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ABSTRACT

Motivation: G-quadruplexes are stable four-stranded guanine-rich
structures that can form in DNA and RNA. They are an important
component of human telomeres and play a role in the regulation
of transcription and translation. The biological significance of a
G-quadruplex is crucially linked with its thermodynamic stability.
Hence the prediction of G-quadruplex stability is of vital interest.
Results: In this article, we present a novel Bayesian prediction
framework based on Gaussian process regression to determine the
thermodynamic stability of previously unmeasured G-quadruplexes
from the sequence information alone. We benchmark our approach
on a large G-quadruplex dataset and compare our method to
alternative approaches. Furthermore, we propose an active learning
procedure which can be used to iteratively acquire data in an optimal
fashion. Lastly, we demonstrate the usefulness of our procedure on
a genome-wide study of quadruplexes in the human genome.
Availability: A data table with the training sequences is available
as supplementary material. Source code is available online at http://
www.inference.phy.cam.ac.uk/os252/projects/quadruplexes
Contact: os252@cam.ac.uk; jlh29@cam.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Understanding biological sequences and predicting the functional
elements they determine are widely studied themes in computational
biology. Examples of well-established problems are gene finding and
the prediction of protein structure from its amino acid sequence.
Computational methods addressing such challenges helped to gain
insights into interesting biological phenomenon. However, other
information encoded in the DNA sequence remains to be explored.

Recently, it has been found that particular G-rich DNA (and RNA)
sequences are capable of forming stable four-stranded structures
known as G-quadruplexes (Burge et al., 2006; Huppert, 2008;
Neidle and Balasubramanian, 2006). G-quadruplexes have been
shown to be relevant in a number of biological processes (Patel
et al., 2007). They are an important component of human
telomeres (Oganesian and Bryan, 2007), and play a role in regulation
of transcription (Qin and Hurley, 2008; Siddiqui-Jain et al., 2002) as
well as translation (Kumari et al., 2007). Structurally, intramolecular
G-quadruplexes consist of a square arrangement of four guanines
(a tetrad) in a planar hydrogen bonded form. At the centre of
the tetrads is a monovalent cation, e.g. K+, that further stabilizes
the structure. The core guanines are linked by three nucleic acid
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Fig. 1. (a) Hydrogen bond pattern in a G-tetrad. A monovalent cation
occupies the central position. (b) Schematic diagram of an intramolecular
G-quadruplex, with three G-stacks.

sequences (loops) of varying composition and topology. Figure 1
shows a schematic picture of a G-quadruplex together with the
hydrogen bond pattern.

An obvious challenge is to predict which sequences will form
these G-quadruplexes. A necessary condition for G-quadruplex
formation is the presence of core guanines and loop sequences. These
basic requirements can be used to identify putative G-quadruplexes
using a simple pattern-based rule, matching sequences of the form

d(GNG
N1−NL︸ ︷︷ ︸

L1

GNG
N1−NL︸ ︷︷ ︸

L2

GNG
N1−NL︸ ︷︷ ︸

L3

GNG
), (1)

where GNG
are the guanine cores that can occur with different

numbers of G-stacks, NG =2,3,4. The symbol N denotes any
nucleotide. The loop sequences (L1, L2, L3) have varying length,
where NL =7 is a typical choice for the maximum length. For very
long loops, G-quadruplexes are unlikely to form as their stability
decays with the total sequence length (Bugaut and Balasubramanian,
2008; Hazel et al., 2004). Similar rules have been widely used
in the literature (e.g. Huppert and Balasubramanian, 2005) and
demonstrated to work well in practice. However, they are not
exhaustive, for example some structures with much longer loops can
be formed (Bourdoncle et al., 2006). The most important limitation
of pattern-based sequence rules is that they do not predict the
thermodynamic stability, a key property of the G-quadruplex. In
order for the G-quadruplex to have a biologically meaningful role,
it needs to be stable enough to form a structure at body temperature.
Furthermore, it has been speculated that G-quadruplexes that are
metastable at body temperature carry the most significant role, as
their influence on transcriptional processes can be active or inactive
depending on other factors.
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This motivates the problem of predicting the G-quadruplex
melting temperature as a proxy for stability from its sequence alone.
In contrast to simpler systems such as DNA duplexes (SantaLucia,
1998), sequence differences in G-quadruplexes affect thermo-
dynamic stability in a non-linear fashion, hence rendering this
prediction task challenging. The nearest neighbour approaches that
have been so successful for predicting duplex stability, such as
from (SantaLucia, 1998), are not applicable to folded-back structures
such as G-quadruplexes.

