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ABSTRACT

Motivation: Clustering is a popular data exploration technique
widely used in microarray data analysis. When dealing with time-
series data, most conventional clustering algorithms, however,
either use one-way clustering methods, which fail to consider the
heterogeneity of temporary domain, or use two-way clustering
methods that do not take into account the time dependency between
samples, thus producing less informative results. Furthermore,
enrichment analysis is often performed independent of and
after clustering and such practice, though capable of revealing
biological significant clusters, cannot guide the clustering to produce
biologically significant result.
Result: We present a new enrichment constrained framework (ECF)
coupled with a time-dependent iterative signature algorithm (TDISA),
which, by applying a sliding time window to incorporate the time
dependency of samples and imposing an enrichment constraint to
parameters of clustering, allows supervised identification of temporal
transcription modules (TTMs) that are biologically meaningful.
Rigorous mathematical definitions of TTM as well as the enrichment
constraint framework are also provided that serve as objective
functions for retrieving biologically significant modules. We applied
the enrichment constrained time-dependent iterative signature
algorithm (ECTDISA) to human gene expression time-series data
of Kaposi’s sarcoma-associated herpesvirus (KSHV) infection of
human primary endothelial cells; the result not only confirms known
biological facts, but also reveals new insight into the molecular
mechanism of KSHV infection.
Availability: Data and Matlab code are available at
http://engineering.utsa.edu/∼yfhuang/ECTDISA.html
Contact: yufei.huang@utsa.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Time series DNA microarray experiments simultaneously monitor
the expression profiles of thousands of genes continuously over the
course of a biological process of interest. Using this technology,
a large amount of genome-wide time-series expression data
measuring, for instance, yeast cell cycle (Spellman et al., 1998)
and Megakaryocytic differentiation (Fuhrken et al., 2007), has
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been accumulated and made available, calling for computational
techniques including clustering to extract meaningful information
from this data. While standard clustering algorithms, such as
hierarchical clustering (Eisen et al., 1998), self-organizing maps
(Tamayo et al., 1999) and two-way clustering (Alon et al., 1999),
have been successful at finding transcriptional modules or genes
that are co-regulated for a small, specific set of static microarray
data, these algorithms are less effective when applied to large
and/or time-series datasets due to two well-recognized limitations.
First, standard clustering algorithms assign each gene to a single
cluster, while many genes in fact belong to multiple transcriptional
modules (Bittner et al., 1999; Cheng and Church, 2000); second,
each transcriptional module may only be active in a few experiments
(Cheng and Church, 2000; Getz et al., 2000; Ihmels et al., 2002) or a
sub-period of entire time course. In fact, our general understanding
of cellular processes leads us to expect transcriptional module to
have shared gene components and be active at a specific period
of time and/or under a specific experimental condition (Madeira
and Oliveira, 2004). In light of this, the goal of this article is to
identify temporal transcription modules (TTMs), which are defined
as sub-sets of genes co-regulated only under certain time period
of a specific experimental condition but behaving differently for
the rest.

Solution for the concerned problem comes naturally within
the framework of biclustering (Califano et al., 2000; Cheng and
Church, 2000; Gasch and Eisen, 2002; Getz et al., 2000; Owen
et al., 2003). While first introduced in 2000 (Cheng and Church,
2000), biclustering aims at identifying a sub-group of genes
that show similar activity patterns under a specific sub-set of
the experimental conditions (Madeira and Oliveira, 2004). Since
unclustered genes and overlapping among clusters are allowed,
biclustering approaches are well suited for revealing the important
biological fact: first, some genes have distinct behavior; second,
many genes in fact belong to multiple transcriptional modules;
third, several transcriptional modules might exist under the same
experimental conditions; fourth, each transcriptional module may
only be active in a few experiments and involve a sub-set of genes.
Numerous biclustering algorithm have been proposed (Madeira
and Oliveira, 2004), including Block Clustering (Hartigan 1972),
δ-biclusters (Cheng and Church, 2000), Plaid Model (Lazzeroni
and Owen 2002), cMonkey (Reiss et al., 2006), Gibbs sampling
(Sheng et al., 2003) and the signature algorithm (SA) (Ihmels et al.,
2002). SA was shown to be able to identify a large number of
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existing and new TMs when applied to a large dataset of the yeast
gene expression profile. The efficiency and efficacy were further
improved by the iterative signature algorithm (ISA), which was
proposed in a subsequent study (Bergmann et al., 2003). Based on
ISA, variations including PISA and EDISA were also introduced
to analyze, for example, 3D gene-condition-time datasets (Kloster
et al., 2005; Supper et al., 2007).

