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Abstract: The locus coeruleus (LC) is the major noradrenergic nucleus of the brain, giving rise to fibres innervating ex-
tensive areas throughout the neuraxis. Recent advances in neuroscience have resulted in the unravelling of the neuronal 
circuits controlling a number of physiological functions in which the LC plays a central role. Two such functions are the 
regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. The LC 
is a major wakefulness-promoting nucleus, resulting from dense excitatory projections to the majority of the cerebral cor-
tex, cholinergic neurones of the basal forebrain, cortically-projecting neurones of the thalamus, serotoninergic neurones of 
the dorsal raphe and cholinergic neurones of the pedunculopontine and laterodorsal tegmental nucleus, and substantial in-
hibitory projections to sleep-promoting GABAergic neurones of the basal forebrain and ventrolateral preoptic area. Acti-
vation of the LC thus results in the enhancement of alertness through the innervation of these varied nuclei. The impor-
tance of the LC in controlling autonomic function results from both direct projections to the spinal cord and projections to 
autonomic nuclei including the dorsal motor nucleus of the vagus, the nucleus ambiguus, the rostroventrolateral medulla, 
the Edinger-Westphal nucleus, the caudal raphe, the salivatory nuclei, the paraventricular nucleus, and the amygdala. LC 
activation produces an increase in sympathetic activity and a decrease in parasympathetic activity via these projections. 
Alterations in LC activity therefore result in complex patterns of neuronal activity throughout the brain, observed as 
changes in measures of arousal and autonomic function. 
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inger-Westphal nucleus; GABA, Gamma-aminobutyric acid; GH, Growth hormone; GHRH, Growth hormone releasing hor-
mone; IML, Intermediolateral cell column; LC, Locus coeruleus; LDT, Laterodorsal tegmental nucleus; LH/PF, Lateral hypo-
thalamus and perifornical area; NMDA, N-methyl D-aspartate; PAG, Periaqueductal grey matter; PGi, Nucleus paragigantocel-
lularis lateralis; PPT, Pedunculopontine tegmental nucleus; PrH, Nucleus prepositus hypoglossi; PVN, Paraventricular nucleus; 
REM, Rapid eye movement; RVLM, Rostroventrolateral medulla; SWS, Slow wave sleep; TMN, Tuberomamillary nucleus; 
VLPO, Ventrolateral preoptic area; VTA, Ventral tegmental area. 

1. INTRODUCTION 

 The LC, a pontine nucleus located near the pontomesen-
cephalic junction, is the largest group of noradrenergic neu-
rones in the central nervous system [70, 174, 261]. The LC 
extensively projects to widespread areas of the brain and 
spinal cord and it was believed for many years that the out-
puts of this nucleus formed a diffuse and non-selective con- 
tribution to the generalised neural activation underlying the-
maintenance of arousal [115, 248, 268, 365, 370]. More re-
cently, as the pathways involving the LC have been deline-
ated, it has become clear that the projections of the LC are 
extremely selective [32, 105, 208, 209, 210]. In addition, the 
inputs to the LC are extensively varied, contributing to the 
complex role of this nucleus in a variety of inter-related and 
distinct functions.  

 In this review we aim to give an overview of the connec-
tions of the LC relative to two of the functions that these 
connections sub-serve: arousal and autonomic regulation. A 
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number of good reviews have focused on the neuroanatomy 
of the LC [8, 32, 105, 243, 261, 379], but none to date have 
concentrated specifically on the functional pathways involv-
ing the LC in the regulation of arousal and autonomic func-
tion. It should be noted that although the LC is the pre-
eminent noradrenergic nucleus involved in the regulation of 
arousal, there are some other noradrenergic nuclei, for ex-
ample the A1/A5 nuclei, which also contribute to autonomic 
regulation. Several excellent reviews discuss these other 
noradrenergic nuclei in detail (for example, see 46, 65, 126, 
261). In a companion review we discuss the ways in which 
unravelling the functional anatomy of the LC system helps 
with the interpretation of experimental findings involving 
physiological and pharmacological variables likely to act via
this system (see Part II). 

2. OUTPUT FUNCTIONS OF THE LOCUS COER-
ULEUS 

 Noradrenergic receptors on follower cells receiving an 
afferent input from the LC can be generally classified as 1-, 

2- or -adrenoceptors. Activation of 1-adrenoceptors by 
noradrenaline generally leads to excitation of the follower 
cells [159] and there is some evidence that -adrenoceptors 
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are also excitatory [32]. In contrast, activation of 2-
adrenoceptors leads to inhibition of the follower cells [159], 
and also of the noradrenergic neurones themselves (“autore-
ceptors”, see 3.2). The consequences of autoreceptors activa-
tion can be detected as changes in the firing rate of LC neu-
rones and in the release of noradrenaline. 2 – Adrenoceptors 
are widely distributed in the brain [43,144], and there are 
regional differences in their role in modulating noradrenaline 
release [360]. 

2.1. Forebrain 

2.1.1. Neocortex (Coeruleo-Cortical Pathway) 

 The LC extensively innervates the cerebral cortex of all 
hemispheric lobes [115, 161, 164, 298, 321, 370] and is the 
sole source of cortical noradrenaline [32, 261]. Indeed, as 
would be expected, there is a close correlation between LC 
neurone activity and noradrenaline release within the neocor-
tex [24]. Despite the extensive nature of the projection, there 
is a substantial specificity within the distribution of LC fi-
bres [32, 198, 246, 247]. It is likely that this noradrenergic 
input is excitatory, since 1-adrenoceptors are expressed in 
high concentrations throughout the cortex [75, 81, 272, 273, 
281]. Interestingly, 2-adrenoceptors have also been detected 
in the neocortex [275, 300, 356, 358], although these tend to 
be fewer in number than the 1-adrenoceptors and distributed 
more selectively [275, 300, 356]. Surprisingly, activation of 
these receptors has been found to increase the activity of the 
neocortex [9]. It has been suggested that these 2-adreno-
ceptors may be present on inhibitory interneurones in the 
neocortex, where noradrenergic stimulation arising from the 
LC disinhibits the cortical neurones from inhibition by these 
interneurones and thus leads to an increase in cortical activ-
ity [9].  

 The noradrenergic projection to the neocortex is likely to 
contribute to the generally recognised role of the LC as a 
major wakefulness-promoting nucleus (for example, see 256, 
257). A number of pieces of converging evidence support 
this role. Firstly, the activity of the LC closely correlates 
with level of arousal [14, 15, 16, 103, 104, 287, 291]. Sec-
ondly, increases in LC activity have been found to increase 
EEG signs of cortical arousal [25] whilst LC inactivation 
results in a reduction in cortical EEG activity [30, 73]. In-
deed, increasing the noradrenergic activation of 1-adreno-
ceptors in the prefrontal cortex in rats has been found to in-
crease cognitive performance, and this was interpreted as 
resulting from an increase in arousal [191]. Finally, electrical 
stimulation of the LC in a human subject resulted in a reduc-
tion in the quantity of both slow wave and rapid eye move-
ment sleep [165], again supporting a wakefulness-promoting 
role for LC activation. 