It is relatively straightforward to experimentally determine
the thermodynamic stability for specific G-quadruplexes using
ultraviolet (UV) melting (Mergny et al., 1998). In a UV melting
experiment, the absorbance of a guanine-rich oligonucleotide is
recorded as a function of the temperature. This allows the melting
temperature of the G-quadruplex to be deduced. However, no one
has managed to extrapolate generalized energy parameters to each
component of the structure. Instead, empirical rules and intuition
have been built up based on small-scale studies with a few dozen
G-quadruplex sequences. Various details have been discovered,
establishing the importance, in particular, of the loops that join
the core guanines together (Bugaut and Balasubramanian, 2008;
Hazel et al., 2004; Lane et al., 2008). Although it is still in the
early days of our understanding of G-quadruplex stability, it is
clear that both loop length and loop composition are important.
The stability of G-quadruplexes is also strongly influenced by the
surrounding solution providing the monovalent cation that sits inside
the structure, typically between the G-tetrad stacks (Fig. 1). For
instance, K+ is strongly favoured over Na+ or Li+ and hence leads
to more stable structures.

In this work, we propose a computational prediction method for
the stability of G-quadruplexes based on Gaussian process (GP)
regression. This includes a special purpose covariance function that
allows sequence features potentially affecting the G-quadruplex
stability to be flexibly incorporated. The inference procedure
automatically determines the relevance of sequence features and
yields predictions with error bars. Using a heavy-tailed likelihood,
our model gains additional robustness with respect to outliers. The
presented framework can also handle experimental data that merely
set a maximum or minimum range on the melting temperature rather
than an explicit value. This situation occurs if a structure is found
to be stable at all experimentally accessible temperatures.

We demonstrate the accuracy of the prediction method on
previously unseen sequences and compare it to alternative methods.
Finally, we consider an active learning procedure and apply the
methodology to assess the stability of G-quadruplexes in gene
promoters, comparing them to other G-quadruplexes.

2 QUADRUPLEX PREDICTIONS USING GP
The prediction of G-quadruplex stability can be cast as a regression
problem. For a given training dataset with observed G-quadruplexes,
D={xn,tn}N

n=1, the task is to infer a latent function f :x→ t,
mapping from a G-quadruplex input x to its melting temperature t.
The main determinant of G-quadruplex stability is the sequence
information. However, the cation nature and salt concentration also
have an effect on the stability of the resulting G-quadruplex. Our
G-quadruplexes were measured at different concentration levels,
which must be taken into account when making predictions.

Fig. 2. Bayesian network representation of a GP regression model. The
model relates observed independent input/output pairs {xn,tn}N

n=1. The thick
lines couple the latent function value {fn}, illustrating the smoothness
assumptions introduced by the GP prior. The parameters θK and θL denote
hyperparameters of the kernel and likelihood, respectively.

We assume that inputs x={s,c} consist of the quadruplex sequence
s and a vector of log-salt concentrations c.

To apply the GP machinery, all we need is a positive definite
covariance function defined (kernel) between pairs of G-quadruplex
inputs. Given a training dataset D the posterior distribution over
latent function values f is

P(f |HGP ,D,θK,θL)∝N (f |0,KX,X(θK))
N∏

n=1

pL(tn |fn,θL), (2)

where θK and θL are hyperparameters of the kernel (K) and the
likelihood (L), respectively. We use X to denote the set of all
training inputs, X={x1,...,xN }. The covariance matrix KX,X(θK)
is derived from the covariance function k(x,x′ |θK) which specifies
how function values at two inputs x,x′ covary. The noise model
pL(tn |fn,θL) relates function values fn and the corresponding noisy
observations tn. For simplicity let us first assume standard Gaussian
noise, pL(tn |fn,θL)=N (tn |fn,σ 2) with noise level σ . In this case,
the predictive distribution for an unseen input x� is a Gaussian
again (Rasmussen and Williams, 2006), where t� ∼N (μ�,v�) and

μ� =K�,X

[
KX,X(θK)+σ 2I

]−1
t (3)

v� =K�,�−K�,X(θK)
[
KX,X(θK)+σ 2I

]−1
KX,X� (θK).

A Bayesian network representation of this model is shown in
Figure 2. A comprehensive introduction to GPs can be found
in Rasmussen and Williams (2006).

