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ABSTRACT

Summary: Computing the probability of identity by descent sharing
among n genes given only the pedigree of those genes is a
computationally challenging problem, if n or the pedigree size is
large. Here, | present a novel graphical algorithm for efficiently
computing all generalized kinship coefficients for n genes. The
graphical description transforms the problem from doing many
recursion on the pedigree to doing a single traversal of a structure
referred to as the kinship graph.

Availability: The algorithm is implemented for n=4 in the software
package IdCoefs at http://home.uchicago.edu/abney/Software.
html.

Contact: abney@bsd.uchicago.edu

Supplementary Information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

The expected amount of genetic identity among a group of
individuals is determined by their genetic relationship and is
essential in describing the probabilistic interdependence of both
genotypes and phenotypes within the group. For instance, given
a multivariate normal trait, the dependence between any two
individuals is fully determined by the covariance matrix, which,
in turn, depends on their degree of relatedness. For non-normal
traits, higher order moments involving larger sets of individuals
will, generally, be needed. For a pair of individuals, the genetic
relatedness is well described by the detailed identity coefficients
(Gillois, 1964; Harris, 1964), that specity, given the four genes of
the two individuals at a single locus, the probabilities of each way of
partitioning the four genes into groups of identical by descent (IBD)
genes. The number of detailed identity coefficients for n genes,
however, is given by the n-th Bell number and increases rapidly with
the number of individuals being considered. For three individuals,
for instance, there are 203 detailed identity coefficients, while for
four individuals there are 4140 (Thompson, 1974) (or 66 and 712 if
we ignore whether a gene is maternally or paternally inherited).

To compute the condensed identity coefficients (i.e. ignoring
maternal and paternal inheritance information), one takes a linear
combination of generalized kinship coefficients, a generalization of
the kinship coefficient to more than two genes. While the standard
kinship coefficient is the probability that two randomly drawn
genes are IBD, when there are multiple genes there are multiple
generalized kinship coefficients where each kinship coefficient is

the probability for a particular subset of genes being IBD (Lange
and Sinsheimer 1992; Weeks and Lange 1988). Note that the
generalized kinship coefficients differ from identity coefficients
only in that in the former, genes are drawn with replacement from
an individual, while in the latter the genes are drawn without
replacement. Typically, identity coefficients are used to describe
the probabilities of a pair of individuals (or possibly more) having
their genes in a particular IBD configuration, whereas generalized
kinship coefficients are the probabilities of some set of randomly
drawn genes being IBD. The generalized kinship coefficients are
determined from straightforward recursive (Harris, 1964; Karigl,
1981; Lange and Sinsheimer, 1992; Weeks and Lange, 1988)
or path counting (Cheng et al., 2008; Wright, 1922) algorithms.
Executing many recursions, however, one for each generalized
kinship coefficient, can be time consuming when the pedigree is
large or if identity coefficients for more than two individuals are
desired. Here, I present a novel, graphical approach to the problem
of computing generalized kinship coefficients that replaces the need
for multiple recursions with a single traversal through a graph whose
structure is determined by the pedigree.

2 METHODS

To compute the generalized kinship coefficients, first consider n
genes drawn with replacement from n not necessarily distinct
individuals. We define a graph called an identity graph (IG) by
considering these n genes as nodes with an edge between nodes
representing IBD. That is, genes that are connected in the IG are
necessarily IBD. The set of all possible IGs constitutes the sample
space of a random variable X which takes on value i when the
IBD pattern among the genes is described by the i-th IG. Note
that the probability mass function (PMF) of X, p(X), gives the Njg
generalized kinship coefficients for the n genes, where Njg is the
number of IGs.

We now define the notion of a kinship graph (KG). To each node
v in the we associate n genes and a random variable X,,. Each gene in
v is considered a random draw with replacement from the two genes
of an individual in the pedigree. Note that the possible partitions of
the n genes into connected components is represented by a particular
IG with the probability of each partition given by the PMF p(X,)
(see the Supplementary Materials for additional details). Because
each gene in node v is itself a copy of a gene from one of the parents
of the individual, there is a relationship between v and another node
u in which the genes from a single individual in v are replaced by
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genes from that individual’s parents in u. This relationship defines an
edge between v and u, and is discussed in greater detail below. In the
notation that follows, each individual in the pedigree is numbered
such that a parent’s number is always less than a child’s number, and
each gene is given a gene identifier (GID) equal to the number of the
individual from whom it was drawn. That is, the GID represents an
individual. For instance, in the case of n=4 let node v have genes
(5,5,3,3), meaning that the first two genes (each with a GID of 5) are
drawn randomly (with replacement) from individual 5 and the last
two genes are drawn from individual 3. Genes from an individual
represented multiple times in a node may represent multiple distinct
draws from that individual or jointly represent a single draw (i.e.
a single gene is drawn and each GID refers to that gene). GIDs
representing a single draw are given identical subscripts and are
called connected (i.e. they form a connected component). So, for
instance the node (51,51,52,57) has the first two genes connected
and the second two genes connected, although these two connected
components may or may not be IBD with each other (i.e. they
represent two draws with replacement from individual 5). Using
the above principle, given an initial node v, we can construct a KG
in the following way.