2.1.2. Basal Forebrain 

 The BF, comprising the medial septal area, medial preop-
tic area and substantia innominata, contains both cholinergic 
and GABAergic cortically-projecting neurones involved in 
modulating the sleep-wakefulness state [122, 159, 242]. All 
three areas of the BF receive noradrenergic inputs from the 
LC [96, 163, 406]. The cholinergic BF neurones are most 
active during wakefulness, corresponding to an increase in 
cortical activation, whilst the GABAergic BF neurones are 
most active during slow-wave sleep and show reduced activ-

ity when cortical activation is high [159, 160, 221, 222]. The 
cholinergic wakefulness-promoting neurones of the BF are 
activated by noradrenaline released from the terminals of 
neurones projecting from the LC [96, 106, 159, 160] and this 
activation is likely to result from stimulation of 1- and -
adrenoceptors identified in the medial preoptic and septal 
areas [26, 27, 31, 106]. Indeed, pharmacological activation 
of the of 1- and -adrenoceptors in the medial preoptic and 
septal areas results in an additive increase in arousal above 
the level achieved by the stimulation of either receptor type 
alone [27]. In contrast, the GABAergic sleep-promoting neu-
rones of the BF, situated in the medial preoptic area, are in-
hibited by the stimulation of 2-adrenoceptors [223, 242, 
356]. Thus, the noradrenergic projection from the LC inhib-
its these sleep-promoting neurones to promote wakefulness, 
and these neurones become disinhibited following LC quies-
cence at the onset of sleep [159, 160, 223]. The overall effect 
of LC innervation to the cholinergic and GABAergic neu-
rones of the BF is therefore the promotion of arousal. In 
agreement with this, infusions of noradrenaline into the BF 
in the rat increase signs of wakefulness [28, 29, 50, 159]. 

2.1.3. Limbic System 

 The amygdala is principally responsible for fear and 
anxiety responses to threatening environmental stimuli, in-
cluding the increase in the activity of the sympathetic nerv-
ous system to threat [71, 174, 192]. The LC densely inner-
vates the amygdala [164, 243] and in particular projects to 
the central and basal nuclei [98, 163, 261, 354]. The 
amygdala primarily expresses 1-adrenoceptors [75, 81, 272, 
273, 281], although 2-adrenoceptors have also been de-
tected within this area [117, 275, 300, 356]. These 2-
adrenoceptors may be located on particular subsets of neu-
rones involved in the autonomic response to stressful stimuli 
(for example, see 117). The overall noradrenergic influence 
on the amygdala, however, is likely to be largely excitatory. 

 Activation of the LC by electrical stimulation or drug 
administration (for example yohimbine) results in observa-
tions of increased anxiety [57, 118, 234, 252, 293, 294] 
[368], likely as a result of the potentiation of this excitatory 
pathway from the LC to the amygdala. In addition to a role 
in anxiety, the LC projection to the amygdala may also play 
a role in forming and retrieving emotional memories [59, 
340]. Interestingly, level of arousal, highly correlated to LC 
activity (see 2.1.1), determines the likelihood of a memory 
being encoded and subsequently retrieved. Indeed, both 1-
and -adrenoceptors in the basolateral amygdala have been 
implicated in memory storage [100, 101]. 

 The LC also innervates the hippocampus, providing the 
sole source of noradrenaline to the hippocampal neurones 
[110, 174, 204, 208, 210, 261, 277, 369]. Both 1-adreno-
ceptors [271, 281], particularly 1D-adrenoceptors [75], and 

2-adrenoceptors [275, 300] have been detected in the hippo-
campal formation. This limbic structure is centrally involved 
in the formation of declarative memories and the LC projec-
tion to the hippocampus may thus contribute to memory 
formation. In support of this possible function, lesions of the 
LC impair olfactory learning in experimental animals [343]. 
The LC has also been implicated in memory retrieval [80, 
311], although this is likely to be mediated through areas 
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outside of the hippocampus, possibly involving the amygdala 
[174] (see above). 

2.2. Diencephalon 

2.2.1. Thalamus 

 The LC sends a large output to the thalamus, especially 
to the dorsally located nuclei [147, 164, 261]. The principle 
adrenoceptor identified in the thalamus appears to be the 
excitatory 1-adrenoceptor [75, 281, 409]. Some studies have 
also reported the presence of 2-adrenoceptors in the thala-
mus [356, 358, 409], although others have not [275, 300]. 
This output to the thalamus may be related to the wakeful-
ness-promoting role of the LC (see 2.1.1), since thalamic 
neurones project extensively to the cortex [158, 231]. Indeed, 
noradrenergic input to the thalamic cells promotes a single 
spike firing mode of activity in the thalamus that has been 
related to increased cortical activity and responsiveness dur-
ing waking [231, 233]. In addition to a role in wakefulness, 
sparse projections from the LC to the ventral posterolateral 
nucleus of the thalamus may be involved in modulating the 
sensation of pain [389]. 

2.2.2. Hypothalamus 

2.2.2.1. Ventrolateral Preoptic Area

 In addition to the cortical and thalamic projections de-
scribed above, the LC contributes to the maintenance of 
arousal via an inhibitory output to the GABAergic neurones 
of the VLPO of the hypothalamus [62, 242, 270], an area 
associated with the regulation of sleep-wakefulness state (see 
Figs. (1) and (4) in Part II). Neurones of the VLPO exhibit a 
high activity state during SWS and REM sleep, whilst being 
virtually silent during periods of waking [354]. This is in 
contrast to the activity of the LC, where neurones are active 
during wakefulness, quiet during SWS and quiescent during 
REM sleep [14, 16, 104, 287]. Noradrenaline, released from 
the LC during wakefulness, inhibits the majority of VLPO 
neurones through the stimulation of 2-adrenoceptors [114, 
228, 241, 270). When active the VLPO inhibits multiple ar-
eas involved with promoting wakefulness, primarily the 
TMN of the hypothalamus, through GABAergic projections 
[324]. The TMN sends wakefulness-promoting histaminergic 
projections to the cerebral cortex [181]; inhibition of the 
VLPO by the LC thus disinhibits this wakefulness-promo-
ting projection from the TMN. Through this projection to the 
VLPO and the excitatory projections to the cortex and 
thalamus (see 2.1.1 and 2.2.1) the LC plays an important role 
in maintaining arousal [256, 257]. 

2.2.2.2. Paraventricular Nucleus

 A second hypothalamic area to receive a significant pro-
jection from the LC is the PVN, a major premotor autonomic 
nucleus associated with both the sympathetic and parasym-
pathetic nervous systems [163, 164, 261, 350, 351]. Auto-
nomic projections from the PVN terminate on sympathetic 
preganglionic neurones in the IML of the spinal cord [35, 
310, 317, 350, 377] and on parasympathetic preganglionic 
nuclei in the brainstem [35, 44, 137, 317, 391, 409]. Expres-
sion of 1-adrenoceptors has been detected in the PVN [3, 
75, 273, 281, 309, 342] and the activation of these receptors 
has been linked to the autonomic response to stress [309, 

342]. In addition, 2-adrenoceptors have been detected on 
inhibitory GABAergic neurones synapsing with these spi-
nally-projecting PVN neurones, providing a further means of 
activating the autonomic nervous system through noradrena-
line release from the LC [200]. Through this projection, 
therefore, the LC influences functions of the autonomic 
nervous system relating to behavioural arousal, for example 
cardiovascular regulation (suppression of the baroreceptor 
reflex: 145, 326).  

