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ABSTRACT

Motivation: Classification of gene and protein sequences into
homologous families, i.e. sets of sequences that share common
ancestry, is an essential step in comparative genomic analyses.
This is typically achieved by construction of a sequence homology
network, followed by clustering to identify dense subgraphs
corresponding to families. Accurate classification of single domain
families is now within reach due to major algorithmic advances
in remote homology detection and graph clustering. However,
classification of multidomain families remains a significant challenge.
The presence of the same domain in sequences that do not share
common ancestry introduces false edges in the homology network
that link unrelated families and stymy clustering algorithms.
Results: Here, we investigate a network-rewiring strategy designed
to eliminate edges due to promiscuous domains. We show that
this strategy can reduce noise in and restore structure to artificial
networks with simulated noise, as well as to the yeast genome
homology network. We further evaluate this approach on a hand-
curated set of multidomain sequences in mouse and human, and
demonstrate that classification using the rewired network delivers
dramatic improvement in Precision and Recall, compared with
current methods. Families in our test set exhibit a broad range
of domain architectures and sequence conservation, demonstrating
that our method is flexible, robust and suitable for high-throughput,
automated processing of heterogeneous, genome-scale data.
contact: jacobmj@cmu.edu

1 INTRODUCTION

1.1 Family classification
Gene families are the basis of phylogenomic inference (Brown
and Sjolander, 2006), and evolution-based methods for function
prediction and annotation transfer (Wu et al., 2003). Knowledge
of family structure facilitates the study of the processes that drive
family evolution (Demuth et al., 2006). Whole genome sequencing
efforts have inspired the construction of large-scale gene family
databases with the goal of characterizing the full complement of
homologous families over a broad range of genomes (Crabtree
et al., 2007; Heinicke et al., 2007; Tatusov et al., 2003; Wheeler
et al., 2008). These and other genome-scale applications require
methods that support accurate, automated and high-throughput
family classification.

The goal of gene family classification is to partition a set
of unlabeled sequences into homologous families (Fitch, 2000),
i.e. sets of sequences derived from a common ancestral gene
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Fig. 1. The evolutionary history of a hypothetical multidomain family
showing both gene duplications and domain insertions. Genes x, y and w
share a common ancestor but do not have identical domain composition.
Gene z shares a homologous domain with these genes, but there is no gene
that is ancestral to both w and z.

by speciation and gene duplication.1 We consider gene family
classification, with particular attention to the domain chaining
problem: inappropriate merging of unrelated families due to the
presence of the same promiscuous domain in sequences belonging to
different families (Heger and Holm, 2000). For example, in Figure 1,
sequence-based approaches will tend to assign z to the homologous
family, {w,x,y}, because genes w and z share a homologous domain.
This assignment is incorrect; there is no ancestral genome that
contains an entire gene that is ancestral to both w and z.

1.1.1 Background Most approaches to gene family classification
represent the sequence universe as a homology network GH =
(V ,EH ) where V is the set of all sequences and (x,y)∈EH , iff x and
y are homologous. Homology is a transitive property: if x and y share
common ancestry, and y and w share common ancestry, then x and w
must also share common ancestry. Consequently, GH is a transitive
graph: (x,y)∈EH and (y,w)∈EH → (x,w)∈EH (Rahmann et al.,
2007). Otherwise stated, GH is a disjoint union of cliques, in which
each clique corresponds exactly to a single gene family.

In practice, however, GH is unknown, and homology is typically
estimated using sequence comparison. This yields a graph GS =
(V ,ES), where ES ={(u,v)} such that (u,v)∈V ×V has a sequence
similarity score better than a given threshold. Since sequence
similarity is not a perfect predictor of homology, GS will not,
in general, be a transitive graph. Remote homology will result

1Note that this is distinct from orthology, in which only sequences related
through speciation are considered.
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in missing edges, while spurious similarity, convergent evolution
and shared promiscuous domains will introduce false edges. As a
result, families no longer correspond to cliques or even to disjoint
connected components. The typical solution is to apply a graph
clustering algorithm to GS to predict families.

