist, F., Kurppa, K., Huuskonen, M. (1975) Plasma renin 

activity, blood pressure and sodium excretion during treatment with 
clonidine. Acta Med. Scan., 197, 457-461. 

[128] Gallopin, T., Luppi, P.H., Rambert, F.A., Frydman, A., Fort, P. 
(2004) Effect of the wake-promoting agent modafinil on sleep-

promoting neurons from the ventrolateral preoptic nucleus: an in 
vitro pharmacologic study. Sleep, 27, 19-25. 

[129] Gallopin, T., Luppi, P.H., Cauli, B., Urade, Y., Rossier, J., Hayaishi, 
O., Lanbolez, B., Fort, P. (2005) The endogenous somnogen adeno-

sine excites a subset of sleep-promoting neurons via A2A receptors in 
the ventrolateral preoptic nucleus. Neuroscience, 134, 1377-1390. 



276    Current Neuropharmacology, 2008, Vol. 6, No. 3 Samuels and Szabadi 

[130] Garcia, C., Schmitt, P., D’Aleo, P., Bittel, J., Cure, M., Pujol, J.F. 
(1994) Regional specificity of the long-term variation of tyrosine 

hydroxylase protein in rat catecholaminergic cell groups after 
chronic heat exposure. J. Neurochem., 62, 1172-1181. 

[131] Garzon, M., Tejero, S., Beneitez, A.M., de Andres, I. (1995) Opiate 
microinjections in the locus coeruleus area of the cat enhance slow 

wave sleep. Neuropeptides, 29, 229-239. 
[132] German, D.C., Liang, C.-L., Manaye, K.F., Lane, K., Sonsalia, 

P.K. (2000) Pharmacological inactivation of the vesicular mono-
amine transporter can enhance 1-methyl-4-phenyl-1, 2, 3, 6-

tetrahydropyridine-induced neurodegeneration of midbrain dopa-
minergic neurons, but not locus coeruleus noradrenergic neurons. 

Neuroscience, 101, 1063-1069. 
[133] German, D.C., Manaye, K.F., White, C.L. 3rd, Woodward, D.J., 

McIntire, D.D., Smith, W.K., Kalaria, R.N., Mann, D.M. (1992) 
Disease-specific patterns of locus coeruleus cell loss. Ann. Neurol.,

32, 667-676. 
[134] German, D.C., Nelson, O., Liang, F., Liang, C.-L., Games, D. 

(2005) The PDAPP mouse model of Alzheimer’s disease: locus co-
eruleus neuronal shrinkage. J. Comp. Neurol., 492, 469-476. 

[135] Gertler, R., Brown, H.C., Mitchell, D.H., Silvius, E.N. (2001) 
Dexmedetomidine: a novel sedative-analgesic agent. Proc. (Bayl. 

Univ. Med. Cent.), 14, 13-21. 
[136] Gesi, M., Soldani, P., Giorgi, F.S., Santinami, A., Bonaccorsi, I., 

Fornai, F. (2000) The role of locus coeruleus in the development of 
Parkinson’s disease. Neurosci. Biobehav. Rev., 24, 655-668. 

[137] Gherezghiher, T., Koss, M.C. (1979) Clonidine mydriasis in the rat. 
Eur. J. Pharmacol., 57, 263-266. 

[138] Glue, P., Nutt, D. (1988) Clonidine challenge testing of alpha-2- 
adrenoceptor function in man: the effects of mental illness and psy-

chotropic medication. J. Psychopharmacol., 2, 119-137. 
[139] Glue, P., White, E., Wilson, S., Ball, D.M., Nutt, D.J. (1991) 

Pharmacology of saccadic eye movements in man. 2. Effects of the 
alpha 2-adrenoceptor ligands idazoxan and clonidine. Psychophar-

macology (Berl.), 105, 368-373. 
[140] Gobert, A., Rivet, J.-M., Lejeune, F., Newman-Tancredi, A., Ad-

humeau- Auclair, A., Nicolas, J.-P., Cistarelli, L., Melon, C., Mil-
lan, M.J. (2000). Serotonin2C receptors tonically suppress the activ-

ity of mesocortical dopaminergic and adrenergic, but not seroton-
ergic, pathways: A combined dialysis and electrophysiological 

analysis in the rat. Synapse, 36, 205-221. 
[141] Goddard, A.W., Charney, D.S., Germine, M., Woods, S.W., Hen-

inger, G.R., Krystal, J.H., Goodman, W.K., Price, L.H. (1995) Ef-
fects of tryptophan depletion on responses to yohimbine in healthy 

human subjects. Biol. Psychiatry, 8, 74-85. 
[142] González, M.M., Debilly, G., Valatx, J.-L. (1998) Noradrenaline 

neurotoxin DSP-4 effects on sleep and brain temperature in the rat. 
Neurosci. Lett., 248, 93-96. 

[143] Gowing, L.R., Farrell, M., Ali, R.L., White, J.M. (2002) Alpha2-
adrenergic agonists in opioid withdrawal. Addiction, 97, 49-58. 

[144] Graham, S.J., Scaife, J.C., Langley, R.W., Bradshaw, C.M., Sza-
badi, E., Xi, L., Crumley, T., Calder, N., Gottesdiener, K., Wagner, 

J.A. (2005) Effects of lorazepam on fear-potentiated startle re-
sponses in man. J. Psychopharmacol., 19, 249-258. 

[145] Grandoso, L., Pineda, J., Ugedo, L. (2004) Comparative study of 
the effects of desipramine and reboxetine on locus coeruleus neu-

rons in rat brain slices. Neuropharmacology, 46, 815-823. 
[146] Grenhoff, J., Nisell, M., Ferre, S., Aston-Jones, G., Svensson, T.H. 

(1993) Noradrenergic modulation of midbrain dopamine cell firing 
elicited by stimulation of the locus coeruleus in the rat. J. Neural 

Transm. Gen. Sect., 93, 11-25. 
[147] Grillon, C., Cordova, J., Levine, L.R., Morgan, C.A. (2003) Anx-

iolytic effects of a novel group II metabotropic glutamate receptor 
agonist (LY354740) in the fear-potentiated startle paradigm in hu-

mans. Psychopharmacology (Berl.), 168, 446-454. 
[148] Grossman E, Rosenthal T, Peleg E, Holmes C, Goldstein DS 

(1993) Oral yohimbine increases blood pressure and sympathetic 
nervous outflow in hypertensive patients. J. Cardiovasc. Pharma-

col., 22, 22-26. 
[149] Groves, D.A., Brown, V.J. (2005) Vagal nerve stimulation: a re-

view of its applications and potential mechanisms that mediate its 
clinical effects. Neurosci. Biobehav. Rev., 29, 493-500. 

[150] Grudzien, A., Shaw, P., Weintraub, S., Bigio, E., Mash, D.C., Me-
sulam, M.M. (2007) Locus coeruleus neurofibrillary degeneration 

in aging, mild cognitive impairment and early Alzheimer’s disease. 
Neurobiol. Aging, 28, 327-335. 

[151] Grunberger, J., Saletu, B., Linzmayer, L., Barbanoj, M.J. (1993) 
Clinical- pharmacological study with the two isomers (d-, l-) of 

fenfluramine and its comparison with chlorpromazine and d-
amphetamine: psychometric and psychophysiological evaluation. 

Methods Find. Exp. Clin. Pharmacol., 15, 313-328. 
[152] Gurtu, S., Pant, K.K., Sinha, J.N., Bhargava, K.P. (1984) An inves-

tigation into the mechanism of cardiovascular responses elicited by 
electrical stimulation of locus coeruleus and subcoeruleus in the 

cat. Brain Res., 301, 59-64. 
[153] Hajos, M., Engberg, G. (1990) A role of excitatory amino acids in 

the activation of locus coeruleus neurons following cutaneous 
thermal stimuli. Brain Res., 521, 325-328. 

[154] Haeusler, G. (1975) Cardiovascular regulation by central adrener-
gic mechanisms and its alteration by hypotensive drugs. Circ. Res.,

36, 223-232. 
[155] Hamburg, M., Tallman, J. (1981) Chronic morphine administration 

increases the apparent number of alpha2-adrenergic receptors in rat 
brain. Nature, 291, 493-495. 

[156] Hamilton, C. (1996) Chemistry, Mechanism of Action and Experi-
mental Pharmacology of Moxonidine. In: van Zwieten, P.A., Julius, 

S., Hamilton, C.A., Prichard, B.N.C. Eds. The I1-imidazoline Re-
ceptor Agonist Moxonidine: A New Antihypertensive, 2nd Ed. Lon-

don, Royal Society of Medicine. pp. 7-30. 
[157] Hamilton, M.J., Smith, P.R., Peck, A.W. (1983) Effects of 

bupropion, nomifensine and dexamphetamine on performance, sub-
jective feelings, autonomic variables and electroencephalogram in 

healthy volunteers. Br. J. Clin. Pharmacol., 15, 367-374. 
[158] Han, S.K., Chong, W., Li, L.H., Lee, I.S., Murase, K., Ryu, P.D. 

(2002) Noradrenaline excites and inhibits GABAergic transmission 
in parvocellular neurons of rat hypothalamic paraventricular nu-

cleus. J. Neurophysiol., 87, 2287-2296. 
[159] Handley, S.L., Thomas, K.V. (1978) On the mechanism of am-

phetamine- induced behavioural changes in the mouse. II. Effects 
of agents stimulating noradrenergic receptors. Arzneimittelfor-

schung, 28, 834-837. 
[160] Harron, D.W., Hasson, B., Regan, M., McClelland, R.J., King, D.J. 

(1995) Effects of rilmenidine and clonidine on the electroencepha-
logram, saccadic eye movements, and psychomotor function. J. 

Cardiovasc. Pharmacol., 26 (Suppl 2), S48-S54. 
[161] Hauser, R.A., Gauger, L., McDowell Anderson, W., Zesiewicz, 

T.A. (2000) Pramipexole-induced somnolence and episodes of day-
time sleep. Mov. Disord., 15, 658-663. 

[162] Haywood, J.R., Mifflin, S.W., Craig, T., Calderon, A., Hensler, 
J.G., Hinojosa-Laborde, C. (2001) gamma-Aminobutyric acid 

(GABA) - A function and binding in the paraventricular nucleus of 
the hypothalamus in chronic renal-wrap hypertension. Hyperten-

sion, 37, 614-618. 
[163] Head, G.A., Chan, C.K.S., Burke, S.L. (1998) Relationship be-

tween imidazoline and  2-adrenoceptors involved in the sym-
patho-inhibitory actions of centrally acting antihypertensive agents. 

J. Auton. Nerv. Syst., 72, 163-169. 
[164] Head, G.A., Gundlach, A.L, Musgrave, I. F. (1998) Recent ad-

vances in imidazoline receptor research: ligands - localization and 
isolation – signalling - functional and clinical studies. J. Auton. 

Nerv. Syst., 72, 74-79. 
[165] Head, G.A., Mayorov, D.N. (2006) Imidazoline receptors, novel 

agents and therapeutic potential. Cardiovasc. Hematol. Agents 
Med. Chem., 4, 17-32. 

[166] Heal, D.J., Cheetham, S.C., Butler, S.A., Gosden, J., Prow, M.R., 
Buckett, W.R. (1995) Receptor binding and functional evidence 

suggest that post-synaptic alpha 2-adrenoceptors in rat brain are of 
the alpha 2D subtype. Eur. J. Pharmacol., 277, 215-221. 

[167] Heal, D.J., Prow, M.R., Buckett, W.R. (1989) Clonidine produces 
mydriasis in conscious mice by activating central alpha 2-

adrenoceptors. Eur. J. Pharmacol., 170, 11-18. 
[168] Heal, D.J., Prow, M.R., Buckett, W.R. (1989) Clonidine-induced 

hypoactivity and mydriasis in mice are respectively mediated via
pre- and postsynaptic alpha 2-adrenoceptors in the brain. Eur. J. 

Pharmacol., 170, 19-28. 
[169] Heal, D.J., Prow, M.R., Butler, S.A., Buckett, W.R. (1995) Media-

tion of mydriasis in conscious rats by central postsynaptic 2-
adrenoceptors. Pharmacol. Biochem. Behav., 50, 219-224.  



Functional Neuroanatomy of the Noradrenergic Locus Coeruleus Current Neuropharmacology, 2008, Vol. 6, No. 3    277

[170] Heider, M., Schliebs, R., Rossner, S., Bigl, V. (1997) Basal fore-
brain cholinergic immunolesion by 192lgG-saporin: evidence for a 

presynaptic location of subpopulations of alpha 2- and beta-
adrenergic as well as 5- HT2A receptors on cortical cholinergic 

terminals. Neurochem. Res., 22, 957- 966. 
[171] Heishman, S.J., Henningfield, J.E. (1991) Discriminative stimulus 

effects of d-amphetamine, methylphenidate, and diazepam in hu-
mans. Psychopharmacology (Berl.), 103, 436-442. 