 The LC is also involved in neuroendocrine function by 
projections to the neuroendocrine cells of the PVN and tu-
beroinfundibular nucleus of the hypothalamus (see 2.2.2.4). 
These neuroendocrine cells are responsible for the secretion 
of trope hormones, for example thyrotropin-releasing hormone 
and somatostatin, modulating pituitary activity (see 305). 

2.2.2.3. Lateral Hypothalamus/Perifornical Area

 The orexin (also called hypocretin) neurones of the 
LH/PF receive a noradrenergic input from the LC [18, 202, 
398]. In contrast to the excitatory influence of orexin on the 
LC (see 3.1.3.3, below), this noradrenergic input inhibits 
LH/PF firing [202, 398]. This suggests that there is a nega-
tive feedback circuit from the LC to the LH/PF, likely to be 
involved in preventing excessive activity in the arousal 
pathway during periods of wakefulness. Some excitatory 1-
adrenoceptors have also been identified in the LH/PF [3, 
281, 342], where activation of these receptors has been 
linked to behavioural activation and exploration [342]. How-
ever, many reports on 1-adrenoceptor localisation do not 
detect significant numbers in the LH/PF [75, 81, 272]. Inter-
estingly, -adrenoceptors in the LH/PF appear to be related 
to noradrenergic suppression of feeding [51, 184]. 

2.2.2.4. Tuberoinfundibular Area

 The LC projects to the arcuate nucleus of the tuberoin-
fundibular area, the neurones of which are involved in neu-
roendocrine regulation [123, 167]. Both excitatory 1- and -
adrenoceptors [3, 167] and inhibitory 2-adrenoceptors [404] 
have been detected in the arcuate nucleus. The LC may con-
tribute to the regulation of neuroendocrine function via these 
adrenoceptors along with the projection to the PVN (see 
2.2.2.2). For example, the arcuate nucleus neurones control-
ling the secretion of GHRH, which increases GH release 
from the pituitary [249], are modulated by 2-adrenoceptor 
stimulation [64, 404]. Similarly, the arcuate nucleus is in-
volved in the regulation of prolactin secretion via the release 
of dopamine onto the lactotropes in the pituitary [23, 295], 
which inhibits prolactin secretion. Noradrenergic stimulation 
of 1-adrenoceptors activates these dopaminergic arcuate 
nucleus neurones and thus contributes to the regulation of 
prolactin secretion [141]. Indeed, administration of mo-
dafinil, a wakefulness-promoting drug believed to enhance 
noradrenergic LC activity [139] and therefore noradrenaline 
release onto the dopaminergic neurones, was found to reduce 
prolactin secretion in healthy male volunteers [305]. 

2.3. Brainstem 

2.3.1. Parasympathetic Preganglionic Nuclei 

 In general, the LC inhibits parasympathetic preganglionic 
nuclei (Edinger-Westphal nucleus, salivatory nuclei, and va-
gal nuclei) via the activation of inhibitory 2-adrenoceptors 
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on the neuronal membrane of the preganglionic follower 
cells (see Figs. (2) and (4) in Part II). 

2.3.1.1. Edinger-Westphal Nucleus (Coeruleo-Pupillomotor 

Pathway)

 The EWN, the parasympathetic preganglionic nucleus 
responsible for pupil constriction, receives an ascending in-
put from the LC [42, 207], which is likely to exert an inhibi-
tory influence via 2-adrenoceptors [133, 134, 352](see Fig. 
(2) in Part II). In the pathway controlling pupil constriction, 
light stimulation is detected at the retina and transmitted via
the pretectal nucleus to the EWN [205]. The EWN, located 
in the oculomotor complex of the midbrain, innervates the 
ciliary ganglion supplying the sphincter pupillae muscle: 
activation of this muscle results in constriction of the pupil 
and a reduction in the level of luminance entering the eye. 
Through this pathway the EWN mediates both the constric-
tion of the pupil in situations of high background luminance 
and the reflex constriction of the pupil to a sudden increase 
in luminance level (light reflex response) [175, 181].  

 The functional significance of the projection from the LC 
to the EWN is highlighted by two different observations. 
Firstly, the activation of the LC attenuates the light reflex 
response (see 2.2.2, Part II). Secondly, there is a species dif-
ference in the response of the pupil to 2-adrenoceptor ago-
nists, likely to result from a differential activation of 2-
adrenoceptors within the LC and EWN (see 3.1.1.7, Part II). 

2.3.1.2. Salivatory Nuclei (Coeruleo-Salivatory pathway)

 The salivatory nuclei are located in the reticular forma-
tion, with cells situated ventrolaterally designated as the infe-
rior salivatory nucleus and cells situated dorsolaterally des-
ignated as the superior salivatory nucleus [259]. The inferior 
and superior salivatory nuclei are so divided according to 
their projections to the periphery: the inferior salivatory nu-
cleus projects through the glossopharyngeal nerve whilst the 
superior salivatory nucleus projects through the facial nerve. 
The inferior salivatory nucleus is responsible for the para-
sympathetic innervation of the otic ganglion, from which 
postganglionic fibres innervate the parotid and lingual (von 
Ebner) salivatory glands involved in salivation and taste per-
ception respectively [41, 111, 175]. The superior salivatory 
gland is responsible for parasympathetic innervation of the 
submandibular ganglion, from which postganglionic fibres 
innervate the submandibular and sublingual salivatory glands 
[61, 151, 319, 405] and the pterygopalatine ganglion inner-
vating the lacrimal gland involved in tear secretion [258, 
365]. The neurones of the superior salivatory nucleus may be 
divided into two categories: type I neurones are responsible 
for salivation whilst type II neurones are involved in vaso-
dilatation [229]. 

 There is limited information regarding the innervation of 
the salivatory nuclei, but that which is available suggests a 
possible role for the LC in modulating these nuclei, and thus 
contributing to the autonomic control of salivation. The neu-
rones of the superior salivatory nuclei receive synaptic inputs 
from monoaminergic cell groups [258] and within this there 
may be a noradrenergic contribution originating in the LC 
[151, 338]. Inhibitory 2-adrenoceptors are located on the 
preganglionic parasympathetic neurones of the salivatory 

nuclei [214, 353] and it has been suggested that salivation is 
tonically inhibited via the activation of these receptors [355]. 
Indeed, there is pharmacological evidence consistent with 
the existence of inhibitory 2-adrenoceptors on salivatory 
neurones (see 3.1.1.4, Part II). 

2.3.1.3. Parasympathetic Vagal Nuclei (Coeruleo-Vagal 
Pathway)

 The parasympathetic vagal nuclei include the DMV and 
the nucleus ambiguus. The DMV, the largest preganglionic 
parasympathetic nucleus in the brainstem, has efferents con-
tributing to the control of smooth muscle in the thoracic and 
abdominal viscera [174]. Along with the nucleus ambiguus 
(see below), the DMV mediates the parasympathetic control 
of cardiovascular function [264]. The neurones of the DMV 
fire in synchrony with the cardiac cycle to reduce heart rate 
and blood pressure: excitatory cyclical input from the 
baroreceptors, mediated through the nucleus of the solitary 
tract, increases the firing of neurones in the DMV [72]. In-
deed, microinjections of glutamate into the DMV were found 
to reduce both heart rate and blood pressure [58]. The LC 
projects to the DMV [261, 359, 388] and 2-adrenoceptors 
have been detected on DMV neurones [275, 299, 300, 370]. 
It has been shown that noradrenaline inhibits the activity of 
DMV neurones via the activation of these 2-adrenoceptors 
[112, 226]. Furthermore, microinjection of glutamate into the 
LC was found to increase HR and BP [58], consistent with 
an inhibitory influence of the LC on the DMV. This observa-
tion is also consistent with the combined sympathomimetic 
and parasympatholytic effect of LC activation on cardiovas-
cular function. 