Efforts to improve family classification fall into two categories.
One strategy is to improve homology prediction to reduce noise
(i.e. false and missing edges) in GS (Altschul et al., 1997; Brejova
et al., 2003; Buhler et al., 2003; Weston et al., 2004; Zhang
et al., 1998). A second approach is development of more sensitive
clustering algorithms (Bolten et al., 2001; Enright et al., 2002;
Kim and Lee, 2006; Krause et al., 2005; Rahmann et al., 2007;
Sasson et al., 2003; Weston et al., 2004; Wittkop et al., 2007).
These approaches are interdependent and can be combined. Many
clustering algorithms seek specific structural features in graphs,
based on the assumption that GS still retains clique-like structures
corresponding to families, despite noise. Conversely, better pairwise
homology prediction methods will yield a network that better
approximates transitivity, and is more amenable to clustering
algorithms.

Although major gains have been made in the area of family
classification overall, the problem of domain chaining remains
largely unaddressed. The lack of a gold standard dataset that includes
complex multidomain homologs has been a major obstacle. Most
work on homology prediction has focused on the problem of
detecting remote homology without inclusion of chance sequence
similarity. A few heuristics to eliminate domain chaining have been
proposed (Bjorklund et al., 2005; Huynen and Bork, 1998; Song
et al., 2007), but due to the lack of a gold standard, the effectiveness
of these approaches could not be evaluated. Recent empirical
evaluations of clustering methods show that more sophisticated
clustering strategies can substantially improve the classification of
single domain families (Paccanaro et al., 2006; Wittkop et al., 2007).
While these studies did not evaluate clustering performance on
multidomain sequences, TribeMCL (Enright et al., 2002), one of
the few methods designed with domain chaining in mind, was not a
top performer.

In recent, prior work, we hand curated a multidomain benchmark
dataset and used it to evaluate the performance of currently
used methods for pairwise homology prediction (Song et al.,
2008). Our results indicate that for multidomain sequences,
sequence comparison results in high error rates, as do heuristics
designed specifically to eliminate domain chaining. We further
introduced a method, Neighborhood Correlation, that exploits the
structure of the sequence similarity network to predict homologs.
We demonstrated empirically that Neighborhood Correlation
dramatically outperforms other methods for pairwise multidomain
homology prediction. However, improved performance on pairwise
predictions is not a priori evidence for effective family classification.

1.1.2 Contributions For family classification, the biological
property of interest (sequences that share common ancestry)
corresponds to a precise mathematical construct (cliques). This
ability to cast the problem in terms of a mathematical objective
guides algorithm design (Rahmann et al., 2007; Wittkop et al.,
2007); methods that add edges to dense subgraphs and remove edges
in sparse regions are promising candidates for family classification.
It also suggests graph transitivity and cluster density as measures of
performance evaluation in the absence of a gold standard.

In the current work, we show analytically that a network rescoring
method based on local graph structure will increase graph transitivity
in an unweighted network, provided that it is not too far from a
network of cliques. In addition, we simulate a network of cliques
with noise and demonstrate that rescoring restores transitivity.

We further evaluate network rescoring on weighted graphs
based on biological data. We show that the network structure
in the rescored network of mouse and human sequences closely
corresponds to families of known common ancestry, yielding a
classification with substantial improvements in Precision and Recall
compared with sequence similarity. In the yeast network, we show
that rescoring improves graph properties associated with high
subgraph density, yielding a more compact network well suited to
family inference.

Finally, selection of a single threshold that removes spurious
edges and adds missing homologous edges, while retaining correct
relationships, is a key challenge addressed by our methods. For
unweighted networks, we suggest an analytical approach to selecting
such a threshold. We further discuss empirical approaches to
selecting a threshold in weighted networks. We also demonstrate
empirically that the optimal classification threshold for the rescored
network is much less sensitive to family history than that of the
sequence similarity network.