[172] Heneka, M.T., Ramanathan, M., Jacobs, A.H., Dumitrescu-
Ozimek, L., Bilkei-Gorzo, A., Debeir, T., Sastre, M., Galldiks, N., 

Zimmer, A., Hoehn, M., Heiss, W.-D., Klockgether, T., Staufen-
biel, M. (2006) Locus coeruleus degeneration promotes Alzheimer 

pathogenesis in amyloid precursor protein 23 transgenic mice. J. 
Neurosci., 26, 1343-1354. 

[173] Herman, J.P., Ostrander, M.M., Mueller, N.K., Figueiredo, H. 
(2005) Limbic system mechanisms of stress regulation: hypo-

thalamo-pituitary- adrenocortical axis. Prog. Neuropsychopharma-
col. Biol. Psychiatry, 29, 1201-1213. 

[174] Hermann, D.M., Luppi, P.-H., Peyron, C., Hinckel, P., Jouvet, M. 
(1997) Afferent projections to the rat nuclei raphe magnus, raphe 

pallidus and reticularis gigantocellularis pars  demonstrated by 
iontophoretic application of choleratoxin (subunit b). J. Chem. 

Neuroanat., 13, 1-21. 
[175] Hey, J.A., Gherezghiher, T., Koss, M.C. (1985) Studies on the 

mechanism of clonidine-induced mydriasis in the rat. Naunyn-
Schmiedebergs Arch. Pharmacol., 328, 258-263. 

[176] Hey, J.A., Ito, T., Koss, M.C. (1989) Mechanism of dexampheta-
mine- induced mydriasis in the anaesthetised rat. Br. J. Pharmacol., 

96, 39-44. 
[177] Hey, J.A., Koss, M.C. (1988) Alpha1- and alpha2-adrenoreceptor 

antagonists produce opposing mydriatic effects by a central action. 
J. Auton. Pharmacol., 8, 229-239. 

[178] Higgins, S.T., Rush, C.R., Bickel, W.K., Hughes, J.R., Lynn, M., 
Capeless, M.A. (1993) Acute behavioural and cardiac effects of co-

caine and alcohol combinations in humans. Psychopharmacology 
(Berl.), 111, 285-294. 

[179] Hill, J.L., Zacny, J.P. (2000) Comparing the subjective, psychomo-
tor, and physiological effects of intravenous hydromorphone and 

morphine in healthy volunteers. Psychopharmacology (Berl.), 152,
31-39. 

[180] Hoefke, V.W., Kobinger, W. (1966) Pharmakologische Wirkungen 
des 2- (2,6-dichlorphenylamino)-2-imidazolin-hydrochlorids, einer 

neuen, antihypertensive substanz. Arneimittelforschung, 16, 1038-
1050. 

[181] Hoogendijk, W.J., Feenstra, M.G., Botterblom, M.H., Gilhuis, J., 
Sommer, I.E., Kamphorst, W., Eikelenbool, P., Swaab, D.F. (1999) 

Increased activity of surviving locus coeruleus neurons in Alz-
heimer’s disease. Ann. Neurol., 45, 82-91. 

[182] Hossmann, V., Maling, T.J., Hamilton, C.A., Reid, J.L., Dollery, 
C.T. (1980) Sedative and cardiovascular effects of clonidine and 

nitrazepam. Clin. Pharmacol. Ther., 28, 167-176. 
[183] Hotson, J.R., Steinke, G.W. (1988) Vertical and horizontal sac-

cades in aging and dementia. Neuro ophthalmology, 8, 267-273. 
[184] Hou, R.H., Freeman, C., Langley, R.W., Szabadi, E., Bradshaw, 

C.M. (2005) Does modafinil activate the locus coeruleus in man? 
Comparison of modafinil and clonidine on arousal and autonomic 

functions in human volunteers. Psychopharmacology (Berl.), 181,
537-549. 

[185] Hou, Y.P., Manns, I.D., Jones, B.E. (2002) Immunostaining of 
cholinergic pontomesencephalic neurons for 1 versus 2 adrener-

gic receptors suggests different sleep-wake state activities and 
roles. Neuroscience, 114, 517-521. 

[186] Hou, R.H., Scaife, J., Freeman, C., Langley, R.W., Szabadi, E., 
Bradshaw, C.M. (2006) Relationship between sedation and pupil-

lary function: comparison of diazepam and diphenhydramine. Br. J. 
Clin. Pharmacol., 61, 752-760. 

[187] Hou, R.H., Langley, R.W., Szabadi, E., Bradshaw, C.M. (2007) 
Comparison of diphenhydramine and modafinil on arousal and 

autonomic functions in healthy volunteers. J. Psychopharmacol.,
21:567-578. 

[188] Hou, R.H., Samuels, E.R., Raisi, M., Langley, R.W., Szabadi, E., 
Bradshaw, C.M. (2006) Why patients with Alzheimer’s disease 

may show increased sensitivity to tropicamide eye drops: Role of 
locus coeruleus. Psychopharmcology, 184: 95-106. 

[189] Hou, R.H., Samuels, E.R., Langley, R.W., Szabadi, E., Bradshaw, 
C.M. (2007) Arousal and the pupil: Why diazepam-induced seda-

tion is not accompanied by miosis. Psychopharmacology (Berl.),
195: 41-59. 

[190] Huang, Z.-L., Urade, Y., Hayaishi, O. (2007) Prostaglandins and 
adenosine in the regulation of sleep and wakefulness. Curr. Opin. 

Pharmacol., 7, 33- 38. 
[191] Hutton, J.T., Nagel, J.A., Loewenson, R.B. (1984) Eye tracking 

dysfunction in Alzheimer-type dementia. Neurology, 34, 99-102. 
[192] Hwang, K.-R., Chan, S.H.H., Chan, J.Y.H. (1998) Noradrenergic 

neurotransmission at PVN in locus coeruleus-induced baroreflex 
suppression in rats. Heart Circ. Physiol., 43, H1284-1292. 

[193] Ida, Y., Tanaka, M., Tsuda, A., Tsujimaru, S., Nagasaki, N. (1985) 
Attenuating effect of diazepam on stress-induced increases in 

noradrenaline turnover in specific brain regions of rats: antagonism 
by Ro 15-1788. Life Sci., 37, 2491-2498. 

[194] Ilbäck, N.-G., Siller, M., Stålhandsje, T. (2007) Evaluation of car-
diovascular effects of caffeine using telemetric monitoring in the 

conscious rat. Food Chem. Toxicol., 45, 834-842. 
[195] Ishida, Y., Hashiguchi, H., Takeda, R., Ishizuka, Y., Mitsuyama, 

Y., Kannan, H., Nishimori, T., Nakahara, D. (2002) Conditioned-
fear stress increases fos expression in monoaminergic and 

GABAergic neurons of the locus coeruleus and dorsal raphe nuclei. 
Synapse, 45, 46-51. 

[196] Ishida, Y., Shirokawa, T., Komatsu, Y., Isobe, K. (2001) Changes 
in cortical noradrenergic axon terminals of locus coeruleus neurons 

in aged F344 rats. Neurosci. Lett., 307, 197-199. 
[197] Ishida, Y., Shirokawa, T., Miyaishi, O., Komatsu, Y., Isobe, K. 

(2000) Age- dependent changes in projections from locus coeruleus 
to hippocampus dentate gyrus and frontal cortex. Eur. J. Neurosci., 

12, 1263-1270. 
[198] Ishida, Y., Shirokawa, T., Miyaishi, O., Komatsu, Y., Isobe, K. 

(2001) Age-dependent changes in noradrenergic innervations of the 
frontal cortex in F344 rats. Neurobiol. Aging, 22, 283-286. 

[199] Ivanenko, A., Tauman, R., Gozal, D. (2003) Modafinil in the 
treatment of excessive daytime sleepiness in children. Sleep Med.,

4, 579-582. 
[200] Ivanov, A., Aston-Jones, G. (1995) Extranuclear dendrites of locus 

coeruleus neurons: activation by glutamate and modulation of ac-
tivity by alpha adrenoceptors. J. Neurophysiol., 74, 2427-2436. 

[201] Iversen, L.L., Rossor, M.N., Reynolds, G.P., Hills, R., Roth, M., 
Mountjoy, C.Q., Foote, S.L., Morrison, J.H., Bloom, F.E. (1983) 

Loss of pigmented dopamine- -hydroxylase positive cells from lo-
cus coeruleus in senile dementia of Alzheimer’s type. Neurosci. 

Lett., 39, 95-100. 
[202] Jaanus, S.D. (1992) Ocular side effects of selected systemic drugs. 

Optom. Clin., 2, 73-96. 
[203] Jansen, A.S., Ter Horst, G.J., Mettenleiter, T.C., Loewy, A.D. 

(1992) CNS cell groups projecting to the submandibular parasym-
pathetic preganglionic neurons in the rat: a retrograde transneuronal 

viral cell body labeling study. Brain Res., 572, 253-260. 
[204] Johnson MA, Blackwell CP, Smith J (1995) Antagonism of the 

effects of clonidine by the 2-adrenoceptor antagonist, fluparoxan. 
Br. J. Clin. Pharmacol., 39, 477-483. 

[205] Jones, B.E. (2004) Activity, modulation and role of basal forebrain 
cholinergic neurons innervating the cerebral cortex. Prog. Brain 

Res., 145, 157-169. 
[206] Jones, B.E. (2005) From waking to sleeping: neuronal and chemi-

cal substrates. Trends Pharmacol. Sci., 26, 578-586. 
[207] Jones, B.E., Moore, R.Y. (1977) Ascending projections of the locus 

coeruleus in the rat. II Autoradiographic study. Brain Res., 127, 25-
53. 

[208] Jones, B.E., Yang, T.-Z. (1985) The efferent projections from the 
reticular formation and the locus coeruleus studies by anterograde and 

retrograde axonal transport in the rat. J. Comp. Neurol., 242, 56-92. 
[209] Jorm, C.M., Stamford, J.A. (1993) Actions of the hypnotic anaes-

thetic, dexmedetomidine, on noradrenaline release and cell firing in 
rat locus coeruleus slices. Br. J. Anaesth., 71, 447-449. 

[210] Jovanovic, T., Norrholm, S.D., Fiallos, A., Myers, K.M., Davis, 
M., Keyes, M., Jovanovic, S., Duncan, E.J. (2006) Contingency 

awareness and fear inhibition in a human fear-potentiated startle 
paradigm. Behav. Neurosci., 120, 995-1004. 

[211] Kaitin, K.I., Bliwise, D.L., Gleason, C., Nino-Murcia, G., Dement, 
W.C., Libet, B. (1986) Sleep disturbance produced by electrical 



278    Current Neuropharmacology, 2008, Vol. 6, No. 3 Samuels and Szabadi 

stimulation of the locus coeruleus in a human subject. Biol. Psy-
chiatry, 21, 710-716. 

[212] Kalsbeek, A., Garidou, M.L., Palm, I.F., Van Der Vliet, J., Simon-
neaux, V., Pevet, P., Buijs, R.M. (2000) Melatonin sees the light: 

blocking GABA- ergic transmission in the paraventricular nucleus in-
duces daytime secretion of melatonin. Eur. J. Neurosci., 12, 3146-

3154. 
[213] Kamimori, G.H., Penetar, D.M., Headley, D.B., Thorne, D.R., 

Otterstetter, R., Belenky, G. (2000) Effect of three caffeine doses 
on plasma catecholamines and alertness during prolonged wakeful-

ness. Eur. J. Clin. Pharmacol., 56, 537-544. 
[214] Kaniucki, M.D., Stefano, F.J., Perec, C.J. (1984) Clonidine inhibits 

salivary secretion by activation of postsynaptic alpha 2-receptors. 
Naunyn- Schmiedebergs Arch. Pharmacol., 326, 313-316. 

[215] Katz, R.J. (1979) Opiate stimulation increases exploration in the 
mouse. Int. J. Neurosci., 9, 213-215. 

[216] Kaur, S., Saxena, R.N., Mallick, B.N. (1997) GABA in locus coer-
uleus regulates spontaneous rapid eye movement sleep by acting on 

GABAA receptors in freely moving rats. Neurosci. Lett., 223, 105-
108. 

[217] Keating, G.L., Rye, D.B. (2003) Where you least expect it: dopa-
mine in the pons and modulation of sleep and REM-sleep. Sleep,

26, 788-789. 
[218] Kiernan, J.A. (2005) Barr’s the human nervous system: an ana-

tomical viewpoint. Maryland, USA, Lippincott Williams & Wil-
kins. 

[219] Kim, M.-A., Lee, H.S., Lee, B.Y., Waterhouse, B.D. (2004) Recip-
rocal connections between subdivisions of the dorsal raphe and the 

nuclear core of the locus coeruleus in the rat. Brain Res., 1026, 56-
67. 