 The nucleus ambiguus innervates the cardiac ganglia to 
contribute to the control of heart rate [174, 218] and is criti-
cal for the heart rate response to baroreceptor stimulation 
[60]. Chemical stimulation of the neurones of the nucleus 
ambiguus results in a reduction in heart rate [225] and blood 
pressure [58]. The nucleus ambiguus also reduces heart rate 
through an inhibitory projection to the rostroventrolateral 
medulla [236], the major pre-sympathetic nucleus involved 
in cardiovascular regulation (see 2.3.2.1). The LC projects to 
the nucleus ambiguus [164, 388] and 1-adrenoceptors have 
been detected within this nucleus [75]. The presence of 1-
adrenoceptors in this nucleus appears to be paradoxical since 

1-adrenoceptors usually mediate excitation and the LC gen-
erally exerts an inhibitory effect on preganglionic cholinergic 
neurones. However, the cellular localisation of these 1-
adrenoceptors has not been identified and it is possible that 
they are located on inhibitory interneurones rather than on 
the preganglionic cholinergic output neurones themselves, as 
would be consistent with the general pattern of the modula-
tion of autonomic activity by the LC. 

2.3.2. Premotor Sympathetic Nuclei 

2.3.2.1. Rostroventrolateral Medulla (Coeruleo-Vasomotor 

Pathway)

 In addition to the modulation of parasympathetic nuclei 
(see 2.3.1.3), the LC contributes to the regulation of cardio-
vascular function via inhibitory projections to the RVLM 
[376] (see Figs. (2) and (4) in Part II). The RVLM tonically 
projects to sympathetic preganglionic neurones in the IML of 
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the spinal cord [19, 53, 72, 344, 346, 407], where glutamate 
release excites the neurones and promotes vasoconstriction. 
Some of the spinal-projecting RVLM neurones have an in-
trinsic pacemaker activity that contributes to the maintenance 
of normal blood pressure and heart rate [72, 125, 344]. The 
RVLM neurones are also involved in the response of cardio-
vascular activity to changing environmental demands, medi-
ated via the baroreflex. Baroreceptor activation triggered by 
an increase in blood pressure enhances nucleus of the soli-
tary tract neurone activity, which activates the GABAergic 
caudal ventrolateral medulla neurones that inhibit RVLM 
activity [48, 72, 344, 345, 346]. The activation of this path-
way mediates a reduction in cardiovascular activity. In this 
way, RVLM neuronal activity is synchronised to the cardiac-
related rhythm in sympathetic activity [19], with reduced 
firing rate following baroreceptor activation. In contrast, 
hypotension increases RVLM activity [119]. In general, 
chemical or electrical stimulation of the RVLM produces an 
increase in blood pressure and heart rate, while chemical 
lesions of the RVLM reduce blood pressure [48, 72, 125, 
168, 344, 392]. The inhibition of the RVLM by the LC is 
likely to result from the stimulation of 2-adrenoceptors lo-
cated within the RVLM [132, 173, 319, 358]. For the func-
tional significance of these receptors see section 3.1.1.3, Part 
II. 

 The combined influences of the LC on the sympathetic 
output to the cardiovascular system (coeruleo-vasomotor and 
coeruleo-spinal pathways) result in a moderate increase in 
blood pressure and heart rate when the LC is activated [82, 
124, 203, 331, 341, 385], indicating the predominance of the 
direct innervation of the spinal cord (see 2.5.3). The inhibi-
tion of the DMV and nucleus ambiguus (coeruleo-vagal 
pathway) may also contribute to this effect (see 2.3.1.3). 
Hypertension has been found to increase GABA release in 
the LC [332], leading to a reduction in LC neurone activity 
[248] and a decrease in noradrenaline release [332]. In con-
trast, hypotension has been found to decrease GABA release 
in the LC [332], leading to an increase in LC neurone activ-
ity [10, 362, 372] and an increase in noradrenaline release 
[332]. It thus appears that the excitation of the spinal cord 
and possibly the inhibition of the DMV and nucleus am-
biguus by the LC predominate over the inhibition of the 
RVLM. 

2.3.2.2. Caudal Raphe Nuclei

 The nuclei of the CR (raphe magnus, obscurus, and pal-
lidus) are innervated by noradrenergic projections from the 
LC [136, 164], which are likely to have primarily excitatory 
effects via 1-adrenoceptor activation [81, 271]. However, 

2-adrenoceptors have also been identified within the CR 
[127, 300, 370], suggesting that a subset of CR neurones 
may be inhibited by the LC projection. The CR is involved 
in modulating sympathetic function via serotonergic outputs 
to the IML of the spinal cord [7, 150, 206]. Both the raphe 
pallidus and the raphe magnus have been implicated as exci-
tatory premotor neurones in the regulation of body tempera-
ture, innervating sympathetic preganglionic neurones in the 
IML [255]. This is supported by studies finding that suppres-
sion of the activity of the raphe pallidus with microinjection 
of muscimol, a GABA receptor agonist, results in hypother-

mia [408] and that cold exposure increases neurone activity 
within the CR, measurable both as an increase in electrical 
unit activity [292] and as an increase in Fos expression [36, 
245, 254]. Therefore, the excitation of these CR neurones by 
the projection from the LC would be expected to increase 
body temperature via the activation of the sympathetic nerv-
ous system. 

 Another major action of the serotonergic projection to the 
spinal cord is the suppression of nociception [66, 113, 239], 
achieved through the release of serotonin in the dorsal spinal 
cord [135, 162, 188, 297]. Interestingly, 1- and 2-adreno-
ceptors have been found to be co-localised on raphe magnus 
neurones involved in the inhibition of nociception [34]. 
These receptors have been implicated in the mechanism un-
derlying opioid-induced analgesia, since blocking the 1-
adrenoceptors or stimulating the 2-adrenoceptors attenuated 
the analgesia produced through local opioid administration 
[34]. Thus, the innervation by the LC is likely to be acting at 
excitatory 1-adrenoceptors to increase CR neurone activity 
and thus contribute to the suppression of nociception during 
opioid analgesia.  

 The projection from the LC to the CR is therefore in-
volved in modulating both the premotor sympathetic neu-
rones involved in thermoregulation and the neurones in-
volved in nociception. 

2.3.3. Dorsal Raphe Nucleus 

 In addition to the projection to the neurones of the CR 
described above (see 2.3.2.2), the LC also innervates the 
serotonergic neurones of the DR nucleus [176, 197, 224, 
261, 304]. The DR is involved in the regulation of the sleep-
wakefulness state and DR serotonergic neurones have been 
found to fire extensively during wakefulness whilst showing 
quiescence during periods of sleep [235, 366]. The input 
from the LC to the DR appears to be excitatory via activation 
of 1-adrenoceptors [43, 75, 76, 271, 272, 281, 284, 342, 
402] and it may be involved in the maintenance of increased 
DR neurone firing during wakefulness. Indeed, noradrena-
line perfusion directly into the DR results in cortical desyn-
chronisation [172]. 