2 MODEL
The goal of network rescoring is to decrease scores of unrelated
pairs and increase scores of related pairs, such that it is possible
to select a threshold that separates these two sets. We show
here that Neighborhood Correlation (Song et al., 2008), which
rescores a network based on its local organization, has this property.
Neighborhood Correlation takes a weighted network as input and
calculates pairwise scores in the range [−1,1] between all pairs of
nodes. Given a fully connected, weighted network, let wx be the
vector of similarity scores between x and all other nodes in the
network; i.e. wx[i]=S(x,i), where S(x,i) is the similarity between
sequences x and i. We define the Neighborhood Correlation score,
NC(x,y), to be the Pearson correlation coefficient between wx and
wy. Formally,

NC(x,y)=
∑

i∈N ((wx[i]−wx)(wy[i]−wy))√
(
∑

i∈N (wx[i]−wx)2)(
∑

i∈N (wy[i]−wy))2
, (1)

where N is the number of sequences in the network, and wx is the
mean of wx .

Empirical evaluation shows that Neighborhood Correlation
exhibits superior performance on the pairwise multidomain
homology prediction problem (Song et al., 2008). The effectiveness
of Neighborhood Correlation can be understood biologically.
Local network structure encodes traces of the evolutionary history
of sequences because gene duplication and domain shuffling
events impose distinct local organization. Neighborhood Correlation
exploits this property to accurately identify family structure.

The performance of Neighborhood Correlation can also be
understood mathematically: since gene families correspond to
cliques in GH , sequences within a family will have numerous edges
to other members of the family, and these relationships can be used
to support edges missed by sequence comparison. This intuition
suggests that a clique may be resolved from noise so long as a
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Fig. 2. Example graph components for intuition. In (A), x and y are members
of families fx and fy, respectively, but joined by a single edge. (B) depicts
a single family missing two edges, while (C) illustrates a case where edge
weights must be used to distinguish between edge addition or deletion.

sufficient fraction of homologous edges are retained. Conversely,
spurious edges will not be supported by the surrounding local
network structure.

Let GS be a network in which the weight of every edge is either
zero or one, imposed by selecting edges with a similarity threshold,
t. A weighted network GNC is then constructed by rescoring GS with
Neighborhood Correlation, using Equation (1), where

wx[i]=
{

1 if S(x,i)> t
0 otherwise.

(2)

Transitivity may be increased by splitting inappropriately linked
families. It may also be increased by adding edges that complete
cliques. The following examples motivate selection of a threshold
that suits both of these interests.

First, an example of two unrelated families linked by a single
edge suggests an appropriate threshold. Figure 2Ashows a connected
component consisting of two subgraphs of size ≥3, corresponding
to families fx and fy. Node x is adjacent to at least two nodes in
fx (resp. y). As N becomes large, NC(x,y) approaches 0.5. If x has
more than two neighbors in its family, then NC(x,y) will decrease
further. A threshold of NC>0.5 will eliminate the spurious edge
(x,y), correctly splitting the component into two separate families.
This suggests that a threshold of 0.5 will separate unrelated families
in GNC .

We next consider whether this threshold is low enough to restore
missing edges to a clique. A family of size 4 is shown in Figure 2B.
Two additional edges, (x,u) and (v,y), are needed to form a clique.
As N becomes large, NC(x,u)=NC(v,y)→0.6, and NC(·,·)→0.8
for all edges already present in the component. With a threshold
of NC>0.5, the existing edges will be retained and transitivity is
increased by the added edges, completing the clique. In general,
for any connected component of size k >3 with at least than
k(k−1)/4 edges, more edges will be added with score NC>0.5,
yielding a denser component and increasing network transitivity
overall. Formalizing these ideas is an interesting direction for future
theoretical work. Our interest here is to investigate the practical
consequences of these observations for gene family classification.

While the unweighted model is a useful abstraction for theoretical
analysis and simulation, a weighted graph based on sequence
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Fig. 3. Histogram of Neighborhood Correlation scores for the mouse and
human dataset.

similarity scores should be used for real data. Consider the example
in Figure 2C. If x, y and z represent a family, then a third edge, (x,y)
should be added. On the other hand, if, say, x and z form a family of
size 2 and y is unrelated, then (z,y) should be removed. In this case,
connectivity alone provides no information to make this decision
and Neighborhood Correlation can yield no additional confidence.
In a weighted graph, S(x,z) and S(z,y) would determine whether
the edge should be added or subtracted. Therefore, the information
provided by edge weights should be utilized when working with a
real sequence similarity network.