Hyperparameters: a GP is a non-parametric model. The only explicit
parameters of the model are hyperparameters θL and θK, all other
parameters can be integrated out and are not represented explicitly.

In a GP model the posterior probability of the hyperparameters is

P(θK,θL|HGP,D)∝P(t|HGP,X,θK,θL)P(θK,θL). (4)

The log of the first term, L(θK,θL) (marginal likelihood), can again
be computed in closed form for a Gaussian-noise model (Rasmussen
and Williams, 2006). Gradient-based optimizers can be used to then
determine the most probable setting of the hyperparameters

{θK,θL}=argmax
θ

′
K,θ

′
L

(L(θ ′
K,θ ′

L)+logP(θ ′
K,θ ′

L)
)
. (5)
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2.1 Covariance function and hyperpriors
An important design choice for using a GP is a suitable covariance
function. We use a product of covariance functions to combine
kernels evaluated on the sequence s and solution concentrations c

k({s,c},{s′,c′})=kc(c,c′)·ks(s,s′), (6)

where ks is the sequence kernel and kc the concentration kernel.
The product expresses the belief that both kernels must assign high
similarities for covariation of function values.

The squared exponential concentration kernel decays
exponentially with log-concentration difference

kc(c,c′)=A2
c exp

(
−1

2

∑
i

(
ci −c′

i

)2
lic

2

)
, (7)

where Ac determines the typical amplitude of deviations from the
mean and {ci} are log salt concentrations in mM of Na+, K+,
NH+

4 and Mg2+, respectively. These are the four most common
stabilizing cations for G-quadruplexes; the nature of the anion does
not seem to play a role. The lengthscale parameters lc determine the
significance of the associated concentration parameters where large
lengthscales correspond to less relevant parameters and short length
scales to more relevant ones. To make the lengthscale comparable,
the individual input dimensions are linearly rescaled such that
observed training inputs fall into a set range, here −5 to 5.

The sequence kernel, ks, is a sum of two covariance functions.
The first covariance is designed to specifically incorporate existing
beliefs about characteristic sequence features that are likely to
determine the stability of the G-quadruplex (Lane et al., 2008).
For flexibility, we consider G-quadruplexes that contain either two,
three or four stacked tetrads and hence have the equivalent number
of guanines in each run. From the raw sequence information of a
G-quadruplex with the form

d(GNG
N1−NL︸ ︷︷ ︸

L1

GNG
N1−NL︸ ︷︷ ︸

L2

GNG
N1−NL︸ ︷︷ ︸

L3

GNG
), (8)

a set of features f is extracted:

• Ltotal – total length of the sequence (in bases)

• NG – number of G-tetrad stacks (2, 3 or 4)

• L1 – length of the first loop (from the 5′ end, in bases)

• L2 – length of the second loop

• L3 – length of the third loop

• FA – relative frequency of adenine in the sequence

• FC – relative frequency of thymine

• FT – relative frequency of cytosine

The loop lengths determine the number of bases between the guanine
stacks, N1−NL

. The relative frequency of the adenine, thymine and

cytosine are calculated as FA = NA
Ltotal

, where NA denotes the total
number of adenines in the sequence (similarly for thymine and
cytosine). Again, a squared exponential kernel is used to combine
these features

kf(f,f
′)=A2

f exp

⎛
⎝−1

2

∑
i

(
fi − f ′

i

)2
lif

2

⎞
⎠, (9)

where fi denotes the i-th of the eight sequence features. The
parameters have the same interpretation as for the concentration
kernel. As before, input dimensions are rescaled and the lengthscale
parameters lf was adjust the relevance of the sequence features. The
second sequence covariance function is ignorant to the biological
meaning of the G-quadruplex sequence and merely treats it as
character string. We can construct a spectrum kernel (Leslie et al.,
2002), that is sensitive to common k-mers present in two sequences
s and s′

ks(s,s′)=A2
s �k(s)·�k(s′), (10)

where �k(s) maps the sequence s to a vector of counts with the
number of occurances for each k-mer in s. The number of possible
k-mers in a nucleotide sequence scales as 4k and hence only small
orders k are practical. In experiment,1 we consider k-mers up to
an order of k =4. Due to this low order of k, this spectrum kernel
is local in that it is not sensitive to long common substrings. In
contrast, the feature kernel captures global sequence characteristics
and hence both sequence kernels complement each other.