[220] Kimura, F., Nakamura, S. (1985) Locus coeruleus neurons in the 
neonatal rat: electrical activity and responses to sensory stimula-

tion. Brain Res., 355, 301-305. 
[221] King, C., Masserano, J.M., Codd, E., Byrne, W.L. (1981) Effects of 

beta- endorphin and morphine on the sleep-wakefulness behavior 
of cats. Sleep, 4, 259-262. 

[222] King, D.J, Waddington, J.L. (2004) Antipsychotic drugs and treat-
ment of schizophrenia. In: King, D.J. Ed. Seminars in Clinical Psy-

chopharmacology, 2nd Eds. London. Gaskell/Royal College of Psy-
chiatrists, pp. 316-380. 

[223] Kiyohara, T., Miyata, S., Nakamura, T., Shido, O., Nakashima, T., 
Shibata, M. (1995) Differences in Fos expression in the rat brains 

between cold and warm ambient exposures. Brain Res. Bull., 38,
193-201. 

[224] Klemfuss, H., Adler, M.W. (1986) Autonomic mechanisms for 
morphine and amphetamine mydriasis in the rat. J. Pharmacol. 

Exp. Ther., 238, 788- 793. 
[225] Knaggs, R.D., Crighton, I.M., Cobby, T.F., Fletcher, A.J.P., Hobbs, 

G.J. (2004) The pupillary effects of intravenous morphine, codeine, 
and tramadol in volunteers. Anesth. Analg., 99, 108-112. 

[226] Koch, M. (1999) The neurobiology of startle. Prog. Neurobiol., 59,
107-128. 

[227] Kocsis, B., Li, S., Hajos, M. (2007) Behavior-dependent modula-
tion of hippocampal EEG activity by the selective norepinephrine 

reuptake inhibitor reboxetine in rats. Hippocampus, 17, 627-633. 
[228] Koob, G.F., Maldonado, R., Stimus, L. (1992) Neural substrates of 

opiate withdrawal. Trends Neurosci., 15, 186-191. 
[229] Koot, P., Deurenberg, P. (1995) Comparison of changes in energy 

expenditure and body temperatures after caffeine consumption. 
Ann. Nutr. Metab., 39, 135-142. 

[230] Korczyn, A.D., Maor, D. (1982) Central and peripheral compo-
nents of morphine mydriasis in mice. Pharmacol. Biochem. Behav.,

17, 897-899. 
[231] Koss, M.C. (1986) Pupillary dilation as an index of central nervous 

system 2-adrenoceptor activation. J. Pharmacol. Methods, 15, 1-
19. 

[232] Koss, M.C., San, L.C. (1976) Analysis of clonidine-induced my-
driasis. Invest. Opthalmol., 15, 566-570. 

[233] Kumari, V., Cotter, P., Corr, P.J., Gray, J.A., Checkley, S.A. 
(1996) Effect of clonidine on the human acoustic startle reflex. 

Psychopharmacology (Berl.), 123, 353-360. 
[234] Kuskowski, M.A., Malone, S.M., Mortimer, J.A., Dysken, M.W. 

(1989) Smooth pursuit eye movements in dementia of the Alz-
heimer’s type. Alzheimer Dis. Assoc. Disord., 3, 157-171. 

[235] Lamb, K., Bradshaw, C.M., Szabadi, E. (1983) The responsiveness 
of human eccrine sweat glands to choline and carbachol. Eur. J. 

Clin. Pharmacol., 24: 55-62. 
[236] Lane-Ladd, S.B., Pineda, J., Boundy, V.A., Pfeuffer, T., Krupinski, 

J., Aghajanian, G.K., Nestler, E.J. (1997) CREB (cAMP response 
element- binding protein) in the locus coeruleus: biochemical, 

physiological, and behavioural evidence for a role in opiate de-
pendence. J. Neurosci., 17, 7890- 7901. 

[237] Larson, M.D., Talke, P.O. (2001) Effect of dexmedetomidine, an 

2- adrenoceptor agonist, on human pupillary reflexes during gen-

eral anaesthesia. Br. J. Clin. Pharmacol., 51, 27-33. 
[238] Laubie, M., Schmitt, H. (1977) Sites of action of clonidine: cen-

trally mediated increase in vagal tone, centrally mediated hypoten-
sive and sympatho-inhibitory effects. Hypertens. Brain Mech., 47,

337-348. 
[239] Laurent, J.P., Mangold, M., Humbel, U., Haefely, W. (1983) Re-

duction by two benzodiazepines and pentobarbitone of the multi-
unit activity in substantia nigra, hippocampus, nucleus locus coer-

uleus and nucleus raphe dorsalis of encephale isole rats. Neuro-
pharmacology, 22, 501-511. 

[240] Laurie, D.J., Pratt, J.A. (1989) Local cerebral glucose utilization 
following subacute and chronic diazepam pre-treatment: differen-

tial tolerance. Brain Res., 504, 101-111. 
[241] Laverty, R., Taylor, K.M. (1969) Behavioural and biochemical 

effects of 2- (2,6-dichlorophenylamino)-2-imidazoline hydrochlo-
ride (ST 155) on the central nervous system. Br. J. Pharmacol., 35,

253-264. 
[242] LeDoux, J. (1998) Fear and the brain: where have we been, and 

where are we going? Biol. Psychiatry, 44, 1229-1238. 
[243] Lee, C.R., McTavish, D., Sorkin, E.M. (1993) Tramadol. A pre-

liminary review of its pharmacodynamic and pharmacokinetic 
properties, and therapeutic potential in acute and chronic pain 

states. Drugs, 46, 313-340. 
[244] Lees, A.J. (1993) Dopamine agonists in Parkinson's disease : a look 

at apomorphine. Fund. Clin. Pharmacol., 7, 121-128. 
[245] Leppävuori, A., Putkonen, P.T. (1980) Alpha-adrenoceptive influ-

ences on the control of the sleep-waking cycle in the cat. Brain 
Res., 193, 95-115. 

[246] Leslie, F.M., Loughlin, S.E., Sternberg, D.B., McGaugh, J.L., 
Young, L.E., Zornetzer, S.F. (1985) Noradrenergic changes and 

memory loss in aged mice. Brain Res., 359, 292-299. 
[247] Leung, N.K., Bradshaw, C.M., Szabadi, E. (1992) Effect of high 

ambient temperature on the kinetics of the pupillary light reflex in 
healthy volunteers. Br. J. Clin. Pharmacol., 33, 458-460. 

[248] Lewis, D.I., Coote, J.H. (1990) Excitation and inhibition of rat 
sympathetic preganglionic neurones by catecholamines. Brain Res.,

530, 229-234. 
[249] Lewis, K.S., Han, N.H. (1997) Tramadol: a new centrally acting 

analgesic. Am. J. Health Syst. Pharm., 54, 643-652. 
[250] Liddell, B.J., Brown, K.J., Kemp, A.H., Barton, M.J., Das, P., 

Peduto, A., Gordon, E., Williams, L.M. (2005) A direct brainstem-
amygdala-cortical “alarm” system for subliminal signals of fear. 

NeuroImage, 24, 235-243. 
[251] Lightman, S.L., Todd, K., Everitt, B.J. (1984) Ascending noradren-

ergic projections from the brainstem: evidence for a major role in 
the regulation of blood pressure and vasopressin secretion. Exp. 

Brain Res., 55, 145-151. 
[252] Lipski, J.R, Kanjhan, B, Krusezeska, Smith, M. (1995) Barosensi-

tive neurones in rostral ventrolateral medulla of a rat in vivo: mor-
phological properties and relationship to C1 adrenergic neurons. 

Neuroscience, 69, 601-618. 
[253] Liu, X., Tang, X., Sanford, L.D. (2003) Fear-conditioned suppres-

sion of REM sleep: relationship to fos expression patterns in limbic 
and brainstem regions in BALB/cJ mice. Brain Res., 991, 1-17. 

[254] Loewenfeld, I.E. (1993) The Pupil: anatomy, physiology, and clini-
cal applications. Detroit, Mich., Wayne State University Press.  

[255] Loewy, A.D., Araujo, J.C., Kerr, F.W.L. (1973) Pupillodilator 
pathways in the brain stem of the cat: anatomical and electrophysi-

ological identification of a central autonomic pathway. Brain Res.,
60, 65-91. 

[256] Loewy, A. D., Spyer, K. M. (1990). Vagal preganglionic neurons. 
In: Loewy A D, Spyer, K.M. Eds. Central Regulation of Auto-

nomic Functions. Oxford, Oxford University Press. pp. 68-87. 



Functional Neuroanatomy of the Noradrenergic Locus Coeruleus Current Neuropharmacology, 2008, Vol. 6, No. 3    279

[257] Lowenstein, O., Feinbeig, R., Loewenfeld, I.E. (1963) Pupillary 
movements during acute and chronic fatigue. Invest. Opthalmol., 2,

138-157. 
[258] Lu, J., Jhou, T.C., Saper, C.B. (2006) Identification of wake-active 

dopaminergic neurons in the ventral periaqueductal gray matter. J. 
Neurosci., 26, 193-202. 

[259] Lyness, S.A., Zarow, C., Chui, H.C. (2003) Neuron loss in key 
cholinergic and aminergic nuclei in Alzheimer disease: a meta-

analysis. Neurobiol. Aging, 24, 1-23. 
[260] MacDonald, J.R., Hill, J.D., Tarnopolsky, M.A. (2002) Modafinil 

reduces excessive somnolence and enhances mood in patients with 
myotonic dystrophy. Neurology, 59, 1876-1880. 

[261] MacDougall, A.I., Addis, G.J., MacKay, N., Dymock, I.W., Turpie, 
A.G.G., Ballingall, D.L.K., MacLennan, W.J., Whiting, B., MacAr-

thur, J.G. (1970) Treatment of hypertension with clonidine. Br. 
Med. J., 3, 440-442. 

[262] Madras, B.K., Xie, Z., Lin, Z., Jassen, A., Panas, H., Lynch, L., 
Johnson, R., Livni, E., Spencer, T.J., Bonab, A.A., Miller, G.M., 

Fischman, A.J. (2006) Modafinil occupies dopamine and norepi-
nephrine transporters in vivo and modulates the transporters and 

trace amine activity in vitro. J. Pharmacol. Exp. Ther., 319, 561-
569. 

[263] Maeda, T., Kitahama, K., Geffard, M. (1994) Dopaminergic inner-
vation of rat locus coeruleus: a light and electron microscope im-

munohistochemical study. Microsc. Res. Tech., 29, 211-218. 
[264] Makris, A.P., Rush, C.R., Frederich, R.C., Kelly, T.H. (2004) 

Wake- promoting agents with different mechanisms of action: 
comparison of effects of modafinil and amphetamine on food in-

take and cardiovascular activity. Appetite, 42, 185-195. 
[265] Manaye, K.F., McIntire, D.D., Mann, D.M.A., German, D.C. 

(1995) Locus coeruleus cell loss in the aging human brain: a non-
random process. J. Comp. Neurol., 358, 79-87. 

[266] Mann, D.M., Yates, P.O., Hawkes, J. (1983) The pathology of the 
human locus coeruleus. Clin. Neuropathol., 2, 1-7. 

[267] Mann, D.M., Yates, P.O., Marcyniuk, B. (1984) A comparison of 
changes in the nucleus basalis and locus coeruleus in Alzheimer’s 

disease. J. Neurol. Neurosurg. Psychiatry, 47, 201-203. 
[268] Manns, I.D., Lee, M.G., Modirrousta, M., Hou, Y.P., Jones, B.E. 

(2003) Alpha 2 adrenergic receptors on GABA-ergic, putative 
sleep-promoting basal forebrain neurons. Eur. J. Neurosci., 18,

723-727. 
[269] Mantz, J. (1999) Dexmedetomidine. Drugs Today (Barc.), 35, 151-

157. 
[270] Marcyniuk, B., Mann, D.M., Yates, P.O. (1989) The topography of 

nerve cell loss from the locus coeruleus in elderly persons. Neuro-
biol. Aging, 10, 5-9. 

[271] Marcyniuk, B., Mann, D.M., Yates, P.O., Ravindra, C.R. (1988) 
Topography of nerve cell loss from the locus coeruleus in middle 

aged persons with Down’s syndrome. J. Neurol. Sci., 83, 15-24. 
[272] Marien, M.R., Colpaert, F.C., Rosenquist, A.C. (2004) Noradrener-

gic mechanisms in neurodegenerative diseases: a theory. Brain Res. 
Rev., 45, 38-78. 

[273] Marwaha, J., Kehne, J.H., Commissaris, R.L., Lakoski, J., Shaw, 
W., Davis, M. (1983) Spinal clonidine inhibits neural firing in lo-

cus coeruleus. Brain Res., 276, 379-383. 
[274] Masson, J., Sagn, C., Hamon, M., Mestikawy, S.E. (1999) Neuro-

transmitter transporters in the central nervous system. Pharmacol. 
Rev., 51, 439-464. 