With a weighted graph, it is no longer possible to select a threshold
based on simple geometric arguments. In the following section,
we demonstrate that the ideal threshold for a network rescored
by Neighborhood Correlation is robust, and may be selected more
readily than with other leading methods. Several approaches may
be used to infer an appropriate classification threshold. As a rule
of thumb, a threshold may be selected by plotting a histogram
of Neighborhood Correlation scores. With our human and mouse
dataset (Fig. 3), and all other datasets we have considered, this
histogram is strongly bimodal. The two peaks, one with scores
close to 1.0 and the other close to 0.0, are separated by a broad,
low trough at intermediate values. Threshold values selected within
this trough are robust and accurately partition the network when
compared to gold standards. When a more fine-grained approach is
desired, a threshold may be selected by optimizing general measures
of network transitivity, as below.

3 RESULTS
We evaluate family classification methods using three different
approaches: simulation, comparison with a gold standard and via
intrinsic measures based on graph transitivity. The most relevant
test is comparison of predicted families with known families, when
a gold standard is available. We use curated families in mouse and

i47



[10:01 15/5/2009 Bioinformatics-btp207.tex] Page: i48 i45–i53

J.M.Joseph and D.Durand

human for this analysis. When a gold standard is not available,
family classification can be evaluated using intrinsic measures. Since
homology is an intrinsically transitive property, the extent to which
G approximates a network of cliques is a measure of classification
performance. Clustering coefficient and average component density
are two measures that assay this property. We use this approach
in yeast, for which no gold standard is available. Finally, we
use simulation to evaluate the ability of our methods to restore
transitivity a network of cliques degraded by noise. With simulation,
the true homology network is known and it is possible to control
parameters of interest (e.g. clique size, clique number, the number
of false and missing edges).

All three analyses begin with a graph, GS that corresponds to a
transitive homology graph, GH , perturbed by noise. Every pair of
nodes (u,v)∈V ×V is rescored using Neighborhood Correlation to
obtain a rewired graph, GNC = (V ,ENC).

3.1 Validation Metrics
For our application, where homologous gene families correspond
to cliques, figures of merit that assess the transitivity of a graph
are appropriate internal validation methods. We use two metrics to
evaluate how well a graph approximates a set of isolated cliques: the
mean clustering coefficient, C, which reflects local transitivity, and
the graph component density, D, a measure of global transitivity.

The clustering coefficient for a single node i, of degree ki ≥2, is

Ci = 2|{( j,k)}|
ki(ki −1)

∀j,k ∈Vi,(j,k)∈E, (3)

where Vi is set of nodes adjacent to i. Ci is the edge density of the
subgraph, Vi. It reflects the degree to which the neighbors j and k, of a
node i, are connected to each other. The graph clustering coefficient,
C, is the mean Ci over all nodes, and is an average measure of local
density. C(G)=1 iff G is transitive.

The component density of a graph is the weighted average of the
density of individual components or

D(G)=
∑

c Lc(Lc −1)∗dc∑
c Lc(Lc −1)

= 2|E|∑
c Lc(Lc −1)

, (4)

where dc =2Ec/(Lc(Lc −1)) is the density of component c, with
Lc nodes. D(G)=1 iff G is transitive. Note that D is equivalent
to the ratio of the total number of edges in G to the number of
possible edges within components. Given graphs GS = (V ,ES) and
GNC = (V ,ENC) of equivalent total density (|ES |=|ENC |), the graph
with the highest component density most closely approximates a
transitive graph.