Finally, all three kernels are combined in

k({s,c},{s′,c′})=kc(c,c′)·[kf(f,f
′)+ks(s,s′)

]
. (11)

The relative weights of the individual kernels are controlled by the
amplitude parameters Ac,Af and As.

Hyperpriors: priors on all kernel- and likelihood-hyperparameters
{θK,θL} are Gamma distributed. The prior on the expected
amplitudes of the squared exponential kernels Af and Ac is �(2,10)
with an expected value of 20. The amplitude of the string kernel has
a prior As ∼�(2,0.5). The prior on the noise level σ is �(2,0.5),
which corresponds to an a priori uncertainty of ±1◦C about the
measured G-quadruplexes’ melting temperatures. The lengthscale
parameters of the feature and concentration kernels have a prior of
�(4,10), which favours long lengthscales (mean 40) encouraging
irrelevant features to be switched off.

2.2 Robust likelihood
The presentation of the GP model so far makes the simplifying
assumption that observation noise is Gaussian. For our full model,
we use a heavy-tailed noise model which acknowledges that a small
fraction of the data points can be extremely noisy (outliers) while
others are measured with considerably more precision.

The ‘two model’ (Jaynes and Bretthorst, 2003) reflects this belief,

pL(tn |fn,θL)=π0N (tn |fn,σ 2)+(1−π0)N (tn |fn,σ 2
inf ). (12)

Here, π0 represents the probability that a datum is a regular
observation and (1−π0) is the probability of an outlier observation.
The variance of the outlier component, σ 2

inf , is much larger than

for regular observations, σ 2, which allows the model to effectively
discard outlier observations.

When using this likelihood model, the posterior in Equation (2)
is no longer computable in closed form. To overcome this problem,
we use Expectation Propagation (EP) (Minka, 2005) for approximate
inference. The goal of EP is to approximate the exact posterior with

1Source code for the mapping from strings to k-mer count vectors is taken
from the Shogun toolbox (Sonnenburg et al., 2006).
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a tractable alternative of the form

Q(f |D,θK,θL)∝N (f |0,KX,X′ (θK))
N∏

n=1

gn
(
fn |Cn,μn,νn

)
, (13)

where gn
(
fn |Cn,μn,νn

)
denote approximate factors.

Following Rasmussen and Williams (2006) we choose
unnormalized Gaussians

gn
(
fn |Cn,μn,νn

)=Cn exp

(
− 1

2ν2
n

(fn −μn)2
)

, (14)

which results in a GP for the approximate distribution again.
The idea of EP is to iteratively update one approximate factor at a

time, leaving all other factors fixed. This is achieved by minimizing
the Kullback–Leibler (KL) divergence, a distance measure for
distributions (Kullback and Leibler, 1951). The update for the i-th
approximate factor is performed by minimizing

KL

[
N (f |0,KX,X(θK))

∏
n �=i

gn(fn |Cn,μn,νn)

exact factor︷ ︸︸ ︷
pL(ti |fi,θL)

∣∣∣∣
N (f |0,KX,X(θK))

∏
n �=i

gn(fn |Cn,μn,νn)gi
(
fi |Ci,μi,νi

)︸ ︷︷ ︸
approximation

]

(15)

with respect to the i-th factor’s parameters μi,νi and Ci. This is
done by matching the moments between the two arguments of the
KL divergence which can then be translated back into an update for
factor parameters. There is no convergence guarantee for EP but in
practice it is found to converge for the likelihood model we consider
(see also Kuss et al., 2005). The fact that the mixture of Gaussian
likelihood is not log-concave represents a problem as it may cause
invalid EP updates, leading to a covariance matrix that is not positive
definite. We avoid this problem by damping the updates as suggested
by Kuss et al. (2005) and Seeger (2005).

EP also yields an approximation of the log marginal likelihood
which can be used to determine the setting of hyperparameters

L(θK,θL)≈ ln
∫

df N (f |0,KX,X(θK))
N∏

n=1

gn(fn)

= 1

2

N∑
n=1

(
lnν2

n +lnCn

)
− 1

2
ln
∣∣KX,X(θK)+�

∣∣
− 1

2
tT(KX,X(θK)+�

)
t, (16)

where �=diag({νn}N
n=1).

In addition to the noise level σ (Section 2.1), the robust
likelihood includes a parameter σinf and the mixing proportion
π0. The parameter π0 is optimized together with the remaining
hyperparameters. The noise level of outliers, σinf , is set to 104.