[275] Matthews, K.L., Chen, C.P.L.-H., Esiri, M.M., Keene, J., Minger, 
S.L., Francis, P.T. (2002) Noradrenergic changes, aggressive be-

havior, and cognition in patients with dementia. Biol. Psychiatry,
51, 407-416. 

[276] Mavridis, M., Degryse, A.D., Lategan, A.J., Marien, M.R., Col-
paert, F.C. (1991) Effects of locus coeruleus lesions on parkin-

sonian signs, striatal dopamine and substantia nigra cell loss after 
1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine in monkeys: a pos-

sible role for the locus coeruleus in the progression of Parkinson’s 
disease. Neuroscience, 41, 507-523. 

[277] Max, M.B., Schafer, S.C., Culnane, M., Dubner, R., Gracely, R.H. 
(1988) Association of pain relief with drug side effects in posther-

petic neuralgia: a single-dose study of clonidine, codeine, ibupro-
fen, and placebo. Clin. Pharmacol. Ther., 43, 363-371. 

[278] May, C.N., Ham, I.W., Heslop, K.E., Stone, F.A., Mathias, C.J. 
(1988) Intravenous morphine causes hypertension, hyperglycaemia 

and increases sympatho-adrenal outflow in conscious rabbits. Clin. 
Sci. (Lond.), 75, 71-77. 

[279] Mayer, A.F., Schroeder, C., Heusser, K., Tank, J., Diedrich, A., 
Schmieder, R.E., Luft, F.C., Jordan, J. (2006) Influences of norepi-

nephrine transporter function on the distribution of sympathetic ac-
tivity in humans. Hypertension, 48, 120-126. 

[280] McCormick, D.A., Bal, T. (1997) Sleep and arousal: thalamocorti-
cal mechanisms. Ann. Rev. Neurosci., 20, 185-215. 

[281] McCormick,, D.A., Pape, H.C., Williamson, A. (1991) Actions of 
norepinephrine in the cerebral cortex and thalamus: implications 

for function of the central noradrenergic system. Prog. Brain Res.,
88, 293-305. 

[282] McDougle, C.J., Krystal, J.H., Price, L.H., Heninger, G.R., Char-
ney, D.S. (1995) Noradrenergic response to acute ethanol admini-

stration in healthy subjects: comparison with intravenous yo-
himbine. Psychopharmacology (Berl.), 118, 127-135. 

[283] McLellan, T.M., Ducharme, M.B., Canini, F., Moroz, D., Bell, 
D.G., Baranski, J.V., Gil, V., Buguet, A., Radomski, M.W. (2002) 

Effect of modafinil on core temperature during sustained wakeful-
ness and exercise in a warm environment. Aviat. Space Environ. 

Med., 73, 1079-1088. 
[284] Mehta, M.C., Jain, A.C., Billie, M. (2004) Effects of cocaine and 

caffeine alone and in combination on cardiovascular performance. 
An experimental hemodynamic and coronary flow reserve study in 

a canine model. Int. J. Cardiol., 97, 225-232. 
[285] Merrill, C.A., Jonsson, M.A.G., Minthon, L., Ejnell, H., Silander, 

H.C., Blennow, K., Karlsson, M., Nordlund, A., Rolstad, S., Wark-
entin, S., Ben- Menachem, E., Sjögren, M.J.C. (2006) Vagus nerve 

stimulation in patients with Alzheimer’s disease: additional follow-
up results of a pilot study through 1 year. J. Clin. Psychiatry, 67,

1171-1178. 
[286] Miller, C.D., Asbury, A.J., Brown, J.H. (1990) Pupillary effects of 

alfentanil and morphine. Br. J. Anaesth., 65, 415-417. 
 [287] Mitler, M.M., O’Malley, M.B. (2005) Wake-promoting medica-

tions: efficacy and adverse effects. In: Kryger, M.H., Roth, T., De-
ment, W.C. Eds, Principles and Practice of Sleep Medicine, 4th Ed. 

Philadelphia, Elsevier Saunders. pp. 484-498. 
[288] Modirrousta, M., Mainville, L., Jones, B.E. (2004) GABAergic 

neurons with 2-adrenergic receptors in basal forebrain and preop-
tic area express c-Fos during sleep. Neuroscience, 129, 803-810. 

[289] Mohler, H., Fritschy, J.M., Rudolph, U. (2002) A new benzodi-
azepine pharmacology. J. Pharmacol. Exp. Ther., 300, 2-8. 

[290] Molderings,G.J., Bönisch, H., Bruss, M. Göthert,M. (2003) Al-
pha2A-adrenergic versus imidazoline receptor controversy in ril-

menidine's action: alpha2A-antagonism in humans versus alpha2A-
agonism in rabbits. In: Agmatine and Imidazolines: Their Novel 

Receptors and Enzymes. Ann. N.Y. Acad. Sci.,1009, 279-282. 
[291] Möller, H.-J. (2003) Amisulpride: limbic specificity and the 

mechanism of antipsychotic atypicality. Prog. Neuropsychophar-
macol. Biol. Psychiatry, 27, 1101-1111. 

[292] Montastruc, P., Berlan, M., Montastruc, J.L. (1989) Effects of 
yohimbine on submaxillary salivation in dogs. Br. J. Pharmacol., 

98, 101-104. 
[293] Moore, R.Y., Bloom, F.E. (1979) Central catecholamine neuron 

systems: anatomy and physiology of the norepinephrine and epi-
nephrine systems. Ann. Rev. Neurosci., 2, 113-168. 

[294] Morgan, C.A., Southwick, S.M., Grillon, C., Davis, M., Krystal, 
J.H., Charney, D.S. (1993) Yohimbine-facilitated acoustic startle 

reflex in humans. Psychopharmacology (Berl.), 110, 342-346. 
[295] Morilak, D.A., Fornal, C.A., Jacobs, B.L. (1987) Effects of physio-

logical manipulations on locus coeruleus neuronal activity in freely 
moving cats. I. Thermoregulatory challenge. Brain Res., 422, 17-

23. 
[296] Morley, M.J., Bradshaw, C.M., Szabadi, E. (1991) Effects of 

clonidine and yohimbine on the pupillary light reflex and car-
bachol-evoked sweating in healthy volunteers. Br. J. Clin. Pharma-

col., 31, 99-101. 
[297] Murakami, S., Okamura, H., Yanaihara, C., Yanaihara, N., Ibata, 

Y. (1987) Immunocytochemical distribution of met-enkephalin-
Arg6-Gly7-Leu8 in the rat lower brainstem. J. Comp. Neurol., 261,

193-208. 
[298] Murillo-Rodríguez, E., Haro, R., Palomero-Rivero, M., Millán-

Aldaco, D., Drucker-Colín, R. (2007) Modafinil excites extracellu-
lar levels of dopamine in the nucleus accumbens and increases 

wakefulness in rats. Behav. Brain Res., 176, 353-357. 



280    Current Neuropharmacology, 2008, Vol. 6, No. 3 Samuels and Szabadi 

[299] Muzi, M., Goff, D.R., Kampine, J.P., Roerig, D.L., Ebert, T.J. 
(1992) Clonidine reduces sympathetic activity but maintains 

baroreflex responses in normotensive humans. Anesthesiology, 77,
864-871. 

[300] Myers, E.A., Banihashemi, L., Rinaman, L. (2005) The anxiogenic 
drug yohimbine activates central viscerosensory circuits in rats. J. 

Comp. Neurol., 492, 426-441. 
[301] Myers, K., Goulet, M., Rusche, J., Boismenu, R., Davis, M. (2004) 

Inhibition of fear potentiated startle in rats following peripheral 
administration of secretin. Psychopharmacology (Berl.), 172, 94-

99. 
[302] Nahas, Z., Marangell, L.B., Husain, M.M., Rush, A.J., Sackeim, 

H.A., Lisanby, S.H., Martinez, J.M., George, M.S. (2005) Two-
year outcome of vagus nerve stimulation (VNS) for treatment of 

major depressive episodes. J. Clin. Psychiatry, 66, 1097-1104. 
[303] Nakai, T., Hayashi, M., Ichihara, K., Wakabayashi, H., Hoshi, K. 

(2002) Noradrenaline release in rat locus coeruleus is regulated by 
both opioid and 2-adenoceptors. Pharmacol. Res., 45, 407-412. 

[304] Nelson, L.E., Guo, T.Z., Lu, J., Saper, C.B., Franks, N.P., Maze, 
M. (2002). The sedative component of anesthesia is mediated by 

GABAA receptors in an endogenous sleep pathway. Nat. Neurosci.,
5, 979-984. 

[305] Nelson, L.E., Lu, J., Guo, T.Z., Saper, C.B., Franks, N.P., Maze, 
M. (2003). The 2-adrenoceptor agonist dexmedetomidine con-

verges on an endogenous sleep-promoting pathway to exert its 
sedative effects. Anesthesiology, 98, 428-436. 

[306] Neophytou, S.I., Aspley, S., Butler, S., Beckett, S., Marsden, C.A. 
(2001) Effects of lesioning noradrenergic neurones in the locus co-

eruleus onconditioned and unconditioned aversive behaviour in the 
rat. Prog. Neuro Psychopharmacol. Biol. Psychiatry, 25, 1307-

1321. 
[307] Newton, T.F., De La Garza, R., Kalechstein, A.D., Nestor, L. 

(2005) Cocaine and methamphetamine produce different patterns 
of subjective and cardiovascular effects. Pharmacol. Biochem. Be-

hav., 82, 90-97. 
[308] Niederhoffer, N., Hein, L., Starke, K. (2004) Modulation of the 

baroreceptor reflex by 2A-adrenoceptors: a study in 2A knockout 
mice. Br. J. Pharmacol., 141, 851-859. 

[309] Nieuwenhuys, R. (1985) Chemoarchitecture of the brain. Berlin, 
Springer- Verlag. 

[310] Nieves, A.V., Lang, A.E. (2002) Treatment of excessive daytime 
sleepiness in patients with Parkinson’s disease with modafinil. 

Clin. Neuropharmacol., 25, 111-114. 
[311] Nishino, S., Mao, J., Sampathkumaran, R., Shelton, J., Mignot, E. 

(1998) Increased dopaminergic transmission mediates the wake-
promoting effects of CNS stimulants. Sleep Res. Online, 1, 49-61. 

[312] Nistico, G., De Sarro, G.B. (1990) Altered responsiveness of cen-
tral alpha 2- adrenoceptors in aging. Ann. Inst. Super. Sanita., 26,

69-74. 
[313] Nistico, G., De Sarro, G.B., Bagetta, G., Mollace, V. (1992) Al-

tered sensitivity of alpha 2-adrenoceptors in the brain during aging 
in rats. Ann. N. Y. Acad. Sci., 673, 206-213. 

[314] Nitz, D., Siegel, J.M. (1997) GABA release in the locus coeruleus 
as a function of sleep/wake state. Neuroscience, 78, 795-801. 

[315] Noordzij, M., Uiterwaal, C.S., Arends, L.R., Kok, F.J., Grobbee, 
D.E., Geleijnse, J.M. (2005) Blood pressure response to chronic in-

take of coffee and caffeine: a meta-analysis of randomized con-
trolled trials. J. Hypertens., 23, 921-928. 

[316] Nygren, L.-G., Olson, L. (1977) A new major projection from locus 
coeruleus: the main source of noradrenergic nerve terminals in the 

ventral and dorsal columns of the spinal cord. Brain Res., 132, 85-
93. 

[317] Ornstein, K., Milon, H., McRae-Degueurce, A., Alvarez, C., 
Berger, B., Würzner, H.P. (1987) Biochemical and radioauto-

graphic evidence for dopaminergic afferents of the locus coeruleus 
originating in the ventral tegmental area. J. Neural Transm., 70,

183-191. 
[318] Orrell, R.W., King, A.W., Hilton, D.A., Campbell, M.J., Lane, R.J., 

de Belleroche, J.S. (1995) Familial amyotrophic lateral sclerosis 
with a point mutation of SOD-1: intrafamilial heterogeneity of dis-

ease duration associated with neurofibrillary tangles. J. Neurol. 
Neurosurg. Psychiatry, 59, 266-270. 

[319] Osaka, T., Matsumura, H. (1994) Noradrenergic inputs to sleep-
related neurons in the preoptic area from the locus coeruleus and 

the ventrolateral medulla in the rat. Neurosci. Res., 19, 39-50. 