Both C and D increase with transitivity, reaching unity in a
fully transitive graph. Although, in general, high values of C(GS)
and D(GS) are evidence that GS closely approximates GH , these
measures can be misleading in extremely dense or sparse graphs. In
a graph consisting of one, or a very small number, of dense connected
components, both C and D will be close to one. However, this is not a
realistic gene family model. At the other end of the spectrum, D will
be unity in a graph consisting entirely of components of size 2, but
these, again, are not typical of gene families in real data. Moreover,
the clustering coefficient is not informative for very sparse graphs,
since C is not defined on connected components of size 2. To ensure
that the graphs obtained are not near these extremes, we consider
the number of connected components. In the simulated data, where

the exact number of cliques in GH is known, we also verify that we
recover the correct number of connected components.

In the analyses of simulation and yeast data, relative transitivity
is assessed by comparing the values of C and D for GS and GNC .
These values depend on the choice of edge weight threshold used
to sever edges in the graph. To obtain a fair comparison, we select
thresholds in GS and GNC to obtain graphs with the same graph
density. Graph density is a suitable basis for normalization, because
D is directly, and C is indirectly, dependent on overall graph density.
In the simulation analysis, the density of GS is implicitly controlled
by the noise model, which, by design, constructs GS with the
same density as GH , in expectation. A Neighborhood Correlation
score threshold is then explicitly selected to ensure that GNC
also has the same density. In the yeast studies, the Neighborhood
Correlation threshold is treated as an independent variable. For
each Neighborhood Correlation threshold considered, the sequence
similarity threshold is selected to obtain a graph, GS with the same
density as GNC .

Neighborhood Correlation performance was also assessed on a
curated set of mouse and human families (Song et al., 2008). This
test set was derived from the set of all 26 197 full length, mouse and
human amino acid sequences derived from the SwissProt (version
50.9) database. Twenty families with evidence of common ancestry
were considered, including 1577 sequences in all. This set is based
on a synthesis of over 70 publications by experts on specific families.
The selected families represent seven single domain families, five
families of conserved multidomain architecture and eight families
of variable architecture. These families also represent a range of
sequence conservation. Highly divergent single-domain families,
such as the tumor necrosis factors (TNFs) and ubiquitin-specific
proteases (USPs), were included to test the performance on remote
homology prediction. Details of the family curation procedure are
given in Song et al. (2008).

3.2 Simulation
In simulation studies, we construct an artificial graph GH consisting
of a disjoint set of cliques to represent families. GS is derived from
GH by simulating missing and spurious edges that arise from faulty
homology prediction. Edges within cliques of GH are selected for
deletion with probability pd . Edges not in GH are selected for
addition with probability pa, where pa is selected such that the
expected total density of GS is equal to the density of GH .

We considered networks with cliques of varying sizes, because
small cliques are more sensitive to noise than large cliques due to
the difference in ‘redundant’ connections within the clique. Figure 4
shows an analysis of a network of 48 cliques: 16 cliques of size 4,
and 8 each of sizes 8, 16, 32 and 64. The choice of these parameters
was guided by the observed family sizes in our curated mouse and
human families. The results obtained for other conformations were
similar (data not shown).

Figure 4 illustrates that a very small number of mis-assigned edges
is sufficient to completely disrupt this family structure, as shown by
the low values of both C(GS) and D(GS). In contrast, Neighborhood
Correlation is able to completely recover this structure, when
pd ≤0.1. In addition, GNC almost always has 48 components,
the same number as GH . This is a strong evidence to show that
Neighborhood Correlation is able to perfectly reconstruct GH at
low error rates. Performance begins to degrade as noise increases.
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Fig. 4. Component and transitivity measures of simulated networks of
cliques degraded by noise; (A) connected component count, (B) component
density and (C) mean clustering coefficient. Error bars indicate 1 SD over
100 randomization trials.

However, even with pd as high as 0.2, Neighborhood Correlation
is still able to reconstruct more than half of the components and
C(GNC) remains > 0.8 for the entire range, 0≤pd ≤0.5.