2.3.4. Pedunculopontine and Laterodorsal Tegmental Nu-

clei 

 The cholinergic neurones of the PPT and LDT are asso-
ciated with the regulation of the sleep-wakefulness state. The 
neurones of the PPT and LDT are active during both wake-
fulness and REM sleep [89, 160, 171]. These neurones pro-
ject to the thalamus, where they excite neurones involved in 
promoting cortical desynchrony [160, 169]. Two populations 
of neurones have been proposed within these nuclei: one set 
of cholinergic neurones are active during waking and excited 
by noradrenaline from the LC acting at 1-adrenoceptors, 
and one set of cholinergic neurones that are active during 
REM sleep and inhibited by noradrenaline from the LC act-
ing at 2-adrenoceptors [139, 140]. This second population 
of neurones may be largely responsible for the initiation of 
REM sleep [303]; during wakefulness REM sleep is inhib-
ited by the activation of 2-adrenoceptors on these neurones 
[20].  
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2.3.5. Motor Nuclei 

 The LC projects to motoneurones in the brainstem and 
the spinal cord, facilitating motoneurone activity via the 
stimulation of 1-adrenoceptors. 

2.3.5.1. Facial Nucleus

 The LC densely projects to the motoneurones of the fa-
cial nucleus [164, 231], a group of motoneurones located at 
the pontomedullary junction, and this projection appears to 
be excitatory since extracellular microiontophoretic applica-
tion of noradrenaline increases the activity of these motoneu-
rones [289, 378, 390]. Indeed, excitatory 1-adrenoceptors 
have been detected within the facial nucleus [75, 81], sup-
porting this facilitatory action. 

 There is evidence from studies using the acoustic startle 
paradigm that the facilitatory projection from the LC to the 
facial nucleus may be tonically active. The acoustic startle 
paradigm involves the presentation of a sudden intense audi-
tory stimulus to produce a startle response involving the 
rapid involuntary contraction of facial and skeletal muscula-
ture. The conventional measure of this response is the EMG 
recording of the orbicularis oculi muscle, involved in the eye 
blink response, which is innervated by the motoneurones of 
the facial nucleus. It has been found that the administration 
of a sedative drug such as clonidine, known to reduce LC 
activity, results in a reduction in the amplitude of the acous-
tic startle response [1, 2, 187, 307], whilst the administration 
of the 2-adrenoceptor antagonist yohimbine [148, 333, 357], 
known to increase LC activity, enhances the amplitude of the 
response [244]. 

2.3.5.2. Hypoglossal Nucleus

 There is limited information regarding the afferents of 
the hypoglossal nucleus, but there is some evidence of a 
noradrenergic influence on hypoglossal motoneurones. Ret-
rograde and anterograde transport techniques have identified 
a projection to the hypoglossal nucleus from the subcoer-
uleus nucleus [6], which may include neurones of the LC. 
Indeed, the descending projection of the LC passes ventro-
laterally to the hypoglossal nucleus [231] and thus it is pos-
sible that fibres from this pathway innervate the nucleus. 
Additionally, there are 1-adrenoceptors, but not 2-adreno-
ceptors, on these neurones [274, 343] suggesting an excita-
tory influence of noradrenaline on the nucleus. Application 
of noradrenaline to the hypoglossal nucleus results in moto-
neurone activation and the application of an 1-adrenoceptor 
agonist (phenylephrine) mimicked this effect [274]. In con-
trast, the application of an 1-adrenoceptor antagonist (pra-
zosin) prevented the noradrenaline-induced increase in activ-
ity [274]. 

2.3.5.3. Trigeminal Motor Nucleus

 Although the majority of noradrenergic projections to the 
trigeminal motoneurones arise from the A5/A7 nuclei, the 
LC also projects to this nucleus, albeit sparsely [217]. In 
general, noradrenaline has a facilitatory influence on these 
motoneurones [323]. Bilateral locus coeruleus lesions do not 
significantly reduce noradrenaline content in the trigeminal 
motor nucleus, suggesting that this input from the LC is of 
minor physiological significance [197]. 

2.3.5.4. Oculomotor Nuclear Complex

 The motor neurones situated in the nuclei of the third 
(oculomotor), fourth (trochlear), and sixth (abducens) cranial 
nerves form the oculomotor nuclear complex responsible for 
innervating the external muscles of the eyes controlling the 
movements of the eye. A small number of cells in the LC 
have been found to project to the oculomotor nuclear com-
plex [52] and high levels of 1-adrenoceptors have been 
identified within this area [75, 81, 281], indicating an excita-
tory noradrenergic input to these neurones.  

2.3.6. Sensory Nuclei 

2.3.6.1. Trigeminal Sensory Nucleus

 In contrast to the sparse innervation of the trigeminal 
motor nucleus, the LC densely innervates the neurones of the 
trigeminal sensory nucleus [66, 197, 261, 321] and this 
pathway is likely to be involved in the antinociceptive func-
tion of the LC [47, 66, 367]. Indeed, electrical stimulation of 
the LC has been found to inhibit the neurones of the sensory 
trigeminal nucleus involved in pain perception [230, 312, 
314, 367]. In addition, inhibitory 2-adrenoceptors have been 
detected within the trigeminal nucleus [410]. It has been 
proposed that -adrenoceptors may also be involved in the 
inhibitory influence of noradrenaline on the trigeminal sen-
sory neurones [313]. Recently it has been shown that there is 
an intricate synergistic interaction between the antinocicep-
tive effects of the noradrenergic and serotonergic inputs to 
the sensory trigeminal nucleus [66]. 

2.3.6.2. Cochlear Nucleus

 The LC projects diffusely to the cochlear nuclei and 
noradrenaline levels are detectable here in moderate concen-
trations [180, 185, 188, 320, 341]. This input is suggested to 
be excitatory, where noradrenaline enhances both spontane-
ous and tone-evoked cochlear nucleus neurone activity, and 
it is likely that this effect is mediated via 1-adrenoceptors 
[84]. The LC may, therefore, be involved in sensory auditory 
processing. 

 Noradrenergic modulation of cochlear nucleus activity 
may underlie the mechanism by which clonidine reduces the 
amplitude of auditory evoked potentials (N1/P2) recorded in 
the EEG during the acoustic startle paradigm [307] since 
clonidine is known to act by reducing LC activity. It should 
be noted, however, that this effect of clonidine on the audi-
tory evoked potentials has not been observed in every study 
[2]. 

2.4. Cerebellum (Coeruleo-Cerebellar Pathway) 

 The cerebellum is responsible for the planning, coordina-
tion, and learning of movements, particularly relating to the 
timing, force and extent of muscle contractions, and may 
also be involved in cognition and emotion [174]. The LC 
projects to areas throughout the cerebellum [208, 210, 261, 
268, 369] and in particular to the cerebellar cortex [301, 
320]. A moderate number of 1-adrenoceptors has been ob-
served in the cerebellum [75, 271, 273, 318, 342], indicating 
an excitatory role for the LC in facilitating one or more of 
the functions of the cerebellum. Indeed, depletion of 
noradrenaline from the cerebellum has been found to result 
in impaired motor performance [386]. 
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2.5. Spinal Cord (Coeruleo-Spinal Pathway) 

 The contribution of the LC to autonomic nervous system 
control involves a direct output to sympathetic and parasym-
pathetic preganglionic neurones of the IML of the spinal 
cord in addition to the projections innervating other auto-
nomic nuclei, for example the EWN, and premotor auto-
nomic nuclei, for example the PVN, CR, and RVLM, de-
scribed above (see 2.3.1.1, 2.2.2.2 and 2.3.2.2; see also Figs. 
(2) and (4) in Part II). The LC also contributes to sensory and 
motor functions through projections to the dorsal and ventral 
horns of the spinal cord, respectively. The LC projects to all 
three areas (dorsal and ventral horns and IML) to differing 
extents [131, 164, 196, 38] and there is some evidence that 
this distribution may differ between rat strains [283, 334]. 