After convergence of EP, we obtain a GP as approximate posterior
distribution (Equation 13). Predictions from this model follow
analogous to the standard GP (Equation 3).

A comprehensive overview on EP approximations for GP models
can be found in Rasmussen and Williams (2006); robust GP
regression has been previously applied to biological time series
in Stegle et al. (2008).

2.3 Constrained likelihood
In addition to ‘normal’ observations of sequence/temperature pairs,
our G-quadruplex measurements also include a small fraction of
sequences where only a bound on the melting temperature was
determined. For example, if a G-quadruplex is so stable that it
does not complete its melting transition within the experimentally
accessible range (typically 10–85◦C), one can only deduce that
the melting temperature is larger than this threshold value. Such
observations can be included using a theta likelihood function. For
instance, for an observed lower bound tn

pL(tn |fn,θL)∝	(fn −tn), (17)

where 	(x)=
{

1 x>0
0 x<0

. These non-Gaussian likelihood terms can

be dealt with using an EP approximation similar to the one used
in (12), where exact likelihood terms are approximated by Gaussian
approximate site functions.

2.4 Active learning
In addition to predicting G-quadruplex melting temperatures, it is
possible to use the GP framework for experimental design, i.e. to
choose which of a set of candidates to measure. Suppose that we
would like to optimally expand a training dataset D, such that
we can make most informative predictions about a test set Dtest.
A naive approach would be to randomly draw a subset of the
sequences in Dtest, measure their melting temperatures and use
them as additional training data. Alternatively we can consider
active learning, choosing this set using an information criterion as
proposed by MacKay (1992), or in the context of GP discussed by
Seo et al. (2000).Apractical objective function is the mean marginal
information gain over the set of interest, here Dtest ={x′

m,t′m}M
m=1. If

the predictions are Gaussian, the mean marginal entropy is entirely
determined by the predicted variances σ 2

t′m

SM = 1

2

M∑
m=1

logσ 2
t′m

. (18)

To decide which sequence to measure and add to the training data,
we iterate through all candidate test inputs x′

m ∈Dtest, choosing the
one which minimizes SM . The mean entropy SM can be efficiently
evaluated as predictive uncertainties of a GP, σ 2

t′m
, only depend on the

training inputs (Equation 3) and hence candidate sequences can be
scored before knowing their melting temperature (Seo et al., 2000).
Once a measurement has been taken, the new input/target pair {x̂, t̂}
is added to the training dataset and hyperparameters are optimized
again.

3 EXPERIMENTS
To evaluate the proposed method, we applied the GP predictor
to a meta dataset summarizing major G-quadruplex experiment
data available as of today. In total, this dataset consists of 260
G-quadruplex structures which have been experimentally tested with
varying salt concentrations. All of the considered sequences were
of the form described by the pattern in Equation (8). Hence the
covariance function as introduced in Section 2.1 was applicable.
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Fig. 3. Accuracy of GP predictions for a representative 50:50 training/test
split (260 total measurements). (a) True measured melting temperatures
(green) and marginal GP predictions with ±2 SDs error bars (blue). (b)
Prediction errors 
. (c) Z-Scores for the predicted values, |
|

σ
.

3.1 Predictive performance on observed data
To assess the accuracy of the GP method, the model was trained on
subsets of all 260 G-quadruplexes. Subsequently, the trained model
was used to predict melting temperatures of G-quadruplexes in the
remaining test set, and predictions were compared with the true
observed melting temperatures. This predictive test was repeated
for different training/split ratios and multiple random splits.

3.1.1 Mean prediction We first investigated how well we were
able to predict real data using our model. Figure 3a shows marginal
GP test predictions versus the true melting temperatures for a
representative 50:50 training/test split. The plot illustrates that
the GP has estimated appropriately sized error bars. A histogram
view of the differences of the true melting temperatures and the
predictions is shown in Figure 3b. The results show that most of
the experimental data was predicted within a 5◦C error margin, a
reasonable standard of accuracy. Indeed, across 100 random 50:50
training/test splits, on average 80% of the predictions were within
±5◦C of the experimentally determined values.

We then compared the performance of our model with alternative
methods. This comparison includes the proposed GP model
(GP robust), a simpler variant of the model without the robust and
constrained likelihood (GP standard), Bayesian linear regression
on the sequence features f (Linear regression, Bishop 2006) and
a support vector machine (SVM, Fan et al., 2005). The SVM
was applied with the same kernel as used in the GP models. For
the standard GP, linear regression and the SVM, sequences where
the data only supplied an upper or lower bound on the melting
temperature (i.e. the sequence was too stable to measure under these
conditions) had to be excluded. In total, this reduced the size of the
training dataset from 260 to 256 sequences.