3.3 Mouse and Human
After considering the utility of Neighborhood Correlation on
simulated data where the true graph GH is known, we now

turn to real data. A weighted sequence similarity network, GS ,
was constructed using all-against-all BLAST (version 2.2.15,
default parameters) comparison of the full set of 26 197 mouse
and human amino acid sequences in our dataset. A significance
E-value corresponding to 10 matches per sequence was used. A
weighted network, GNC , was constructed from GS by calculating
Neighborhood Correlation scores using Equation (1), where

Wx[i]= log10

{
Smin if E(x,i)≥10
S(x,i) otherwise,

(5)

S(x,i) is the normalized bit score (Altschul et al., 1997), and Smin is
fixed to 95% of the smallest bit score satisfying E =10.

Families were predicted from both GS and GNC by applying each
of three simple agglomerative clustering variants: single, complete
and average linkage. Non-overlapping clusters are obtained by
cutting the agglomerative tree at a particular threshold.

The quality of clustering is evaluated by the correspondence
between families and clusters. Given a family i and a cluster j, the
Precision, Pij , is the fraction of elements in j that are members
of family i. Similarly, the recall, Rij , is the fraction of members
of family i that are found in cluster j. F, the harmonic mean of
Precision and Recall, reflects the quality of both Precision and Recall
simultaneously:

Fi,j =
2Pi,jRi,j

Pi,j +Ri,j
. (6)

Classification performance on each family was determined using
a family-specific F-measure: Fi =

∑
j ni,jFi,j/ni, where ni,j is the

number of members of family i in cluster j and ni is the number
of sequences in the entire family. The family-specific F-measure
captures the classification quality on individual families, but does
not reflect performance on a mix of sequences from families
with varied conservation and architecture. To test classification on
heterogeneous data, we also calculated the F-measure on sequences
from all families combined (ALL) using the weighted average F =∑

i,j ni,jFi,j/n, where n=∑
i ni. One family, the kinases, is much

larger than the others. To avoid bias, we also calculated F for the set
of all sequences except the Kinases (ALL-kin).

We evaluated classification performance of both GS (Fig. 5A) and
GNC (Fig. 5B), for all possible thresholds. Families are grouped by
domain architecture: first, single domain families; then, multidomain
families with conserved architectures, followed by families with
variable architectures. Classification performance is expressed as a
heatmap of the F-measure, where F =1 (red) is optimal, and F =0
(blue) is the worst possible clustering quality.

It is immediately clear from inspection of Figure 5 that a much
better classification can be obtained using the rewired network: the
Figure 5A is mostly blue; Figure 5B is mostly red. Near perfect
classification of single domain families, with the exception of TNF
and USP, can be obtained using either of the scoring systems.
Similar behavior is seen with multidomain families with conserved
architectures: good classifications can be achieved by either of
the methods, although the optimal classification threshold varies
substantially from family to family. In contrast, classification with
the rewired network shows a dramatic improvement over sequence
similarity for families with variable architectures. Classification of
TNF and USP, families with low sequence conservation, is also much
improved in the rewired network, showing that rewiring restores
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Fig. 5. Evaluation of clustering performance of sequence similarity (A) and Neighborhood Correlation (B) on 20 curated families in mouse and human.
This heatmap illustrates F-measure, where good performance (F = 1) is red and low (F = 0) is blue, for single-, average-, and complete-linkage agglomerative
clustering. Families are ordered by domain structure, where ACSL-WNT are single domain, DVL-TRAF have conserved multidomain architectures and
ADAM-TNFR have variable architectures. ALL and ALL-kin depict weighted averages over the full set, and the set excluding Kinase, respectively.

missing edges due to remote homology, as well as removing edges
due to domain chaining.

Comparison of the performance of GS and GNC on the ALL
and ALL-kin datasets reveals that sequence similarity scores
are much more family-specific than Neighborhood Correlation
scores. The poor performance of single-linkage clustering on GS
implies that no threshold can give good performance for most
families, a fundamental obstacle to obtaining good classifications
on heterogeneous data using sequence similarity. Neighborhood

Correlation obtains much better performance on these aggregate
datasets: the best performance of the rewired network (Fmax =
0.85, avg. linkage) is substantially greater than that of sequence
similarity (Fmax =0.42, avg. linkage). This suggests that rewiring
is of particular importance for automated, genome-scale analyses.