2.5.1. Dorsal Horn 

 Neurones in the dorsal horn of the spinal cord are sensory 
neurones associated with the detection of pain, temperature, 
touch and position/movement (proprioception) [174]. The 
LC most densely innervates the cells in this compartment of 
the spinal cord [63, 107, 108, 265, 283, 387, 388], signifying 
that the LC can influence the processing of sensory informa-
tion. This influence is likely to be inhibitory, achieved via
the activation of pre-synaptic 2-adrenoceptors on the termi-
nals of excitatory peptidergic spinal interneurones within the 
dorsal horn [267]. In support of this suggestion 2-
adrenoceptors have been identified within this region [189, 
275, 325, 336]. The projection from the LC may be particu-
larly important in the processing of noxious stimuli (nocicep-
tion). Indeed, it has been suggested that the spinal projection 
from the LC has analgesic properties [331] and 2-
adrenoceptor agonists acting in the dorsal horn of the spinal 
cord are known to produce analgesia [88]. Interestingly, 2-
adrenoceptor antagonists increase the response of dorsal horn 
neurones to inflammation induced by formalin injection 
[121]. Additionally, -adrenoceptors have been detected in 
the dorsal horn, and may also be involved with nociception 
[241]. The importance of noradrenaline in the modulation of 
nociception has been highlighted by the observation of hy-
peralgesia in the absence of noradrenaline in mice lacking 
the gene coding for the noradrenaline-synthesising enzyme 
dopamine- -hydroxylase [152, 335]. 

2.5.2. Ventral Horn 

 The LC sends projections to the neurones of the ventral 
horn [164, 265, 387], innervating the skeletal musculature, 
and this pathway may contribute to muscle contraction and 
tone. Indeed, excitatory 1-adrenoceptors are present on the 
motoneurones of the ventral horn [75, 81, 337], supporting a 
facilitatory influence of the LC on muscle tone. Both 2-
adrenoceptors [336] and -adrenoceptors [241] have also 
been detected in this region, although the role of these recep-
tors is not clear at present. The loss of LC activity during 
attacks of cataplexy in narcolepsy [396] may explain the 
sudden loss of muscle tone characteristic of these attacks 
[362]. 

2.5.3. Intermediolateral Cell Column 

 Neurones of the IML form separate sympathetic pregan-
glionic nuclei that project to ganglia innervating specific 

target organs. Through these nuclei the sympathetic nervous 
system can be selectively activated, as opposed to general-
ised sympathetic activation [11]. The LC has been found to 
project to the cells of the IML [164, 265, 387] where 
noradrenaline excites the majority of sympathetic pregangli-
onic neurones [199], possibly via the activation of 1-
adrenoceptors detected in this region [281]. The densest pro-
jections from the LC to the IML, however, end in the sacral 
spinal segments where parasympathetic inhibitory interneu-
rones are located [164, 315, 388, 403] and are involved in 
functions such as micturition [315]. The projection from the 
LC to the IML, results in excitation of these inhibitory in-
terneurones via the stimulation of 1-adrenoceptors [315, 
403], which, in turn, leads to a reduction in parasympathetic 
outflow. There may also be a direct inhibitory influence on 
the parasympathetic neurones of the IML, since 2-
adrenoceptors are present within the lumbosacral parasympa-
thetic segments [336, 370, 397].  

3. MODULATION OF LOCUS COERULEUS ACTIV-

ITY 

 As has become clear, the projections from the LC to the 
many widespread areas of the neuraxis are complex and ex-
tensive. To increase the complexity surrounding this nucleus, 
the LC also receives multiple varied inputs, which all influ-
ence LC firing to differing extents. In the majority of in-
stances the neurotransmitter involved in these inputs to the 
LC is known; in some however it remains uncertain.  

3.1. Modulation by Heteroreceptors via Afferent Inputs 

 A detailed review of the neuroanatomical techniques 
used to identify afferent inputs to the LC is beyond the scope 
of this paper, although some of the methods used are covered 
in Part II.  

3.1.1. Neocortex 

 Although in general the parietal, temporal, infralimbic, 
insular and frontal cortices provide only a limited input to 
the LC [12, 54, 215], there is a strong reciprocal connection 
between the LC and the prefrontal cortex [153, 154, 332], a 
cortical area involved in executive functioning. Indeed, the 
LC has been found to contribute to the regulation of func-
tions such as cognition [32, 38, 39], memory [32], attention 
[220], and vigilance [120]. The projection from the prefron-
tal cortex to the LC may provide tonic activation of the LC 
[154]. Although the neurotransmitter responsible for this 
activation is unclear, glutamate may be involved since 
NMDA and non-NMDA excitatory amino acid receptors are 
present on LC neurones [170, 380]. 

3.1.2. Amygdala 

 The LC receives an input from the central nucleus of the 
amygdala [54, 55, 261, 332, 384], which thus forms the af-
ferent branch of a reciprocal connection between the LC and 
the amygdala (see 2.1.3). These reciprocal projections may 
underlie a role for the LC in processing the emotional va-
lence of stimuli. Complementing the increase in anxiety fol-
lowing LC activation (see 2.1.3), states of anxiety induced 
by stressful and fear-inducing stimuli, including conditioned 
fear, are accompanied by increases in LC activity [56, 57, 
69, 290, 293] (see 2.2.2, part II) and presumably reflect an 
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increase in the activity of this pathway. Additionally, recent 
evidence has shown that the administration of anxiogenic 
drugs of different chemical classes ( 2 adrenoceptor antago-
nist, benzodiazepine inverse agonist, 5HT2C receptor agonist, 
adenosine receptor antagonist, cholecystokinin analogue) 
leads to an increase in the expression of c-fos activity in the 
LC [333], whilst the administration of anxiolytic drugs re-
duces the activity of neurones in the LC [33]. In addition, the 
projection from the central nucleus of the amygdala to the 
LC may also be involved in the observed increase in LC ac-
tivity in response to stressful stimuli [32]. For example, neu-
rones containing CRF in the central nucleus of the amygdala 
project to the LC and activate these cells in response to stress 
[375]. 

3.1.3. Hypothalamus 

3.1.3.1. Ventrolateral Preoptic Area

 The GABAergic neurones of the VLPO send an inhibi-
tory projection to the LC [54, 193, 216, 279, 331, 339], 
which, along with the inhibitory projection from the LC to 
the VLPO (see 2.2.2.1), forms a reciprocal connection be-
tween these two areas (see Figs. (1) and (4) in Part II). Dur-
ing SWS and REM sleep, there is increased release of 
GABA from the neurones of the VLPO and thus a reduction 
in the activity of the LC neurones [116, 263]. Indeed, appli-
cation of GABA to the LC has been found to inhibit cell fir-
ing, whilst administration of a GABA receptor antagonist 
(bicuculline) increases LC activity [116, 219]. In contrast, 
during wakefulness the inhibitory projection from the LC to 
the VLPO reduces VLPO neurone activity (see 2.2.2.1) and 
thus disinhibits the LC from the inhibitory influence of the 
VLPO [256, 257]. 