Despite the success of biclustering algorithms such as ISA,
there are two main limitations to be resolved for analyzing time-
series data. First, at the model level, most existing approaches
including ISA and CC-TSB (Zhang, 2005), do not model explicitly
temporal changes of samples, thus, when treating time-series
data, samples are essentially treated as independent samples.
Consequently, these algorithms will not be able to retrieve a
TTM, or can not retrieve a TTM accurately, i.e. the resulted
modules consisting of samples that are not continuous in time.
Although several algorithms such as (Ji and Tan, 2005) and e-
CCC-Biclustering (Madeira and Oliveira, 2005) indeed consider
the sequential connection between time points, they only consider
one adjacent samples and therefore will fail when noise exists at
a certain point of a module. Second, most of these biclustering
approaches are based on local models with heuristic choice of
a fixed set of model parameters for all clusters, rather than
choosing different parameters for each individual cluster, providing
no guarantee of optimality from either a statistical or a biological
perspective. Although extensive study has been performed on
validating biological significance of the biclustering results using,
for instance, gene ontology enrichment analysis (Prelic et al.,
2006), the validation is a process independent of and after
biclustering, thus exerting no impact on optimality of biclustering
results.

We seek in this article to overcome these limitations to
produce temporal transcriptional modules that are biologically
most enriched. To this end, first, rather than assuming a constant
transcription module or a module existing at all time points, a
more realistic scenario is considered where a module is defined
on a specific period of time, i.e. a TTM. To develop an algorithm
for TTM discovery, a rigorous mathematical definition is provided.
This definition also serves as an objective function, on which an
effective time-dependent iterative signature algorithm (TDISA) is
developed that iteratively refines the modules contents and time
periods. In order to retrieve the time information, a sliding time
window is introduced to incorporate the dependency between
time samples. Second, to obtain biologically enrichment TTMs,
an enrichment constrained framework (ECF) is developed by
restricting the parameters of TDISA to take the values corresponding
to the biologically optimal results. Under this framework, the
biological optimality of identified modules are assessed according
to an enrichment score obtained from existing knowledge database
(Ashburner et al., 2000; Subramanian et al., 2005), and only
modules have largest scores are reported. We call this algorithm the
enrichment constrained time-dependent iterative signature algorithm
(ECTDISA).

2 METHOD

2.1 Mathematical definitions
LetY∈R

G×T represents the series microarray data matrix that consists
of expression of G genes sampled at T consecutive time instances. Given a

pair of thresholds (τT ,τG), and a window width W =2L + 1, a TTM is defined
by a set of genes Gm and a set of times Tm.
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Where ρ is a measurement of distance and the smaller it is, the
more similar it indicates, |Gm| is the number of gene components
in the gene set Gm, Ygt refers to the expression value of gene g
at time t and Yg(t−L:t+L) =[Yg(t−L),Yg(t−L+1),...,Yg(t+L−1),Yg(t+L)]
is the expression profile of a gene g inside a window centered
at time t with window width W =2L + 1.

〈
YGm (t−L:t+L )

〉=[〈
YGm(t−L)

〉
,
〈
YGm(t−L+1)

〉
,...,

〈
YGm(t+L−1)

〉
,
〈
YGm(t+L)

〉]
, where,

〈
YGmti

〉=
1

|Gm |
∑

g∈Gm
Ygti is the center of the gene set Gm at time ti.