 [320] Osterhout, C.A., Sterling, C.R., Chikaraishi, D.M., Tank, A.W. 
(2005) Induction of tyrosine hydroxylase in the locus coeruleus of 

transgenic mice in response to stress or nicotine treatment: lack of 
activation of tyrosine hydroxylase promoter activity. J. Neuro-

chem., 94, 731-741. 
[321] Pacak, K., Armando, I., Fukuhara, K., Kvetnansky R., Palkovits, M., 

Kopin, I. J., Goldstein, D.S. (1992) Noradrenergic activation in the 
paraventricular nucleus during acute and chronic immobilization stress 

in rats: an in vivo microdialysis study. Brain Res., 589, 91-96. 
[322] Pacak, K., Palkovits, M., Kvetnansky, R., Fukuhara, K., Armando, 

I., Kopin, I. J., Goldstein, D.S. (1993) Effects of single or repeated 
immobolization on release of norepinephrine and its metabolites in 

the central nucleus of the amygdala in conscious rats. Neuroendo-
crinology, 57, 626-633. 

[323] Pacak, K., Palkovits, M., Kopin, I. J., Goldstein, D.S. (1995) Stress 
induced norepinephrine release in the hypothalamic paraventricular 

nucleus and pituitary-adrenocortical and sympathoadrenal activity: 
in vivo micodialysis studies. Front. Neuroendocrinol., 16, 89-150. 

[324] Pacák, K., Palkovits, M. (2001) Stressor specificity of central neu-
roendocrine responses: implications for stress-related disorders. 

Endocr. Rev., 22, 502-548. 
[325] Pack, A.I., Black, J.E., Schwartz, J.R.L., Matheson, J.K. (2001) 

Modafinil as adjunct therapy for daytime sleepiness in obstructive 
sleep apnea. Am. J.Respir. Crit. Care Med., 164, 1675-1681. 

[326] Palkovits, M., Baffi, J.S., Dvori, S. (1995) Neuronal organisation of 
stress response. Pain-induced c-fos expression in brain stem 

catecholaminergic cell groups. Ann. N. Y. Acad. Sci., 771, 313-326. 
[327] Palkovits, M., Baffi, J.S., Pacák, K. (1997) Stress-induced Fos-like 

immunoreactivity in the pons and the medulla oblongata of rats. 
Stress, 1, 155-168. 

[328] Palkovits, M., Baffi, J.S., Pacák, K. (1999) The role of ascending 
neuronal pathways in stress-induced release of noradrenaline in the 

hypothalamic paraventricular nucleus of rats. J Neuroendocrinol,
11, 529-539. 

[329] Parini, A., Moudanos, C.G., Pizzinat, N., Lanier, S.M. (1996) The 
elusive family of imidazoline binding sites. Trends Pharmacol. 

Sci., 17, 13-16. 
[330] Parvizi, J., Damasio, A.R. (2003) Neurochemical correlates of 

brainstem coma. Brain, 126, 1524-1536. 
[331] Patat, A., Rosenzweig, P., Miget, N., Allain, H., Gandon, J.-M. 

(1999) Effects of 50mg amisulpride on EEG, psychomotor and 
cognitive functions in healthy sleep-deprived subjects. Fundam. 

Clin. Pharmacol., 13, 582-594. 
[332] Patt, S., Gerhard, L. (1993) A golgi study of human locus coeruleus 

in normal brains and in Parkinson’s disease. Neuropathol. Appl. 
Neurobiol., 19, 519-523. 

[333] Paus, S., Brecht, H.M., Koster, J., Seeger, G., Klockgether, T., 
Wullner, U. (2003) Sleep attacks, daytime sleepiness, and dopa-

mine agonists in Parkinson’s disease. Mov. Disord., 18, 659-667. 
[334] Peacock, J.E., Henderson, P.D., Nimmo, W.S. (1988) Changes in 

pupil diameter after oral administration of codeine. Br. J. Anaesth.,
61, 598-600. 

[335] Penetar, D., McCann, U., Thorne, D., Kamimori, G., Galinski, C., 
Sing, H., Thomas, M., Belenky, G. (1993) Caffeine reversal of 

sleep deprivation effects on alertness and mood. Psychopharma-
cology (Berl.), 112, 359-365. 

[336] Penttila, J., Helminen, A., Anttila, M., Hinkka, S., Scheinin, H. 
(2004) Cardiovascular and parasympathetic effects of dexmede-

tomidine in healthy subjects. Can. J. Physiol. Pharmacol., 82, 359-
362. 

[337] Perrault, G.H., Depoortere, R., Morel, E., Sanger, D.J., Scatton, B. 
(1997) Psychopharmacological profile of amisulpride: an antipsy-

chotic drug with presynaptic D2/D3 dopamine receptor antagonist 
activity and limbic selectivity. J. Pharmacol. Exp. Ther., 280, 73-

82. 
[338] Pérez, M.F., Nasif, F.J., Marchesini, G.R., Maglio, L.E., Ramirez, 

O.A. (2001) Hippocampus and locus coeruleus activity on rats 
chronically treated with diazepam. Pharmacol. Biochem. Behav.,

69, 431-438. 
[339] Perl, D.P., Olanow, C.W., Calne, D. (1998) Alzheimer’s disease 

and Parkinson’s disease: distinct entities or extremes of a spectrum 
of neurodegeneration. Ann. Neurol., 44 (Suppl 1), S19-S31. 

[340] Pezzone, M.A., Lee, W.-S., Hoffman, G.E., Pezzone, K.M., Rabin, 
B.S. (1993) Activation of brainstem catecholaminergic neurons by 



Functional Neuroanatomy of the Noradrenergic Locus Coeruleus Current Neuropharmacology, 2008, Vol. 6, No. 3    281

conditioned and unconditioned aversive stimuli as revealed by c-
Fos immunoreactivity. Brain Res., 68, 310-318. 

[341] Phillips, M.A., Szabadi, E., Bradshaw, C.M. (2000). Comparison of 
the effects of clonidine and yohimbine on pupillary diameter at dif-

ferent illumination levels. Br. J. Clin. Pharmacol., 50, 65-68. 
[342] Phillips, M.A., Szabadi, E., Bradshaw, C.M. (2000) Comparison of 

the effects of clonidine and yohimbine on spontaneous pupillary 
fluctuations in healthy human volunteers. Psychopharmacology 

(Berl.), 150, 85-89. 
[343] Pickworth, W.B., Bunker, E., Welch, P., Cone, E. (1991) Intrave-

nous buprenorphine reduces pupil size and the light reflex in hu-
mans. Life Sci., 49, 129-138. 

[344] Pickworth, W.B., Lee, H., Fudala, P.J. (1990) Buprenorphine-induced 
pupillary effects in human volunteers. Life Sci., 47, 1269-1277. 

[345] Pickworth, W.B., Welch, P., Henningfield, J.E., Cone, E.J. (1989) 
Opiate- induced pupillary effects in humans. Methods Find. Exp. 

Clin. Pharmacol., 11, 759-763. 
[346] Pigeau, R., Naitoh, P., Buguet, A., McCann, C., Baranski, J., Tay-

lor, M., Thompson, M., Mack, I.I. (1995) Modafinil, d-
amphetamine and placebo during 64 hours of sustained mental 

work. I. Effects on mood, fatigue, cognitive performance and body 
temperature. J. Sleep Res., 4, 212-228. 

[347] Pirker, S., Schwarzer, C., Wieselthaler, A., Sieghart, W., Sperk, G. 
(2000) GABA(A) receptors: immunocytochemical distribution of 

13 subunits in the adult rat brain. Neuroscience, 101, 815-850. 
[348] Pitts, D.K., Marwah, J. (1986) Effects of cocaine on the electrical 

activity of single noradrenergic neurons from locus coeruleus. Life 
Sci., 38, 1229-1234. 

[349] Pitts, D.K., Marwah, J. (1987) Reciprocal pre- and postsynaptic 
actions of cocaine at a central noradrenergic synapse. Exp. Neurol., 

98, 518-528. 
[350] Pitts, D.K., Marwah, J. (1987) Electrophysiological actions of 

cocaine on noradrenergic neurons in rat locus coeruleus. J. Phar-
macol. Exp. Ther., 240, 345-351. 

[351] Pitts, D.K., Marwah, J. (1988) Cocaine-elicited mydriasis in the rat: 
pharmacological comparison to clonidine, D-amphetamine and de-

sipramine. J. Pharmacol. Exp. Ther., 247, 815-823. 
[352] Pozzessere, G., Valle, E., Rossi, P., Petrucci, B., Ambrosini, A., 

D’Alessio, M., Pierelli, F., Giacomini, P. (1996) Pupillometric 
evaluation and analysis of light reflex in healthy subjects as a tool 

to study autonomic nervous system changes with aging. Aging (Mi-
lano), 8, 55-60. 

[353] Prettyman, R., Bitsios, P., Szabadi, E. (1997) Altered pupillary size 
and darkness and light reflexes in Alzheimer’s disease. J. Neurol. 

Neurosurg. Psychiatry, 62, 665-668. 
[354] Rajkowski, J., Kubiak, P., Aston-Jones, G. (1993) Correlations 

between locus coeruleus (LC) neural activity, pupil diameter and 
behaviour in monkey support a role of LC in attention. Abstr. Soc. 

Neurosci., 19, 974. 
[355] Rajkowski, J., Kubiak, P., Aston-Jones, G. (1994) Locus coeruleus 

activity in monkey: phasic and tonic changes are associated with al-
tered vigilance. Brain Res. Bull., 35, 607-616. 

[356] Rajput, A.H., Uitti, R.J., Sudhakar, S., Rozdilsky, B. (1989) Park-
insonism and neurofibrillary tangle pathology in pigmented nuclei. 

Ann. Neurol., 25, 602-606. 
[357] Ramesh, V., Kumar, V.M. (1998) The role of alpha-2 receptors in 

the medial preoptic area in the regulation of sleep-wakefulness and 
body temperature. Neuroscience, 85, 807-817. 

[358] Rammohan, K.W., Rosenberg, J.H., Lynn, D.J., Blumenfeld, A.M., 
Pollak, C.P., Nagaraja, H.N. (2002) Efficacy and safety of mo-

dafinil (Provigil) for the treatment of fatigue in multiple sclerosis: a 
two centre phase 2 study. J. Neurol. Neurosurg. Psychiatry, 72,

179-183. 
[359] Rasmussen, K., Aghajanian, G.K. (1990) Serotonin excitation of facial 

motoneurons: receptor subtype characterization. Synapse, 5, 324-332. 
[360] Rasmussen, K., Jacobs, B.L. (1986) Single unit activity of locus 

coeruleus neurons in the freely moving cat. II. Conditioning and 
pharmacologic studies. Brain Res., 23, 335-344. 

[361] Rasmussen, K., Morilak, D.A., Jacobs, B.L. (1986) Single unit 
activity of locus coeruleus neurons in the freely moving cat. I. Dur-

ing naturalistic behaviors and in response to simple and complex 
stimuli. Brain Res., 371, 324-334. 

[362] Ravanelli, M.I.B., Almeida, M.C., Branco, L.G.S. (2007) Role of 
the locus coeruleus carbon monoxide pathway in endotoxin fever in 

rats. Pflugers Arch. Eur. J. Physiol., 453, 471-476. 

[363] Redmond, D.E. (1987) Studies of the nucleus locus coeruleus in 
monkeys and hypotheses for neuropsychopharmacology. In: Melt-

zer, H.Y. Ed, Psychopharmacology: The Third Generation of Pro-
gress. New York, Raven Press. pp. 467-974. 

[364] Redmond, D.E., Huang, Y.H. (1979) New evidence for a locus 
coeruleus- norepinephrine connection with anxiety. Life Sci., 25,

2149-2162. 
[365] Redmond, D.E., Huang, Y.H., Snyder, D.R., Maas, J.W. (1976) 

Behavioral effects of stimulation of the locus coeruleus in the 
stumptail monkey (macaca arctoides). Brain Res., 116, 502-507. 

[366] Reid, J.L., Lewis, P.J., Meyers, M.G. (1975) Role of central dopa-
minergic mechanisms in piribedil and clonidine induced hypother-

mia in the rat. Neuropharmacology, 14, 215-220. 
[367] Remy, P., Doder, M., Lees, A., Turjanski, N., Brooks, D. (2005) De-

pression in Parkinson’s disease: loss of dopamine and noradrenaline 
innervation in the limbic system. Brain, 128, 1314-1322. 

[368] Riddle, E.L., Fleckenstein, A.E., Hanson, G.R (2005) Role of 
monoamine transporters in mediating psychostimulant effects. 

AAPS J, 7, E847-E851. 
[369] Risbrough, V.B., Brodkin, J.D., Geyer, M.A. (2003) GABA-A and 

5-HT1A receptor agonists block expression of fear-potentiated star-
tle in mice. Neuropsychopharmacology, 28, 654-663. 

[370] Rosenthal, M.H., Bryant, S.L. (2004) Benefits of adjunct modafinil 
in an open-label, pilot study in patients with schizophrenia. Clin. 