3.1.3.2. Paraventricular Nucleus

 There is a well-defined pathway originating in the PVN 
and projecting to the LC [17, 54, 213, 215, 296, 331, 350, 
409]. This PVN projection may form the basis of a second, 
indirect, pathway to the peripheral autonomic nervous sys-
tem preganglionic neurones in the brainstem and spinal cord, 
in addition to the direct projections of the PVN to the 
preganglionic neurones themselves (see 2.2.2.2). CRF has 
been suggested as the primary neurotransmitter in the projec-
tion to the LC, since excitatory CRF immunoreactive fibres 
in the PVN have been found to project to, and increase the 
activity of, the neurones of the LC [296]. Thus, the LC ap-
pears to receive CRF inputs from both the paraventricular 
nucleus and the central nucleus of the amygdala (see 3.1.2). 

3.1.3.3. Lateral Hypothalamic/Perifornical Area

 The LH/PF densely innervates the neurones of the LC 
[54, 193, 261] with fibres that contain the orexin peptides 
[74, 97, 138, 280] (see Fig. (1) in Part II). The orexin system 
originates solely in the LH/PF, with fibres projecting widely 
throughout the brainstem and thalamus [78]. Administration 
of orexin into the LC has been found to increase cell firing 
[74, 130], suppress REM sleep and increase wakefulness 
[40]. Along with excitatory projections to other brainstem 
wakefulness promoting nuclei, for example the TMN [21, 
399], the DR [195], and cholinergic neurones of the BF [87] 
and LDT [45], this excitatory projection to the LC may be 
involved in the promotion and maintenance of wakefulness 

[238]. In the sleep disorder narcolepsy, the inability to main-
tain consistent wakefulness has been related to deficiencies 
in this orexinergic system [347]. In addition, the orexinergic 
input to the LC appears to be involved in the maintenance of 
muscle tone during wakefulness, since orexin microinjec-
tions into the LC have been found to facilitate muscle tone 
[178]. Interestingly, a case report has recently been pub-
lished describing a patient with a focal lesion in the dor-
somedial pontine tegmentum, involving the LC, who devel-
oped both narcolepsy and REM sleep behaviour disorder 
despite normal orexin levels in the cerebrospinal fluid [227]. 
This report, although only a single case, suggests a key role 
for the LC in mediating the effects of the orexinergic system 
on wakefulness and muscle tone. 

3.1.3.4. Tuberomamillary Nucleus

 The wakefulness-promoting histaminergic neurones of 
the TMN have been found to project to the LC [149, 194] 
and histamine H3 receptors have been identified on the cell 
bodies of LC neurones, where they inhibit noradrenaline 
release [129, 281]. In contrast to other hypothalamic nuclei, 
the LC does not appear to project reciprocally to the TMN 
[95]. The neurones of the TMN are active during wakeful-
ness and quiescent during sleep [129] and this pattern of ac-
tivity is likely to result from the interaction of the TMN with 
the VLPO (see Figs. (1) and (4) in Part II). During sleep, 
when the TMN is quiescent, the inhibitory GABAergic pro-
jection from the VLPO is active [324] (see also above). In 
contrast, during wakefulness when the VLPO is silent (in 
part due to inhibition from the LC), the TMN is disinhibited 
and displays a high level of neurone firing [256, 257]. The 
inhibitory action of the TMN projection to the LC may form 
part of a negative feedback circuit to restrict the firing of LC 
neurones during wakefulness: disinhibition of the LC from 
VLPO neurones may otherwise lead to an ever-increasing 
rate of LC discharge. 

3.1.4. Brainstem 

3.1.4.1. Ventral Tegmental Area

 Although the LC itself does not contain any dopaminer-
gic cell bodies [240], dopamine-immunoreactive fibres are 
found within the LC [177, 219] suggesting that there is a 
dopaminergic projection to this area. Moreover, significant 
amounts of dopamine [237] and dopaminergic terminals 
have been found within the LC [331], and both D1-like and 
D2-like dopamine receptors have been identified on LC neu-
rones [266, 348, 401]. The application of dopamine by re-
verse microdialysis to the vicinity of the LC inhibits sleep 
[68] and thus dopamine appears to have an excitatory action 
on the wakefulness-promoting neurones of the LC. 

 Neurones have been identified that project from the VTA 
to the LC [22, 79, 261, 266, 269, 330, 349], an area contain-
ing dopaminergic neurones involved in movement, reward, 
motivation and drug addiction [174, 260, 395]. Indeed, 
stimulation of the VTA leads to the excitation of the LC-
derived noradrenergic dorsal bundle [79] whereas lesions of 
the VTA result in a reduction in dopamine concentration 
within the LC [237]. This projection, termed the “mesocoer-
ulear” pathway, may contribute to the maintenance of 
arousal [305, 306, 308] (see Fig. (1) in Part II). Indeed, the 
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involvement of the VTA in the promotion of wakefulness is 
supported by evidence indicating that the activation of the 
VTA produces cortical EEG desynchronisation accompanied 
by an increase in alertness [77]. 

3.1.4.2. Raphe Nuclei

 It has been reported that the raphe magnus in the CR may 
project to the LC [328]. This would form a reciprocal con-
nection between the LC and CR for communication relating 
to the modulation of nociception (see 2.3.2.2). However, 
there are few studies relating to the outputs of the caudal 
raphe nuclei. In contrast, there is strong evidence that the 
serotonergic neurones of the DR project to the LC [54, 176, 
215, 261, 276, 329, 331, 382] and this connection is likely to 
be related to the wakefulness-promoting roles of the two 
nuclei.  

3.1.4.3. Pedunculopontine and Laterodorsal Tegmental 
Nuclei

 The LC is known to receive an input from acetylcholine-
releasing neurones [156, 157], and the cholinergic neurones 
of both the PPT and LDT have been found to project to the 
LC [164]. As discussed above, the PPT and LDT form two 
groups of neurones active during either wakefulness or REM 
sleep [89, 160, 171] and this cholinergic projection to the LC 
may thus be involved in regulating level of arousal. Perfu-
sions of acetylcholine and cholinoceptor agonists directly 
into the LC increase the firing of LC neurones [86, 90] and 
thus increase arousal, suggesting an excitatory role for the 
PPT and LDT projection to the LC.  

 Interestingly, the cholinergic projections of the PPT and 
LDT have also been implicated in the modulation of nora-
drenergic outputs at terminal regions. Both the noradrenergic 
projection to the DR [201] and the VLPO [302] are facili-
tated by a presynaptic cholinergic input to nicotinic receptors 
on the noradrenergic terminals. 