Since the single-linkage metric simply generates connected
components for a particular threshold, comparison of the single-
linkage heatmaps for GS and GNC reveals the benefit of rewiring
alone, without additional clustering. Neighborhood Correlation
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Fig. 6. F-measure, Precision and Recall of the ALL-kin dataset, for (A)
sequence similarity, and (B) Neighborhood Correlation, after average-
linkage clustering.

rewiring increases transitivity and results in connected components
that more closely approximate true families. Both average and
complete linkage further improve the classification obtained from
GNC , suggesting that Neighborhood Correlation not only increases
graph transitivity, but also that rewiring as a pre-processing step
is a promising approach for better classification. Interestingly,
neither average- nor complete-linkage much improves performance
with GS .

The F-measure captures overall classification performance, but
does not detail the tradeoff between Precision and Recall. Figure 6
shows the F, Precision and Recall attained with average linkage
for GS and GNC on the ALL-kin dataset. On this dataset, sequence
similarity can obtain near perfect Precision, but at a cost of missing
roughly half of all true positives. In contrast, classification with
Neighborhood Correlation delivers both Precision and Recall > 80%
for Neighborhood Correlation scores ranging from 0.2 to 0.6.

3.4 Yeast
In a third analysis, we considered how Neighborhood Correlation
influences graph properties in the yeast network. We also
investigated whether it is beneficial to use additional sequence
data when calculating Neighborhood Correlation scores. Since
NC(x,y) effectively compares the relationship between x and other
sequences with the relationship between y and other sequences,

Fig. 7. Visualization of the S.cerevisiae genome after rescoring with
Neighborhood Correlation. Edge color signifies the Neighborhood
Correlation score, where gray indicates NC≥0.3, violet ≥0.4, green ≥0.6,
orange ≥0.8, and yellow ≥0.9. The dense component at top right contains
all kinases. Singleton nodes have been omitted for clarity.

we hypothesized that using additional sequences to calculate
Neighborhood Correlation would improve its accuracy.

All 46 060 amino acid sequences from nine yeast genomes
were obtained from the YGOB, version 2 database (Byrne and
Wolfe, 2005). All-against-all BLAST comparisons were carried
out on the set of all genes in Saccharomyces cerevisiae alone; in
four genomes (S.cerevisiae, Candida glabrata, Ashbya gossypii,
and Kluyveromyces lactis); and in all nine genomes in YGOB2.
Neighborhood Correlation scores were then calculated for all pairs
in each of these three datasets. From these, we extracted three
sequence similarity networks (GS−1, GS−4 and GS−9) and three
Neighborhood Correlation networks (GNC−1, GNC−4 and GNC−9)
for S.cerevisiae only; that is, in two of these, multiple genomes were
used to calculate the edge weights, but we consider only edges in
GS and GNC between nodes of the 5616 S.cerevisiae genes in this
analysis.

We constructed a visual representation of the GNC network with
a force-based layout calculated with Neato (Emden R. Gansner
and Stephen C. North, 1999). Figure 7 shows that Neighborhood
Correlation breaks the network into disjoint components. Many of
these are cliques. Unfortunately, no rigorously curated gold standard
for evolutionary families is available in yeast. However, visual
inspection revealed that many of these components correspond to
groups of genes that are commonly considered as families. For
example, actin and the seven actin-related proteins (ARPs) form an
isolated clique and the large cluster in the upper right hand corner
corresponds to the kinases. This well-defined component structure
was not observed in a similar visual representation constructed from
the sequence similarity network (GS) (data not shown).

In the absence of a gold standard, we evaluate the ability of
Neighborhood Correlation to restore transitivity in the yeast network
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Fig. 8. Component and transitivity measures of the network of S.cerevisiae
genes for sequence similarity, and Neighborhood Correlation calculated with
one, four and nine yeast genomes: (A) connected component count, (B)
component density and (C) mean clustering coefficient.

using the same network measures used in the simulation analysis,
shown in Figure 8. The Neighborhood Correlation and sequence
similarity axes are aligned such that graph density is constant for
NC≥0.15.