The first inequality in (1) defines a TTM in gene domain, i.e. a gene that
belongs to the gene set Gm should behave similarly to the center of the module
during the given time period of the module Tm. The second inequality defines
the TTM in time domain. Particularly, for each time point ti of the module all
genes in the module Gm should behave similarly to the center of the module.
However, because of the existence of dependence between time samples,
the second inequality is introduced with a sliding window. This is different
from existing definition of a module in other biclustering algorithms. For
time-series data, it is reasonable to assume if a module is activated at this
sample time, it is also likely to be activated in the previous and next sample
time, and vice versa. Since the adjacent samples could also help to make
decision on the current sample, instead of using a single point, imposing
a sliding window in the mathematical definition would help stabilize the
search process and eventually help to acquire a consistent result. It is clear
now that the definition (1) defines a time-varying transcription module. With
this definition, the objective is to design an algorithm that can determine the
gene set Gm and time period Tm that satisfy this definition.

2.2 TDISA
Theoretically, modules embedded in the data matrix could be completely
retrieved by testing all the possible sets {Gm, Tm} for their compliance with
Equation (1), However, since the number of such sets scales exponentially
with the number of genes and sample times, such an exhaustive approach is
computationally infeasible (Bergmann et al., 2003). We therefore propose in
this section an efficient TDISA.

The steps of TDISA can be summarized as follows:

Step 1: a first gene is randomly selected and s genes that have the largest
Pearson correlation with the first gene were added to form the
initial gene set;

Step 2: retain all the tis that satisfies (2) by measure the convergence of
Gm inside a sliding window with width W =2L + 1:

SGm
ti = 1

|Gm| ·
∑

g∈Gm
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ρ
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Yg (t−L:t+L ),

〈
YGm (t−L:t+L )

〉)]
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Step 3: retain all the genes that satisfy (3) by measure its similarity with
the center of this gene set

〈
YGmTm

〉
inside the time period Tm:

STm
g =ρ

(
YgTm ,

〈
YGmTm

〉)
<τG, (3)

where Tm is calculated from the previous step, and
〈
YGmTm

〉
can

be calculated from previous iteration.

Step 4: iterate between steps 2 and 3 until convergence, i.e. the gene set
Gm and time sets Tm no longer change with iterations.

To find another module, the algorithm restarts but in step 1 genes in all
previous initial sets are masked and a new gene set is generated from the
remaining genes. The method of generating initial gene set is adapted based
on the work of (Bergmann et al., 2003; Lazzeroni and Owen 2002; Supper,
et al., 2007), and in all our computations, the size of initial gene set is
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set to s = 30. Detailed discussion about the impact of initial gene sets can be
found in the Supplementary Material. Also note the algorithm defined by (1),
though simpler, is not a fully dependent algorithm in that the sample time
information inside the window is not fully utilized. This issue is discussed
more details and a possible remedy is also proposed in the Supplementary
Material.

2.3 Enrichment constrained TTM
Note that the content of a TTM module generated by TDISA depends on
(τT , τG). Even from the same initial gene set, different modules are resulted
for different parameter settings. A natural question in which one among
all possible modules is the best or the optimal result. In Supplementary
Material, we investigated the impact of the changes of the parameters, which
underscores the need for optimal parameters. Optimality can be defined
from a statistical perspective as a model selection problem. Instead, given
the biological nature of the problem, we approach the optimality from a
biological viewpoint. Specifically, we want to identify the module that is
biologically most meaningful or enriched. Given an enrichment measure or
score S(M(τT , τG)), which is calculated based on prior biological knowledge
and whose detail will be discussed in the next section, the optimal TTM M∗
can be defined mathematically by:

M∗ =M
(
τ ∗

T ,τ ∗
G

)
with (

τ ∗
T ,τ ∗

G

)=argmax
(τT ,τG )

S
(
M

(
τT ,τG

))
,

where ‘arg max’ represents the argument maximization operation and it
identifies the optimal parameters (τ ∗

T ,τ ∗
G) that bare the largest enrichment

score. This definition essentially constrains the parameters to be the ones
that produce the most biologically enriched module. As a result, we coin the
optimal module as enrichment constrained TTM and the proposed algorithm
as enrichments constrained TDISA (ECTDISA).

2.4 Definition of the enrichment score
Prior biological knowledge, in the form of biological function, process, motif,
pathway and gene compartment, has become widely available (Prelic et al.,
2006). Currently, one of the largest organized collections of gene annotations
is provided by Gene Ontology Consortium (Ashburner et al., 2000). Such
knowledge is also available in some other format including KEGG, DAVID
and Gene Set Enrichment Analysis (GSEA) (Dennis et al., 2003; Kanehisa
et al., 2008; Subramanian et al., 2005). They have been widely used to
interpret and validate various computational analyses.