3.1.4.4. Periaqueductal Grey Matter

 There is substantial evidence that the LC receives an in-
put from the neurones of the PAG in the midbrain [54, 193, 
215, 261, 331], particularly from the dorsolateral cell column 
of the PAG [49]. The precise functions of the PAG are un-
clear [174], but recent work has suggested a role in responses 
to stress, such as the “fight or flight” response, in situations 
of fear and anxiety [37, 179]. There are also wakefulness-
active dopaminergic neurones in the ventral PAG [211] and 
these may be involved in the activation of LC neurones dur-
ing wakefulness. In addition the ventral and ventrolateral 
PAG may be involved in the regulation of sleep-wakefulness 
state via inhibitory glycinergic projections to the LC [288]. 

 An area in the subcoeruleus surrounding the LC has been 
identified as containing “REM-on” neurones that receive an 
inhibitory GABAergic projection from “REM-off” neurones 
in the ventrolateral PAG [212, 327]. These “REM-on” neu-
rones in turn project to the ventrolateral PAG to inhibit the 
“REM-off” neurones during REM sleep episodes and may 
also contain GABA. This reciprocal connection has been 
termed a “flip-flop switch” and it has been suggested that 
this connection may underlie the transition into REM sleep 
[212, 327]. 

3.1.4.5. Medulla 

 Two groups of neurones in the rostral medulla have ma-
jor inputs to the LC: the PrH [17, 93, 94, 215, 331] and the 
RVLM [13] (also described as the PGi) [17, 128, 215, 331, 
343]. The projection from the PrH to the LC contains 
GABAergic neurones and is thus inhibitory to LC neurone 
activity [93, 94]. This GABAergic projection is likely to be 
involved in the inhibition of LC activity during REM sleep 
[381]. Indeed, electrical stimulation of GABAergic neurones 
in the PrH increases REM sleep duration [169] and it is 
likely that this occurs via the inhibitory projection to the 
wakefulness-promoting neurones of the LC. In contrast, the 
projection from the RVLM excites LC neurone activity via
the release of glutamate [331] and electrical stimulation of 
the RVLM increases the activity within the LC [91, 92]. The 
projection from the RVLM to the LC is likely to be involved 
in the modulation of autonomic functioning, since the 
RVLM is known to be centrally involved in the regulation of 
cardiovascular function (see 2.3.2.1), and may provide an 
integrated input to the LC regarding this information [262, 
376]. Interestingly, clonidine microinjection in the RVLM 
resulted in sedation in rats, suggesting that the stimulation of 
inhibitory 2-adrenoceptors on the RVLM removes the exci-
tatory input to the LC [400]. The control of cardiovascular 
function and arousal are thus intricately related. 

 In addition to the GABAergic and glutamatergic projec-
tions to the LC from the rostral medulla, both the PrH and 
the PGi innervate the LC with fibres containing the endoge-
nous opiate enkephalin [83, 155, 372]. These projections 
activate opiate receptors found in high concentrations in the 
LC to inhibit cell firing [372, 364] and the administration of 
endogenous opioids or opiate agonists reduces LC spontane-
ous firing [146, 183, 278, 371]. The LC may thus be in-
volved in opiate-induced analgesia [83] and opiate with-
drawal [155].  

 The adrenergic neurones of the ventrolateral medulla 
(cell groups C1-C3) also project to the LC [261], and likely 
to contribute to the role of the LC in cardiovascular regula-
tion (see Section 1.2 in Part II). 

3.1.5. Cerebellum 

 There is some evidence that the nuclei of the cerebellum 
innervate the LC [261]. However, several reports describing 
the efferent projections from these nuclei do not describe 
terminals in the LC (for example, 190, 250, 253). 

3.1.6. Spinal Cord 

 In addition to receiving a dense innervation from the LC, 
the dorsal horn has been found to project to the LC in return 
[54, 67, 261]. It has been suggested that this pathway may 
communicate information relating to the detection of noci-
ceptive and/or thermal stimuli from sensory spinal nuclei 
[67, 261]. 

3.2. Modulation by Autoreceptors 

 There are 2-adrenoceptors located presynaptically on LC 
neurones which act to inhibit the activity of these neurones 
[319, 358, 404] and it has been suggested that noradrenaline 
release from the LC is under tonic inhibitory control via
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these autoreceptors [286, 331]. Indeed, stimulation of the 
autoreceptors by noradrenaline application reduces LC firing 
rate [85, 146, 393, 394], whilst blockade of the autoreceptors 
increases LC activity [331] and potentiates the activity 
evoked by glutamate administration [147, 331].  

 The autoreceptors are endogenously activated by the re-
lease of noradrenaline from LC collaterals and thus provide a 
self-regulating mechanism of negative feedback [4, 85]. The 
autoreceptors may also be activated by noradrenaline escap-
ing from the dendrites of LC neurones [99, 142, 285] and 
also by adrenaline released from an adrenergic innervation 
arising in the PGi of the rostral medulla [372]. Interestingly, 
the sleep disorder narcolepsy has been associated with an 
increase in autoreceptors within the LC, suggesting that an 
increase in LC inhibition may contribute to this disorder 
[109]. 

 In addition, it has been demonstrated that -opiate recep-
tors are co-localised with 2-adrenoceptor autoreceptors on 
LC neurones [5, 372] and utilise the same ion channel medi-
ating an increase in potassium conductance [102]. Thus, 
these receptors also act to inhibit neurone activity within the 
LC (see 3.1.1.6, Part II). 

CONCLUSIONS 

 In conclusion, it is clear that the LC is a major noradren-
ergic nucleus, giving rise to fibres innervating most struc-
tures of the neuraxis in a highly specific manner. These 
structures control a number of physiological processes in-
cluding the regulation of arousal and autonomic function and 
the LC is, therefore, central to the regulation of these proc-
esses. The LC is known to be a major wakefulness-
promoting nucleus, with activation of the LC resulting in an 
increase in EEG signs of alertness. This alerting effect of LC 
activation results from dense excitatory projections to the 
majority of the cerebral cortex, wakefulness-promoting cho-
linergic neurones of the basal forebrain, cortically-projecting 
excitatory neurones of the thalamus, wakefulness-promoting 
serotonergic neurones of the dorsal raphe, wakefulness-pro-
moting cholinergic neurones of the pedunculopontine teg-
mental nucleus and laterodorsal tegmental nucleus, and sub-
stantial inhibitory projections to sleep-promoting GABAer-
gic neurones of the basal forebrain and ventrolateral preoptic 
area. It is also clear that the LC plays an important role in 
controlling autonomic function, where LC activation pro-
duces an increase in sympathetic activity and a concomitant 
decrease in parasympathetic activity. This contribution to the 
control of autonomic activity results both from the direct 
projections to the sympathetic and parasympathetic divisions 
of the spinal cord and from the indirect projections to various 
nuclei influencing the autonomic system, including the para-
sympathetic dorsal nucleus of the vagus and nucleus am-
biguus and the sympathetic rostroventrolateral medulla, in-
volved in cardiovascular regulation, the parasympathetic 
Edinger-Westphal nucleus, involved in pupil constriction, 
the caudal raphe, the salivatory nuclei, the paraventricular 
nucleus, and the amygdala. The control of arousal and auto-
nomic function is thus inseparably linked, largely via the 
involvement of the LC. Changes in LC activity result in 
complex patterns of neuronal activity throughout the brain 
since the noradrenergic outputs from the LC can exert both 

excitatory effects via 1-adrenoceptors and inhibitory effects 
via 2-adrenoceptors. The effect of LC activation on arousal 
and autonomic function is therefore both interrelated and 
intricate, based on the compound effects of multiple projec-
tions to areas of influence. 
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