Neuropharmacol., 27, 38-43. 
[371] Roth, J.D., Rowland, N.E. (1998) Efficacy of administration of 

dexfenfluramine and pentermine, alone and in combination, on in-
gestive behavior and body weight in rats. Psychopharmacology 

(Berl.), 137, 99-106. 
[372] Rüb, U., Schultz, C., Del Tredici, K., Braak, H. (2001) Early in-

volvement of the tegmentopontine reticular nucleus during the evo-
lution of Alzheimer’s disease-related cytoskeletal pathology. Brain 

Res., 908, 107-112. 
[373] Rye, D.B., Jankovic, J. (2002) Emerging views of dopamine in 

modulating sleep/wake state from an unlikely source: PD. Neurol-
ogy, 58, 341-346. 

[374] Sajedianfard, J., Khatami, S., Semnanian, S., Naghdi, N., Jorjani, 
M. (2005) in vivo measurement of noradrenaline in the locus coer-

uleus of rats during the formalin test: a microdialysis study. Eur. J. 
Pharm., 512, 153-156. 

[375] Sakai, K., Salvert, D., Touret, M., Jouvet, M. (1977) Afferent con-
nections of the nucleus raphe dorsalis in the cat as visualized by the 

horseradish peroxidase technique. Brain Res., 137, 11-35. 
[376] Salchner, P., Sartori, S.B., Sinner, C., Wigger, A., Frank, E., Land-

graf, R., Singewald, N. (2006) Airjet and FG-7142-induced fos ex-
pression differs in rats selectively bred for high and low anxiety-

related behavior. Neuropharmacology, 50, 1048-1058. 
[377] Samuels, E.R., Hou, R.H., Langley, R.W., Szabadi, E., Bradshaw, 

C.M. (2006) Comparison of pramipexole and modafinil on arousal, 
autonomic, and endocrine functions in healthy volunteers. J. Psy-

chopharmacol., 20, 756-770. 
[378] Samuels, E.R., Hou, R.H., Langley, R.W., Szabadi, E., Bradshaw, 

C.M. (2006) Comparison of amisulpride and pramipexole on alert-
ness, autonomic and endocrine functions in healthy volunteers. 

Psychopharmacology (Berl.), 187, 498-510. 
[379] Samuels, E.R., Hou, R.H., Langley, R.W., Szabadi, E., Bradshaw, 

C.M. (2007) Modulation of the acoustic startle response by the 
level of arousal: comparison of clonidine and modafinil in healthy 

volunteers. Neuropsychopharmacology, 32:2405-2421. 
[380] Samuels, E.R., Hou, R.H., Langley, R.W., Szabadi, E., Bradshaw, 

C.M. (2007) Comparison of pramipexole with and without dom-
peridone co- administration on alertness, autonomic, and endocrine 

functions in healthy volunteers. Br. J. Clin. Pharmacol., 64, 591-
602. 

 [381] Sands, S.A., Morilak, D.A. (1999) Expression of 1D adrenergic 
receptor messenger RNA in oxytocin- and corticotropin-releasing 

hormone- synthesizing neurons in the rat paraventricular nucleus. 
Neuroscience, 91, 639-649. 

[382] Sanghera, M.K., German, D.C. (1983) The effects of benzodi-
azepine and non-benzodiazepine anxiolytics on locus coeruleus 

unit activity. J. Neural. Transm., 57, 267-279. 
[383] Saper, C.B., Scammell, T.E. (2004) Modafinil: A drug in search of 

a mechanism. Sleep, 27, 11-12. 
[384] Saper, C.B., Scammell, T.E., Lu, J. (2005) Hypothalamic regula-

tion of sleep and circadian rhythms. Nature, 437, 1257-1263. 



282    Current Neuropharmacology, 2008, Vol. 6, No. 3 Samuels and Szabadi 

[385] Sasa, M., Yoshimura, N. (1994) Locus coeruleus noradrenergic 
neurons as a micturition center. Microsc. Res. Tech., 29, 226-230. 

[386] Sasaki, M., Shibata, E., Tohyama, K., Takahashi, J., Otsuka, K., 
Tsuchiya, K., Takahashi, S., Ehara, S., Terayama, Y., Sakai, A. 

(2006) Neuromelanin magnetic resonance imaging of locus coer-
uleus and substantia nigra in Parkinson’s disease. Neuroreport, 17,

1215-1218. 
[387] Scammell, T., Gerashchenko, D., Urade, Y., Onoe, H., Saper, C., 

Hayaishi, O. (1998) Activation of ventrolateral preoptic neurons by 
the somnogen prostaglandin D2. Proc. Natl. Acad. Sci. USA, 95,

7754-7759. 
[388] Scheinin, M., Kallio, A., Koulu, M., Viikari, J., Scheinin, H. (1987) 

Sedative and cardiovascular effects of medetomidine, a novel se-
lective alpha 2- adrenoceptor agonist, in healthy volunteers. Br. J. 

Clin. Pharmacol., 24, 443-451. 
[389] Scherder, E.J., Luijpen, M.W., Dijk, K.R. (2003) Activation of the 

dorsal raphe nucleus and locus coeruleus by transcutaneous electri-
cal nerve stimulation in Alzheimer’s disease: a reconsideration of 

stimulation- parameters derived from animal studies. Chin. J. 
Physiol., 46, 143-150. 

[390] Schmid, R., Ceurremans, P., Luedtke, H., Wilhelm, B.J., Wilhelm, 
H.M. (2004) Effect of age on the pupillomotor field. J. Neu-

roopthalmol., 24, 228- 234. 
[391] Scinto, L.F., Daffner, K.R., Dressler, D., Ransil, B., Rentz, D., 

Weintraub, S., Mesulam, M., Potter, H. (1994) A potential non-
invasive neurobilogical test for Alzheimer’s disease. Science, 266,

1051-1054. 
[392] Scinto, L.F., Wu, C.K., Firla, K.M., Daffner, K.R., Saroff, D., 

Geula, C. (1999) Focal pathology in the Edinger-Westphal nucleus 
explains pupillary hypersensitivy in Alzheimer’s disease. Acta 

Neuropathol (Berl), 97, 557- 564. 
[393] Senard, J.M., Arias, A., Berlan, M., Tran, M.A., Rascol, A., Mon-

tastruc, J.L. (1991) Pharmacological evidence of alpha1- and al-
pha2-adrenergic supersensitivity in orthostatic hypotension due to 

spinal cord injury: a case report. Eur. J. Clin. Pharmacol., 41, 593-
596. 

[394] Senba, E., Matsunaga, K., Tohyama, M., Noguchi, K. (1993) 
Stress-induced c-fos expression in the rat brain: activation mecha-

nism of sympathetic pathway. Brain Res. Bull., 31, 329-341. 
[395] Seutin, V., Franchimont, N., Massotte, L., Dresse, A. (1990) Com-

parison of the effect of morphine on locus coeruleus noradrenergic 
and ventral tegmental area dopaminergic neurons in vitro. Life Sci., 

46, 1879-1885. 
[396] Sharpe, L.G., Pickworth, W.B. (1985) Opposite pupillary size 

effects in the cat and dog after microinjections of morphine, nor-
morphine and clonidine in the Edinger-Westphal nucleus. Brain 

Res. Bull., 15, 329-333. 
[397] Shelly, M.P., Park, G.R. (1984) Morphine toxicity with dilated 

pupils. Br. Med. J., 289, 1071-1072. 
[398] Shibasaki, T., Tsumori, C., Hotta, M., Imaki, T., Yamanda, K., 

Demura, H. (1995) The response pattern of noradrenaline release to 
repeated stress in the hypothalamic paraventricular nucleus differs 

according to the form of stress in rats. Brain Res., 670, 169-172. 
[399] Shibata, E., Sasaki, M., Tohyama, K., Kanbara, Y., Otsuka, K., 

Ehara, S., Sakai, A. (2006) Age-related changes in locus coeruleus 
on neuromelanin magnetic resonance imaging at 3 tesla. Magn. 

Reson. Med. Sci., 5, 197-200. 
[400] Shibata, E., Sasaki, M., Tohyama, K., Otsuka, K., Sakai, A. (2007) 

Reduced signal of locus coeruleus in depression in quantitative 
neuromelanin magnetic resonance imaging. Neuro Report, 18, 415-

418. 
[401] Shih, C.-D., Chan, S.H.H., Chan, J.Y.H. (1995) Participation of 

hypothalamic paraventricular nucleus in locus coeruleus-induced 
baroreflex suppression in rats. Am. J. Physiol., 269, H46-H52. 

[402] Shimizu-Sasamata, M., Yamamoto, M., Harada, M. (1993) Cere-
bral activating properties of indeloxazine HCl and its optical iso-

mers. Pharmacol. Biochem. Behav., 45, 335-341. 
[403] Shirokawa, T., Ishida, Y., Isobe, K. (2000) Age-dependent changes 

in axonal branching of single locus coeruleus neurons projecting to 
two different terminal fields. J. Neurophysiol., 84, 1120-1122. 

[404] Shirokawa, T., Ishida, Y., Isobe, K. (2000) Changes in electro-
physiological properties of axon terminals of locus coeruleus neu-

ron with age in F344 rat. Neurosci. Lett., 289, 69-71. 

[405] Shirokawa, T., Ishida, Y., Isobe, K. (2003) Age-related changes in 
the release and uptake activity of presynaptic axon terminals of rat 

locus coeruleus neurons. Neurosci. Lett., 344, 212-214. 
[406] Shore, P.A. (1962) Release of serotonin and catecholamines by 

drugs. Pharmacol. Rev., 14, 531-550. 
[407] Shur, E., Checkley, S. (1982) Pupil studies in depressed patients: 

an investigation of the mechanism of action of desipramine. Br. J. 
Psychiatry, 140, 181-184. 

[408] Silva, R.C., Cruz, A.P., Avanzi, V., Landeira-Fernandez, J., Bran-
dao, M.L. (2002) Distinct contributions of median raphe nucleus to 

contextual fear conditioning and fear-potentiated startle. Neural 
Plast., 9, 233-247. 

[409] Simson, P.E., Weiss, J.M. (1987) Alpha-2 receptor blockade in-
creases responsiveness of locus coeruleus neurons to excitatory 

stimulation. J. Neurosci., 7, 1732-1740. 
[410] Simson, P.E., Weiss, J.M. (1989) Peripheral, but not local or in-

tracerebroventricular, administration of benzodiazepines attenuates 
evoked activity of locus coeruleus neurons. Brain Res., 490, 236-

242. 
[411] Singewald, N., Kaehler, S.T., Philippu, A. (1999) Noradrenaline re-

lease in the locus coeruleus of conscious rats is triggered by drugs, 
stress and blood pressure changes. Neuroreport, 10, 1583-1587. 

[412] Singewald, N., Philippu, A. (1998) Release of neurotransmitters in 
the locus coeruleus. Prog. Neurobiol., 56. 237-267. 

[413] Singewald, N., Sharp, T. (2000) Neuroanatomical targets of anxio-
genic drugs in the hindbrain as revealed by Fos immunochemistry. 

Neuroscience, 98, 759-770. 
[414] Sjögren, M.J., Hellström, P.T., Jonsson, M.A., Runnerstam, M., 

Silander, H.C., Ben-Menachem, E. (2002) Cognition-enhancing ef-
fect of vagus nerve stimulation in patients with Alzheimer’s dis-

ease: a pilot study. J. Clin. Psychiatry, 63, 972-980. 
[415] Smiley, J.F., Subramanian, M., Mesulam, M.M. (1999) Mono-

aminergic- cholinergic interactions in the primate basal forebrain. 
Neuroscience, 93, 817-829. 

[416] Smith, S.A. (1992) Pupil function: tests and disorders. In: Bannis-
ter, R., Mathias, C.J. Eds. Autonomic Failure, Third Ed. Oxford 

University Press, Oxford, pp. 393-412. 
[417] Smith, A., Brice, C., Nash, J., Rich, N., Nutt, D.J. (2003) Caffeine 

and central noradrenaline: effects on mood, cognitive performance, 
eye movements and cardiovascular function. J. Psychopharmacol.,

17, 283-292. 
[418] Smith, M.S., Schambra, U.B., Wilson, K.H., Page, S.O., Hulette, 

C., Light, A.R., Schwinn, D.A. (1995) Alpha 2-adrenergic recep-
tors in human spinal cord: specific localized expression of mRNA 

encoding alpha 2-adrenergic receptor subtypes at four distinct lev-
els. Brain Res. Mol. Brain Res., 34, 109- 117. 

[419] Spencer, S.E., Sawyer, W.B., Wada, H., Platt, K.B., Loewy, A.D. 
(1990) CNS projections to the pterygopalatine parasympathetic 

preganglionic neurons in the rat: a retrograde transneuronal viral 
cell body labeling study. Brain Res., 534, 149-169. 

 [420] Spencer, S.J., Buller, K.M., Day, T.A. (2005) Medial prefrontal 
cortex control of the paraventricular hypothalamic nucleus re-

sponse to psychological stress: possible role of the bed nucleus of 
the stria terminalis. J. Comp. Neurol., 481, 363-376. 