Figure 4a, shows the root mean squared error on the test dataset
for different algorithms as a function of the relative test set size.
As expected, the performance of all algorithms decreased with
growing test set and therefore shrinking training set sizes. The GP
methods outperformed the SVM, and linear regression. Our robust
GP model performed marginally but consistently better than the
standard GP.

3.1.2 Variance prediction As a second criterion, we assessed the
mean log probability of the test data under the predictive distribution
given by different models. Bigger predictive probability indicates
that a method not only is accurate in estimating the mean but also
yields appropriately sized error bars. For this analysis, the results
from the support vector machine had to be excluded as the method
does not yield a predicted uncertainty. The results in Figure 4b mirror
the comparison of the root mean squared errors. However, using
this probabilistic performance measure, the robust GP performed
significantly better than the standard GP variant. This suggests that
the robust likelihood model helps to ensure appropriate predictive
uncertainties. The quality of these error bars is also supported by
Figure 3c, which shows Z-scores of test predictions for a 50:50
training/test split. The number of data points within a ±2 SDs margin
is in line with the expected number hence showing that the robust GP
model ‘knows what it knows’. This is an important and powerful
feature for making useful predictions, and will be relevant in the
genome-wide G-quadruplex study in Section 4.

3.2 Determining causal features of the G-quadruplex
sequence

To understand the mechanisms of G-quadruplex stability it is useful
to be able to analyse which sequence features play a role in
determining the stability of a G-quadruplex. Such insights can be
gained from observing the optimized hyperparameters of the feature
kernel kf. As the lengthscale parameter lif indicates the relevance
of a particular feature i, this can be regarded as a form of feature
selection. A related approach has been described by Chu et al. (2005)
who used GP for biomarker discovery in microarray experiments.

The string covariance function ks(s,s′) explains part of the
sequence similarity and thus makes the relevances of the sequence
feature kernel difficult to interpret. Hence the string covariance was
excluded for this evaluation. Figure 5 shows the inverse lengthscale
parameters of the sequence kernel optimized on the full G-
quadruplex dataset. The results were averaged over 100 independent
optimizations with random starting points. The results show that
the relevance of features varied significantly. The most important
features were the length of the middle sequence (L2), the total loop
length (Ltotal) and the number of guanine stacks (NG). Among the
parameters for base composition frequency, the adenine frequency
appeared to be most important. Both observations are in line with
previously observed characteristics of G-quadruplexes (Lane et al.,
2008). However, it had been expected that L1 and L3 would also
have a large effect. In this context, it is interesting to note the strong
fluctuation of the significances of the outer loop lengths L1 and L3 as
indicated by the error bars in Figure 5. A possible explanation for this
effect is that there are dependencies between these parameters such
that either one or the other feature is needed to explain G-quadruplex
stability. Obviously, there is an underlying relationship between
Ltotal, NG and L1...3. As a result of this interaction, independent
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Fig. 4. Comparative predictive performance of different algorithms evaluated as a function of the relative test-set size (260 total measurements). (a) Root
mean squared error on the test set. (b) Mean log probability of the test data under the predictive distribution. Error bars show 1SD estimated from 100 random
training/test splits.

Fig. 5. Optimized inverse lengthscale hyperparameters. The plot shows
empirically estimated means and ±1 SD error bars estimated from 100
restarts of the optimization procedure. Larger bars indicate more important
parameters.

restarts might then explore different modes of the hyperparameters’
posterior distribution.

To better understand the posterior over hyperparameters, we
employed a Hamiltonian Monte Carlo sampler (e.g. MacKay,
2003) to draw samples from this distribution. Figure 6 shows the
correlations between hyperparameters of the feature kernel as a
Hinton diagram. The correlation coefficients have been calculated
from 500 MCMC samples (500 burn-in). This figure shows that the
relevances of L1 and L3 were indeed anti-correlated. This observed
anti-correlation can be explained by positive correlations between
the corresponding features in the training dataset, causing that either
L1 or L3 is sufficient to predict the melting temperature. A strong
positive correlation of hyperparameters was observed between the
loop length L2 and the number of G-stacks NG.