(1) Select the largest GID g from the genes in the node. Let k be
the number of connected components with that GID and f(g)
and m(g) be the father and mother of g. Node v then has 2k
child nodes c;(v),i=1,..., 2k, where in each child node every
occurrence of g is replaced with either f(g) or m(g) with the
requirement that every gene in a connected component be
replaced with the same parental GID.

(2) A node also consists of a set of constraints on the PMF of X
that can be thought of in the following way. When identifying
v’s child nodes, if multiple occurrences of a GID at node
v get replaced by the same parental GID, those genes in
the child node are connected and necessarily IBD (e.g. the
maternal gene from the repeated individual is chosen multiple
times). This restricts the PMF of X,y to be zero for values
corresponding to IGs for which those genes are not connected.
Examples are given in the Supplementary Materials.

(3) The PMF of X, is a weighted sum of the PMFs of v’s child

nodes, p(X,)= %Z?LIP(XC‘_(V)), where 2F is the number of
child nodes of v and c;(v) is v’s i-th child node.

Repeating these steps allows one to recursively construct the KG
given some initial node. Note that child nodes of different parent
nodes are not necessarily distinct. For instance, if individual 6 is a
sibling to individual 5 then the child nodes of (6,6, 3, 3) are identical
to the child nodes of (5,5,3,3).

A terminal node of the KG is one where all GIDs of the node
represent founders of the pedigree. At a terminal node ¢ the PMF of
X; must be determined from the following boundary conditions:

Boundary Condition 1: If at a terminal node ¢, all genes with
the same GID are connected (i.e. they
are all in a single connected component),
then, letting S(¢#) be the IG such that
genes with connected GIDs are IBD
and genes with disconnected GIDs are

1 x=S8@)

not IBD, p(X;=x) = .
pX;=x) 0 x#£S()

Boundary Condition 2: If a terminal node ¢ has genes from a
single founder that are not connected (i.e.
they are not all in a single connected
component), then, letting R be the 1G
defined by the connectedness of the GIDs

1/N, €0,
at f, p(Xy=x)= MNe x ! , Where
0 x ¢ Oy
O; = {identity graphs S| genes in S from
distinct founders are disconnected and S

is compatible with R} and N; =|0y|.

In the second condition, we define an IG B as being compatible
with A if all genes that are connected in A are also connected in B.
These boundary conditions establish the PMF of X at the terminal
nodes of the KG, which, in turn, are used to compute the PMFs at
the parents of the terminal nodes using Step 3 above. This process
is repeated iteratively until the distribution at the desired node is
known. Further explanations of the KG and the equivalence of the
algorithm proposed here to the recursive algorithms of Weeks and
Lange 1988, as well as examples of the boundary conditions and the
construction of a KG are given in the Supplementary Materials.

3 DISCUSSION

The graphical algorithm for computing generalized kinship
coefficients described here allows for computational advantages
over the more traditional recursive methods (Harris, 1964; Karigl,
1981; Lange and Sinsheimer, 1992; Weeks and Lange, 1988).
For instance, it is possible to compute all the generalized kinship
coefficients essentially simultaneously. That is, in the traditional
approach a recursion must be done for each desired kinship
coefficient. As n increases, the number of kinship coefficients can
quickly grow to enormous sizes (Thompson, 1974), resulting in
highly burdensome computations. With the algorithm proposed here,
the recursion to construct the KG is done only once, at which
time all kinship coefficients are computed. Nevertheless, finding
an efficient algorithm for traversing the KG is itself a non-trivial
problem. In particular, when either the pedigree or the number of
genes becomes large, the size of the KG can become bigger than
what may easily be stored in computer memory. The current software
implementation considers the four-genes case and uses a depth-first
search strategy to recursively traverse the graph. A hash table is used
to store information from visited nodes with nodes that have not been
recently referenced discarded in favor of newly visited nodes, if a
specified amount of memory is exceeded. It is likely, however, that
more efficient dynamic programming algorithms could be used.
The algorithm is implemented in the software package IdCoefs,
is written in ISO C, and should compile on any platform that
has a compliant compiler. The software has been tested on both
32-bit and 64-bit Mac and Linux platforms. The package computes
the condensed identity coefficients for pairs of individuals by
finding all generalized kinship coefficients for four autosomal genes.
Extensions to more genes or sex-linked genes is straightforward
but not currently implemented. We tested the current version of
IdCoefs, which uses the algorithm described here, against an older
version based on the recursion relations of Karigl, 1981. The test
used a 13 generation pedigree comprising 3028 individuals and
computed the identity coefficients for all pairs of 10 individuals
(55 pairs). The current version of IdCoefs took 2min 13s on
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a Macintosh with a 2 GHz G5 processor, while the old version
took 29min 49s, both versions were allowed to use 1 GB of
RAM. The current software has been used to compute the identity
coefficients for all pairs of 3555 individuals in a single 13 generation
Hutterite pedigree (6320790 pairs) which have been used to
estimate covariances and, hence, heritabilities of quantitative traits
(e.g. Weiss et al., 2006) and to test Hardy—Weinberg equilibrium
(Bourgain et al., 2004). Additionally, the software has been used in
other populations with large pedigrees (Angius et al., 2008; McArdle
et al., 2007), and has been adapted into an R package by Na Li
(http://cran.r-project.org/web/packages/identity/index.html).
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