The clustering coefficient (Fig. 8C) is consistently higher in GNC
than in GS . This demonstrates higher local density for components
of size ≥3. Similarly, component density (Fig. 8B) is consistently
higher for Neighborhood Correlation than for sequence similarity up
to thresholds of NC≥0.9. Taken together, these measures show that
in yeast, as in mammalian and simulated networks, Neighborhood
Correlation restores transitivity. For all but the highest thresholds,
components in GS are larger and sparser than in GNC . This occurs
because multiple families are merged into single components in GS ,
yet failure to recognize remote homology keeps these components
sparse.

The component density of GNC decreases markedly between
thresholds of 0.75 and 0.9. First,∼10% of components of size
2 break up into singletons in this range. Since the density of a
two-node component is one, loss of such pairs will substantially
reduce the average value of D(G). In addition, large components
become sparser as the threshold becomes more stringent. For
example, the largest component in the network in this range (the
Kinases), decreases in density from 0.85 to 0.33. At very high
stringencies, both networks consist almost entirely of singletons,
two-node components and a few very small cliques of size ≥3,
leading to values of C(G) and D(G) close to one.

The number of components (Fig. 8A) increases from few very
weakly connected components at very lenient thresholds to a larger
number at more stringent thresholds in both GNC and GS . In GNC ,
the component count is stable for thresholds roughly from 0.3 to
0.7, illustrating the robustness of Neighborhood Correlation. GS
has fewer components at comparable thresholds up to 0.7. Again,
this is probably due to larger components containing members
of more than one family. At higher thresholds, the number of
components decreases in both graphs as components are broken up
into singletons, which are not included in the component count.

Comparison of GNC−1, GNC−4 and GNC−9 shows that including
more genomes in the calculation of Neighborhood Correlation
further increases transitivity. It is reassuring to note that while
the clustering coefficient and component density are higher with
more genomes, the overall trends are unaffected. Moreover, the
differences between GNC−1, GNC−4 and GNC−9 are smaller than
the differences between GNC and GS except at very low thresholds.

4 DISCUSSION
Despite advances in gene family classification, classification of
multidomain families remains an open problem. Whereas true
homology forms a set of disjoint cliques, domain chaining
introduces false edges that degrade transitivity. We show
empirically through simulation and with real biological data
that Neighborhood Correlation captures homology and restores
transitivity to the sequence similarity network. From networks
degraded by considerable noise, Neighborhood Correlation recovers
network clique structure typical of the structure of gene families
evolved through vertical descent. When studied from an analytical
standpoint, examination of simple graph structures that reflect
expected family structure suggest that this is an inherent
mathematical property of Neighborhood Correlation. Formalization
of this intuition is an interesting area for future development.

In addition to improving transitivity overall, we empirically
verify that dense subgraphs in the Neighborhood Correlation graph
correspond to known homologous families in the mouse and human
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genomes. Moreover, because Neighborhood Correlation effectively
normalizes scores across families, good quality classification can
be achieved with a single threshold for all families. Families in
the network rescored by Neighborhood Correlation are correctly
represented as disjoint components, suggesting that Neighborhood
Correlation ameliorates the domain chaining problem and captures
remote homology.

The application of hierarchical clustering to the rescored
network improves performance further. This suggests that while
Neighborhood Correlation better estimates homology than sequence
similarity, it can also be a useful pre-processing step to
more sophisticated clustering algorithms that consider network
structure. Empirical evaluation of clustering algorithms on curated
multidomain data is a useful direction for future work.

Many family classification methods have been shown to work
when validated with single domain sequences, domain models,
structural similarity and functional data, though it is important to
recognize that none of these explicitly test evolutionary relationship,
and all are ill-suited to evaluating the question of homology. Use
of such validation is partly due to a lack of available curated
datasets. We provide our curation dataset for use by others, at
http://www.neighborhoodcorrelation.org.
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