4 GENOME-WIDE ANALYSIS OF
G-QUADRUPLEX CANDIDATES

We applied the GP predictor to human genome-wide G-quadruplex
candidates downloaded from the quadruplex.org database (Wong

Fig. 6. Correlations between inferred hyperparameters illustrated as Hinton
diagram. Correlation coefficients were estimated from 500 Monte Carlo
sample. The size of the squares denote the strength of the correlation,
where white squares indicate positive correlation and black squares negative
correlation.

et al., 2008). The database contains candidate structures extracted
from sequence information using the pattern-based rule from
Equation (8), considering quadruplexes with three or more G-stacks
(NG ≥3).

Using this rule a total of 359 548 G-quadruplex candidates with
precisely 3 loops have been identified genome-wide, from a total of
373 k predicted sequences, some of which contain several possible
G-quadruplexes, and hence cannot be predicted with the available
data. Following Huppert and Balasubramanian (2007), we also
extracted those G-quadruplexes found in the promoters of human
genes, looking at the 200 bp upstream of the transcription start
site. Again restricting to 3-loop G-quadruplexes there were 10 987
quadruplexes in human promoter regions.

All computational predictions for these G-quadruplexes were
made for a solution containing 100 mM K+, which roughly
approximates physiological conditions and has become something
of a standard for experimentation.
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Fig. 7. Average predictive uncertainty for promoter G-quadruplexes as a
function of the number of additional measurements. Compared are two
random measurement sequences (black) and the active learning strategy
(red). The red and black cross indicate the average predictive uncertainty
after physically measuring 10 actively (red) or randomly (black) chosen
G-quadruplexes.

4.1 Active learning for promoter G-quadruplexes
Given the large number of genomic sequences and the relatively
small number of data points, it is necessary to be efficient with data
collection, so as to maximize the information derived from each new
experiment. We therefore developed a method of active learning
such that we can predict which experimental data (i.e. melting
temperatures of sequences) would be most useful to collect. As
a preliminary case study of the usefulness of active learning, we
considered the set of promoter G-quadruplexes and applied the
active learning strategy outlined in Section 2.4.

Given the training dataset, we selected the subset of the 10
most informative G-quadruplexes in promoter regions, assessed
by the marginal information gain. The melting temperatures of
the corresponding sequences were experimentally determined and
added to the training set. As an alternative, we did the exact
same experiment but selected 10 randomly chosen sequences
instead. Again the sequences were experimentally characterized
and added to the training set. In each case, the sequences were
prepared at 4 μM concentration in a Tris–HCl buffer at pH 7.4
with 100 mM KCl. A Varian Cary 300 spectrophotometer was
used to measure the absorbance at 295 nm over repeated slow
heating/cooling cycles (Mergny et al., 1998). Melting temperatures
were determined by the derivative method. Figure 7 shows the
average predictive uncertainty for all promoter quadruplexes as a
function of the number of additional measurements. Results for the
physical measurements are indicated as red and black crosses. Lines
show the expected uncertainties obtained from the model without
conducting any physical measurement.

It is apparent that very few additional measurements can
significantly reduce the predictive uncertainty. This observation
can be explained by the sequence homology present in
the G-quadruplexes found across the genome (Huppert and
Balasubramanian, 2005; Todd et al., 2005). The active selection
performed significant better than the randomly selected sequences.
Active learning allows a feedback cycle to be developed, where after
each set of data is added, new learning can be performed to optimize
the next data collection, resulting in efficient experimentation.

Fig. 8. Predictive uncertainty for genome-wide G-quadruplex candidates
shown in standard deviations in degree celsius.

The average uncertainties resulting after real measurements
were higher than the model expectations. This discrepancy is
because the theoretical calculations are approximations based on
fixed hyperparameters, whereas for the physical measurements the
hyperparameters were re-optimized (Section 2.4). However, we did
clearly observe a substantial reduction in uncertainty using the
experimental data. These results are supportive and encouraging that
active learning in the context of G-quadruplex structures is a helpful
tool, although clearly more than 10 further data points are required to
make a substantial difference to the predictive power of the model.

4.2 Study of genome-wide G-quadruplex candidates
We also performed predictions on all 360 k G-quadruplexes
genome-wide. The predictive uncertainty for those G-quadruplexes
varied significantly. Figure 8 shows a histogram of the predictive
uncertainty in SD for the entire set of all G-quadruplex sequences.
For 90% of the sequences this uncertainty was <14◦C. At a more
stringent cut off level, still 63% of the sequences could be determined
within ±10◦C and 6% within ±5◦C. This highlights the need
for further data collection and the active learning methodology
previously described, as well as highlighting the usefulness of
predictive uncertainties.