[421] Spiegel, R., DeVos, J.E. (1980) Central effects of guanfacine and 
clonidine during wakefulness and sleep in healthy subjects. Br. J. 

Clin. Pharmacol., 10 (Suppl. 1), 165S-168S. 
[422] Spyer, K.M. (1992) Central nervous control of the cardiovascular 

system. In: Bannister, R., Mathias, C.J. Eds. Autonomic Failure, 3rd

Edition. Oxford, Oxford University Press, pp. 54-77. 

[423] Sridharan, G.V., Tallis, R.C., Leatherbarrow, B., Forman, W.M. 
(1995) A community survey of ptosis of the eyelid and pupil size of 

elderly people. Age Aging, 24, 21-24. 
[424] Srinivasan, J., Schmidt, W.J. (2003) Potentiation of parkinsonian 

symptoms by depletion of locus coeruleus noradrenaline in 6-
hydroxydopamine- induced partial degeneration of substantia nigra 

in rats. Eur. J. Neurosci., 17, 2586-2592. 
[425] Srinivasan, J., Schmidt, W.J. (2004) Behavioral and neurochemical 

effects of noradrenergic depletions with N-(2-chloroethyl)-N-ethyl-
2- bromobenzylamine in 6-hydroxydopamine-induced rat model of 

Parkinson’s disease. Behav. Brain Res., 151, 191-199. 
[426] Steinhauer, S.R., Condray, R., Kasparek, A. (2000) Cognitive 

modulation of midbrain function: task-induced reduction of the pu-
pillary light reflex. Int. J. Psychophysiol., 39, 21-30. 



Functional Neuroanatomy of the Noradrenergic Locus Coeruleus Current Neuropharmacology, 2008, Vol. 6, No. 3    283

[427] Steinhauer, S.R., Siegle, G.J., Condray, R., Pless, M. (2004) Sym-
pathetic and parasympathetic innervation of pupillary dilation dur-

ing sustained processing. Int. J. Psychophysiol., 52, 77-86. 
[428] Sterpenich, V., D’Argembeau, A., Desseilles, M., Balteau, E., 

Albouy, G., Vandewalle, G., Degueldre, C., Luxen, A., Collette, F., 
Maquet, P. (2006) The locus ceruleus is involved in the successful 

retrieval of emotional memories in humans. J. Neurosci., 26, 7416-
7423. 

[429] Stock, G., Rupprecht, U., Stumpf, H., Schlor, K.H. (1981) Cardio-
vascular changes during arousal elicited by stimulation of 

amygdala, hypothalamus and locus coeruleus. J. Auton. Nerv. Syst.,
3, 503-510. 

[430] Stone, E.A., Quartermain, D., Lin, Y., Lehmann, M.L. (2007) Cen-
tral 1- adrenergic system in behavioural activity and depression. 

Biochem. Pharmacol., 73, 1063-1075. 
[431] Straub, R.H., Thies, U., Kerp, L. (1992) The pupillary light reflex. 

1. Age- dependent and age-independent parameters in normal sub-
jects. Ophthalmologica, 204, 134-142. 

[432] Strange, P.G. (2001) Antipsychotic drugs: importance of dopamine 
receptors for mechanisms of therapeutic actions and side effects. 

Pharmacol. Rev., 53, 119-134. 
[433] Strong, R., Huang, J.S., Huang, S.S., Chung, H.D., Hale, C., Burke, 

W.J. (1991) Degeneration of the cholinergic innervation of the lo-
cus coeruleus in Alzheimer’s disease. Brain Res., 542, 23-28. 

[434] Sturrock, R.R., Rao, K.A. (1985) A quantitative histological study 
of neuronal loss from the locus coeruleus if ageing mice. Neuropa-

thol. Appl. Neurobiol., 11, 55-60. 
[435] Sugiyama, H., Hainfellner, J.A., Schmid-Siegel, B., Budka, H. 

(1993) Neuroaxonal dystrophy combined with diffuse Lewy body 
disease in a young adult. Clin. Neuropathol., 12, 147-152. 

[436] Sulser, F., Bass, A.D. (1968) Pharmacodynamic and biochemical 
considerations on the mode of action of reserpine-like drugs. In: 

Efron, D.H., Cole, J.O., Levine, J., Wittenborn, J.R. Eds. Psycho-
pharmacology: A Review of Progress 1957-1967. USA, A Public 

Health Service Publication Number 1836. pp. 1093-1100. 
[437] Sun, M.K. (1992) Medullospinal vasomotor neurones mediate 

hypotension from stimulation of prefrontal cortex. J. Auton. Nerv. 
Syst., 38, 209-217. 

[438] Svensson, T.H., Almgren, O., Dahlof, C., Elam, M., Engberg, G., 
Hallberg, H., Thoren, P. (1980) Alpha- and beta-adrenoreceptor-

mediated control of brain noradrenaline neurons and antihyperten-
sive therapy. Clin. Sci. (Lond.), 59 (Suppl 6), 479s-481s. 

[439] Svensson, T.H., Bunney, B.S., Aghajanian, G.K. (1975) Inhibition 
of both noradrenergic and serotonergic neurons in brain by the al-

pha-adrenergic agonist clonidine. Brain Res., 92, 291-306. 
[440] Swanson, L.W., Sawchenko, P.E. (1980) Paraventricular nucleus: a 

site for the integration of neuroendocrine and autonomic mecha-
nisms. Neuroendocrinology, 31, 410-417. 

[441] Swanson, L.W., Sawchenko, P.E. (1983) Hypothalamic integration: 
organization of the paraventricular and supraoptic nuclei. Ann. Rev. 

Neurosci., 6, 269-324. 
[442] Szabadi, E. (2006) Drugs for sleep disorders: mechanisms and 

therapeutic prospects. Br. J. Clin. Pharmacol. 61, 761-766. 
[443] Szabadi, E., Bradshaw, C.M. (1988) Biological markers for anxiety 

state. In: Granville-Grosman, K. Ed, Recent Advances in Clinical 
Psychiatry (Volume 6). Edinburgh, Churchill Livingstone. pp. 69-

99. 
[444] Szabadi, E., Bradshaw, C.M. (1996) Autonomic pharmacology of 

2- adrenoceptors. J. Psychopharmacol., 10 (suppl 3), 6-18. 
[445] Szabadi, E., Bradshaw, C.M. (2000) Mechanisms of action of re-

boxetine. Rev. Contemp. Pharmacother., 11, 267-282. 
[446] Szabadi, E., Tavernor, S. (1999) Hypo- and hypersalivation in-

duced by psychoactive drugs. Incidence, mechanisms and therapeu-
tic implications. CNS Drugs, 11, 449-466. 

[447] Szabo, B., Fröhlich, R., Illes, P. (1996) No evidence for functional 
imidazoline receptors on locus coeruleus neurons. Naunyn-

Schmiedebergs Arch. Pharmacol., 353, 557-563. 
[448] Szot, P., White, S.S., Greenup, J.L., Leverenz, J.B., Peskind, E.R., 

Raskind, M.A. (2006) Compensatory changes in the noradrenergic 
nervous system in the locus coeruleus and hippocampus of post-

mortem subjects with Alzheimer’s disease and dementia with Lewy 
bodies. J. Neurosci., 26, 467- 478. 

[449] Takimoto, G.S., Stittsworth, J.D., Bianchi, B.R., Stephens, J.K. 
(1983) Differential sensitivity of hypothalamic norepinephrine and 

striatal dopamine to catecholamine-depleting agents. J. Pharmacol. 
Exp. Ther., 226, 432-439. 

[450] Tallarida, R.J., Kramer, M.S., Roy, J.W., Kester, R.A., Murray, R.B., 
Adler, M.W. (1977) Miosis and fluctuations in the rabbit pupil: effects 

of morphine and naloxone. J. Pharmacol. Exp. Ther., 201, 587-592. 
[451] Talley, E.M., Rosin, D.L., Lee, A., Guyenet, P.G., Lynch, K.R. 

(1996) Distribution of alpha 2A-adrenergic receptor-like im-
munoreactivity in the rat central nervous system. J. Comp. Neurol., 

372, 111-134. 
[452] Tan, E.K. (2003) Piribedil-induced sleep attacks in Parkinson’s 

disease. Fundam. Clin. Pharmacol., 17, 117-119. 
[453] Tanaka, M., Yoshida, M., Emoto, H., Ishii, H. (2000) Noradrena-

line systems in the hypothalamus, amygdala and locus coeruleus 
are involved in the provocation of anxiety: basic studies. Eur. J. 

Pharmacol., 405, 397-406. 
[454] Tassorelli, C., Micieli, G., Osipova, V., Rossi, F., Nappi, G. (1995) 

Pupillary and cardiovascular responses to the cold-pressor test. J. 
Auton. Nerv. Syst., 55, 45-49. 

[455] Tavernor, S.J., Abduljawad, K.A., Langley, R.W., Bradshaw, C.M., 
Szabadi, E. (2000) Effects of pentagastrin and the cold pressor test 

on the acoustic startle response and pupillary function in man. J. 
Psychopharmacol., 14, 387-394. 

[456] Tejani-Butt, S.M., Ordway, G.A. (1992) Effect of age on 
[3H]nisoxetine binding to uptake sites for norepinephrine in the lo-

cus coeruleus of humans. Brain Res., 583, 312-315. 
[457] Ter Horst, G.J., Toes, G.J., Van Willigen, J.D. (1991) Locus coer-

uleus projections to the dorsal motor vagus nucleus in the rat. Neu-
roscience, 45, 153-160. 

[458] Thase, M.E., Tran, P.V., Wiltse, C., Pangallo, B.A., Mallinckrodt, 
C., Detke, M.J. (2005) Cardiovascular profile of duloxetine, a dual 

reuptake inhibitor of serotonin and norepinephrine. J. Clin. Psy-
chopharmacol., 25, 132-140. 

[459] Theofilopoulos, N., McDade, G., Szabadi, E., Bradshaw, C.M. 
(1995) Effects of reboxetine and desipramine on the kinetics of the 

pupillary light reflex. Br. J. Clin. Pharmacol., 39, 251-255. 
[460] Tomlinson, B.E., Irving, D., Blessed, G. (1981) Cell loss in the 

locus coeruleus in senile dementia of Alzheimer’s type. J. Neurol. 
Sci., 49, 419- 428. 

[461] Tsoucaris-Kupfer, D., Schmitt, H. (1972) Hypothermic effect of 
alpha- sympathomimetic agents and their antagonism by adrenergic 

and cholinergic blocking drugs. Neuropharmacology, 11, 625-635. 
[462] Tsuruoka, M., Matsutani, K., Maeda, M., Inoue, T. (2003) Coer-

uleotrigeminal inhibition of nociceptive processing in the rat tri-
geminal subnucleus caudalis. Brain Res., 993, 146-153. 

[463] Ulivelli, M., Rossi, S., Lombardi, C., Bartalini, S., Rocchi, R., 
Giannini, F., Passero, S., Battistini, N., Lugaresi, E. (2002) 

Polysomnographic characterization of pergolide-induced sleep at-
tacks in idiopathic PD. Neurology, 58, 462-465. 

[464] Umemura, T., Ueda, K., Nishioka, K., Hidaka, T., Takemoto, H., 
Nakamura, S., Jitsuiki, D., Soga, J., Goto, C., Chayama, K., Yoshi-

zumi, M., Higashi, Y. (2006) Effects of acute administration of caf-
feine on vascular function. Am. J. Cardiol., 98, 1538-1541. 

[465] Unnerstall, J.R., Kopajtic, T.A., Kuhar, M.J. (1984) Distribution of 
alpha 2 agonist binding sites in the rat and human central nervous 

system: analysis of some functional, anatomic correlates of the 
pharmacologic effects of clonidine and related adrenergic agents. 

Brain Res., 319, 69-101. 
[466] Urade, Y., Eguchi, N., Qu, W.M., Sakata, M., Huang, Z.L., Chen, 

J.F., Schwarzschild, M.A., Fink, J.S., Hayaishi, O. (2003) Sleep 
regulation in adenosine A(2A) receptor-deficient mice. Neurology,

61 (11 Suppl 6), S94- S96. 
[467] Uschakov, A., Gong, H., McGinty, D., Szymusiak, R. (2006) 

Sleep-active neurons in the preoptic area project to the hypotha-
lamic paraventricular nucleus and perifornical lateral hypothala-

mus. Eur. J. Neurosci., 23, 3284- 3296. 
[468] U.S. Modafinil in Narcolepsy Multicentre Study Group. (1998) 

Randomized trial of modafinil for the treatment of pathological 
somnolence in narcolepsy. Ann. Neurol., 43, 88-97. 

[469] U.S. Modafinil in Narcolepsy Multicentre Study Group. (2000) 
Randomized trial of modafinil as a treatment for the excessive day-

time somnolence of narcolepsy. Neurology, 54, 1166-1175.
[470] Van Bockstaele, E.J., Pieribone, V.A., Aston-Jones, G. (1989) 

Diverse afferents converge on the nucleus paragigantocellularis in 
the rat ventrolateral medulla: retrograde and anterograde tracing 

studies. J. Comp. Neurol., 290, 561-584. 