4.2.1 Quadruplexes in promoters Previous analysis of
G-quadruplexes suggests that G-quadruplexes are likely to
play a widespread regulatory role, supporting experimental
demonstrations. It has been shown that G-quadruplexes are
over-represented inside promoter regions compared to elsewhere
in the genome, by about an order of magnitude (Huppert and
Balasubramanian, 2007). However, so far it has not been possible to
assess whether these quadruplex structures have different stabilities.
Here, we use the developed GP predictor to investigate whether
there are systematic differences of G-quadruplex stability inside
and outside of promoter regions. Figure 9 directly compares the
predictive mean melting temperature for G-quadruplex structures
inside promoter regions with G-quadruplexes elsewhere in the
genome. For this analysis, we restricted the considered sequences
to those that could be predicted with at most a 5◦C standard
deviation error margin yielding a total of 17 006 G-quadruplexes
out of which 235 were in promoter regions. The plots suggest
that the statistics of melting temperature might indeed be different
for promoter G-quadruplexes. The significance of the difference
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Fig. 9. Mean predictions of the melting temperature in 100 mM KCl for genome-wide G-quadruplex candidates with a predicted uncertainty <5◦C.
(a) Histograms for promoter and non-promoter quadruplexes. (b) Cumulative distribution functions.

between the two distributions, melting temperatures of promoter
G-quadruplexes and non-promoter quadruplexes, was assessed by
a Kolmogorov–Smirnov test. A two-sided test on the predicted
mean temperatures for promoter and non-promoter G-quadruplexes
found the difference was significant (P = 4.05×10−5). This result
suggests that G-quadruplexes found in gene promoters are likely to
be more stable than those found in the bulk of the genome.

5 DISCUSSION AND CONCLUSION
We have here presented a robust and sensitive method for inferring
the stability of G-quadruplexes from the sequence information.
Our approach is robust with respect to outliers, allows constraints
to be incorporated as observations and automatically determines
relevant sequence features. We have further demonstrated how
active learning can be used to perform experimental design to guide
the choice which sequences of a set of candidates to measure.

We demonstrated as proof of principle that we can apply
this approach to determine features of biologically important G-
quadruplexes, selecting as our example G-quadruplexes found in
the 200 bp region upstream of known human gene transcription
start sites, a region containing much promoter activity. We have
shown previously that G-quadruplexes are concentrated in this
region (Huppert and Balasubramanian, 2007), and a number of
individual studies have confirmed that these can have transcriptional
regulatory ability (Qin and Hurley, 2008). From the results shown
here, we can now conclude that the G-quadruplexes in promoters
are likely to be more stable than in the genome as a whole,
further supporting the hypothesis that they play an important general
role in transcriptional control. The precise mechanistic details of
how G-quadruplexes regulate transcription are not entirely clear,
but the current model is that their formation disrupts the binding
of the normal transcriptional machinery (Qin and Hurley, 2008).
This approach can be further extended to other regions where
G-quadruplexes are found to investigate other functional roles.

Several interesting and fruitful extensions to our proposed method
could be considered. The sizes of currently available G-quadruplex
datasets is very limited. As more data becomes available it would
be possible to apply more general sequence kernels characterizing
similarity of the loop sequences. Such an approach might yield novel

insights into how the sequence composition influences the stability
of G-quadruplex structures. We are currently in the process of scaling
available G-quadruplex data to significantly larger datasets using
the active learning approach proposed in this work to efficiently
explore the phase space available. Once the amount of available data
goes beyond 1000 examples, it would be helpful to explore sparse
approximations to the proposed GP scheme (for instance Snelson
and Ghahramani, 2006).

We will also arrange a data store for other researchers to contribute
experimental data they have collected. We plan to have discussions
with other researchers to establish a standard for experimental
measurements, as well as standards for the quality and style of
data provided, which should include measurements of 
G(37◦C),

H and 
S as well as the melting temperature. This would
allow us to predict these parameters in addition to the melting
temperature alone. We intend to provide a web-enabled version
of these predictions. Links to these resources, source code and
Supplementary Material are available online.2 The field of G-
quadruplexes has grown rapidly in recent years, and we anticipate
that the ability to predict their thermodynamic properties will be
useful to many in the field, and accelerate the rate of discovery of
new functional roles for these fascinating structures.
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