284    Current Neuropharmacology, 2008, Vol. 6, No. 3 Samuels and Szabadi 

[471] VanderMaelen, C.P., Aghajanian, G.K. (1980) Intracellular studies 
showing modulation of facial motoneurone excitability by sero-

tonin. Nature, 287, 346-347. 
[472] van Dongen, P.A. (1981) The central noradrenergic transmission 

and the locus coeruleus: a review of the data, and their implications 
for neurotransmission and neuromodulation. Prog. Neurobiol., 16,

117-143. 
[473] van Steveninck, A.L., van Berckel, B.N., Schoemaker, R.C., Bre-

imer, D.D., van Gerven, J.M., Cohen, A.F. (1999) The sensitivity 
of pharmacodynamic tests for the central nervous system effects of 

drugs on the effects of sleep deprivation. J. Psychopharmacol., 13,
10-17. 

[474] Vayssettes-Courchay, C., Bouysset, F., Cordi, A., Laubie, M., 
Verbeuren, T.J. (2002) Effects of medullary 2-adrenoceptor block-

ade in the rat. Eur. J. Pharmacol., 453, 287-297. 
[475] Verleye, M., Bernet, F. (1983) Behavioural effects of lesions of the 

central noradrenergic bundle in the rat. Pharmacol. Biochem. Be-
hav., 19, 407-414. 

 [476] Verster, J.C., Veldhuijzen, D.S., Volkerts, E.R. (2006) Effects of an 
opioid (oxycodone/paracetamol) and an NSAID (bromfenac) on 

driving ability, memory functioning, psychomotor performance, 
pupil size, and mood. Clin. J. Pain, 22, 499-504. 

[477] Vijayashankar, N., Brody, H. (1979) A quantitative study of the pig-
mented neurons in the nuclei locus coeruleus and subcoeruleus in man 

as related to aging. J. Neuropathol. Exp. Neurol., 38, 490-497. 
[478] Voisin, D.L., Guy, N., Chalus, M., Dallel, R. (2005) Nociceptive 

stimulation activates locus coeruleus neurones projecting to the 
somatosensory thalamus in the rat. J. Physiol., 566, 929-937. 

[479] Walker, D.J., Zacny, J.P. (1998) Subjective, psychomotor, and 
analgesic effects of oral codeine and morphine in healthy volun-

teers. Psychopharmacology (Berl.), 140, 191-201 
[480] Walsh, J.K., Randazzo, A.C., Stone, K.L., Schweitzer, P.K. (2004) 

Modafinil improves alertness, vigilance, and executive function 
during simulated night shifts. Sleep, 27, 434-439. 

[481] Walter, H., Lesch, O.M., Stohr, H., Grunberger, J., Gutierrez-Lobos, 
K. (2005) Reaction to pain stimulus before and during hypnosis meas-

ured by pupillary reaction. Am. J. Clin. Hypn., 48, 145-152. 
[482] Ward, D.G., Gunn, C.G. (1976) Locus coeruleus complex: elicita-

tion of a pressor response and a brain stem region necessary for its 
occurrence. Brain Res., 107, 401-406. 

[483] Warren, J.B., Dollery, C.T., Fuller, R.W., Williams, V.C., Gertz, 
B.J. (1989) Assessment of MK-912, an 2-adrenoceptor antagonist, 

with use of intravenous clonidine. Clin. Pharmacol. Ther., 46, 103-
109. 

[484] Watson, C.J., Lydic, R., Baghdoyan, H.A. (2007) Sleep and GABA 
levels in the oral part of rat pontine reticular formation are de-

creased by local and systemic administration of morphine. Neuro-
science, 144, 375-386. 

[485] Webster, L., Andrews, M., Stoddard, G. (2003) Modafinil treat-
ment of opioid-induced sedation. Pain Med., 4, 135-140. 

[486] Weerasuriya, K., Shaw, E., Turner, P. (1984) Preliminary clinical 
pharmacological studies of S3341, a new hypotensive agent, and 

comparison with clonidine in normal males. Eur. J. Clin. Pharma-
col., 27, 281-286. 

[487] Werling, L.L., Brown, S.R., Cox, B.M. (1987) Opioid receptor 
regulation of the release of norepinephrine in brain. Neuropharma-

cology, 26, 987-996. 
[488] Wesensten, N.J., Killgore, W.D.S., Balkin, T.J. (2005) Perform-

ance and alertness of caffeine, dextroamphetamine, and modafinil 
during sleep deprivation. J. Sleep Res., 14, 255-266. 

[489] Westlund, K.N., Bowker, R.M., Ziegler, M.G., Coulter, J.D. (1983) 
Noradrenergic projections to the spinal cord of the rat. Brain Res.,

263, 15- 31. 
[490] Westlund, K.N., Coulter, J.D. (1980) Descending projections of the 

locus coeruleus and subcoeruleus/medial parabrachial nuclei in 
monkey: axonal transport studies and dopamine-beta-hydroxylase 

immunocytochemistry. Brain Res., 2, 235-264. 
[491] White, S.R., Fung, S.J., Barnes, C.D. (1991) Norepinephrine ef-

fects on spinal motoneurons. Prog. Brain Res., 88, 343-350. 
[492] White, S.M., Lambe, C.J.T. (2003) The pathophysiology of cocaine 

abuse. J. Clin. Forensic Med., 10, 27-39. 
[493] Wilhelm, B., Giedke, H., L dtke, H., Bittner, E., Hofmann, A., Wil-

helm, H. (2001) Daytime variations in central nervous system activa-
tion measured by a pupillographic sleepiness test. J. Sleep Res., 10, 1-

7. 

[494] Williams, J.T., Henderson, G., North, R.A. (1985) Characterization 
of alpha 2-adrenoceptors which increase potassium conductance in 

rat locus coeruleus neurones. Neuroscience, 14, 95-101. 
[495] Williams, J., Lacey, M. (1988) Actions of cocaine on central 

monoamine neurons: intracellular recordings in vitro. NIDA Res. 
Monogr., 90, 234-242. 

[496] Williams, J.T., North, R.A. (1985) catecholamine inhibition of 
calcium action potentials in rat locus coeruleus neurones. Neuro-

science, 14, 103-109. 
[497] Wilson, M.C., Bedford, J.A., Buelke, J., Kibbe, A.H. (1976) Acute 

pharmacological activity of intravenous cocaine in the rhesus mon-
key. Psychopharmacol. Commun., 2, 251-261. 

[498] Winslow, J.T., Parr, L.A., Davis, M. (2002) Acoustic startle, pre-
pulse inhibition, and fear-potentiated startle measured in rhesus 

monkeys. Biol. Psychiatry, 51, 859-866. 
[499] Wisor, J.P., Nishino, S., Sora, I., Uhl, G.H., Mignot, E., Edgar, 

D.M. (2001) Dopaminergic role in stimulant-induced wakefulness. 
J. Neurosci., 21, 1787- 1794 

[500] Wright, K.P. Jr., Badia, P., Myers, B.L., Plenzler, S.C., Hakel, M. 
(1997) Caffeine and light effects on nighttime melatonin and tem-

perature levels in sleep-deprived humans. Brain Res., 747, 78-84. 
[501] Yaïci, E.-D., Rampin, O., Calas, A., Jestin, A., McKenna, K.E., Le-

clerc, P., Benoit, G., Giuliano, F. (2002) 2a and 2c adrenoceptors on 
spinal neurons controlling penile erection. Neuroscience, 114, 945-

960. 
[502] Yaksh, T.L., Provencher, J.C., Rathbun, M.L., Myers, R.R., Pow-

ell, H., Richter, P., Kohn, F.R. (2000) Safety assessment of encap-
sulated morphine delivered epidurally in a sustained-release mul-

tivesicular liposome preparation in dogs. Drug Deliv., 7, 27-36. 
[503] Yang, Y., Beyreuther, K., Schmitt, H.P. (1999) Spatial analysis of 

the neuronal density of aminergic brainstem nuclei in primary neu-
rodegenerative and vascular dementia: a comparative immunocyto-

chemical and quantitative study using a graph method. Anal. Cell 
Pathol., 19, 125-138. 

[504] Yang, L.L., Niemann, C.U., Larson, M.D. (2003) Mechanism of 
pupillary reflex dilation in awake volunteers and in organ donors. 

Anesthesiology, 99, 1281-1286. 
[505] Yeomans, J.S., Frankland, P.W. (1996). The acoustic startle reflex: 

neurons and connections. Brain Res. Brain Res. Rev., 21, 301-314. 
[506] Yoshimura, N., Sasa, M., Yoshida, O., Takaori, S. (1990) Alpha 1- 

adrenergic receptor-mediated excitation from the locus coeruleus of 
the sacral parasympathetic preganglionic neuron. Life Sci., 47, 789-

797. 
[507] Yoss, R.E., Moyer, N.J., Hollenhurst, R.W. (1970) Pupil size and 

spontaneous pupillary waves associated with alertness, drowsiness, 
and sleep. Neurology, 20, 545-554. 

[508] Yuan, L., Brewer, C., Pfaff, D. (2002) Immediate-early Fos protein 
levels in brainstem neurons of male and female gonadectomized 

mice subjected to cold exposure. Stress, 5, 285-294. 
[509] Zaborszky, L., Cullinan, W.E., Luine, V.N. (1993) Catecholamine- 

cholinergic interaction in the basal forebrain. Prog. Brain Res., 98,
31-49. 

[510] Zaccara, G., Gangemi, P.F., Muscas, G.C., Paganini, M., Pallanti, 
A., Parigi, A., Messori, A., Arnetoli, G. (1992) Smooth-pursuit eye 

movements: alterations in Alzheimer’s disease. J. Neurol. Sci., 112,
81-89. 

[511] Zacny, E. (1982) The role of alpha-2-adrenoceptors in the hypo-
thermic effect of clonidine in the rat. J. Pharm. Pharmacol., 34,

455-456. 
[512] Zacny, J.P. (2005) Profiling the subjective, psychomotor, and 

physiological effects of tramadol in recreational drug users. Drug 
Alcohol Depend., 80, 273-278. 

[513] Zamir, N., Palkovits, M., and Brownstein, M.J. (1984) The distri-
bution of immunoreactive -neo-endorphin in the central nervous 

system of the rat. J. Neurosci., 4, 1240-1247. 
[514] Zarow, C., Lyness, S.A., Mortimer, J.A., Chui, H.C. (2003) Neu-

ronal loss is greater in the locus coeruleus than nucleus basalis and 
substantia nigra in Alzheimer and Parkinson diseases. Arch. Neu-

rol., 60, 337-341. 
[515] Zecca, L., Tampellini, D., Gerlach, M., Riederer, P., Fariello, R.G., 

Sulzer, D. (2001) Substantia nigra neuromelanin: structure, synthe-
sis, and molecular behaviour. J. Clin. Pathol. Mol. Pathol., 54,

414-418. 



Functional Neuroanatomy of the Noradrenergic Locus Coeruleus Current Neuropharmacology, 2008, Vol. 6, No. 3    285

[516] Zheng, G., Dwoskin, L.P., Crooks, P.A. (2006) Vesicular mono-
amine transporter 2: role as a novel target for drug development. 

AAPS J., 8, E682- E692. 
[517] Zhou, J. (2004) Norepinephrine transporter inhibitors and their 

therapeutic potential. Drugs Future, 29, 1235-1244. 
[518] Zhu, H., Zhou, W. (2001) Morphine induces synchronous oscilla-

tory discharges in the rat locus coeruleus. J. Neurosci., 21, RC179 
(1-5).  

[519] Zucca, F.A., Bellei, C., Giannelli, S., Terreni, M.R., Gallorini, M., 
Rizzio, E., Pezzoli, G., Albertini, A., Zecca, L. (2006) Neuromela-

nin and iron in human locus coeruleus and substantia nigra during 

aging: consequences for neuronal vulnerability. J. Neural Transm., 
113, 757-767. 

[520] Zweig, R.M., Cardillo, J.E., Cohen, M., Giere, S., Hedreen, J.C. 
(1993) The locus coeruleus and dementia in Parkinson’s disease. 

Neurology, 43, 986- 991. 
[521] Zweig, R.M., Ross, C.A., Hedreen, J.C., Peyser, C., Cardillo, J.E., 

Folstein, S.E., Price, D.L. (1992) Locus coeruleus involvement in 
Huntington’s disease. Arch. Neurol., 49, 152-156. 

[522] Zwyghuizen-Doorenbos, A., Roehrs, T.A., Lipschutz, L., Timms, 
V., Roth, T. (1990) Effects of caffeine on alertness. Psychophar-

macology (Berl.), 100, 36-39. 

Received: December 11, 2007 Revised: February 25, 2008 Accepted: June 06, 2008 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