Since our goal is to produce biologically most significant results according
to existing knowledge, we need to first define a measure to gauge the
degree of significance. Then the TDISA can be constrained by selecting
the thresholds that maximize this measure. To this end, the idea pursued in
(Tanay et al., 2002) is adopted in our approach and the score is constructed
to measure whether a specific gene function category (or pathways, etc.,
depending on the adopted knowledge database) is overly represented in an
identified module. Particularly, the enrichment score is proposed as (4):

S
(
M

)=

|C|∑
j=1

(−logPCj ,M
)

log
(|Gm|) (4)

where, PCj, M is the P-value of the enrichment of gene category Cj in the
module M(τT , τG), which can be calculated by Fisher’s exact test; and |Gm|
is the number of genes in module M(τT , τG).

This enrichment score is actually the summation of the P-values of all the
gene-category enrichment in negative log scale with also a penalty on the
number of genes in the module. Generally, this score is larger when more
gene categories are significantly enriched; however, when using Fisher’s
exact test, larger modules tend to produce more significant enrichment result
and so a penalty is introduced to penalize a large module.

Fig. 1. Plot of enrichment score versus parameters and illustrations of 2D
grids search of the optimal parameters. The horizontal axes stand for (τT , τG),
and the vertical axis stands for the enrichment score S(M(τT , τG)). For the 2D
grid search, starting from the same initial input gene set, different modules
will be identified for every different parameters (τT , τG) on the grid point
and the optimal module M∗ would be the one that has the largest enrichment
score.

Provided with the above enrichment score, the optimal thresholds are
determined to maximize the score. Figure 1 depicts an example of the score
versus the threshold to search the optimal thresholds, 2D grids are introduced
to discretize search space and then exhaustive search is conducted on the grid
point to determine the optimal solution. Other more sophisticated numerical
optimization approaches could also be applied to enhance the efficiency.
However, since we have good prior knowledge about the value range of
the parameters, this simple 2D grid search is proven to be effective. (An
efficient way to calculate P-value of Fisher’s exact test is available in the
Supplementary Material.)

3 RESULT

3.1 Simulation
ECTDISA was first validated on simulated data. This data was
constructed to mimic a microarray experiment that measures
the expression profiles of 1000 genes at 15 sample times. Five
TTMs, which may share same genes and fall into the coherent
model (multiplicative model) (Madeira and Oliveira, 2004), were
embedded, each containing 30–50 genes and lasting for a period of
4–10 time points. (Figs 4–6 are achieved when simulated temporal
modules last for 8–10 samples. Similar conclusion could be drawn
from experiment where modules last for a period of 4–6 samples,
whose result is available in Supplementary Material.)

The module templates are shown in Figure 2a.
The data pattern of each module was generated according to an

AR (1) model:Xmt =0.9Xm(t−1) +εmt , where, Xmt represents the

expression level of module m at time t, εmt ∼ Normal (0, 12).
After this, the expression level of gene g at time t, can be simulated
as:

Xgt =
{

Xmt g∈Gm and t ∈Tm
εgt other

where, Normal (0, 12). Then, each row of matrix X is multiplied with
a random number that is generated from Normal (0, 0.42); this is
used to simulate the difference in expression strength among genes.
Finally, Gaussian additive noise was applied (Fig. 2b), rows was
shuffled to simulate real biological data, as Figure 2c.

Meanwhile, a simulated annotation database was also constructed
according to embedded modules. The database contains 10 gene
categories, and each gene category contains a set of genes. There are
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Fig. 2. Data Generation. (a) Five TTMs are randomly generated. (b)
Expression data is generated accordingly. (c) Reshuffle to get simulated data.

Fig. 3. Simulated annotation database. (a) Ideal annotation database:
annotated gene category contains exactly the same genes as embedded
module. This is the case when we have ideal annotation databases. (b)
Incomplete database: only parts of genes in an embedded module are
annotated. This is the case when not all genes are annotated. (c) Incomplete
and noised database: annotated gene category and the corresponding
embedded module have overlap. It implies that not all genes are annotated;
some annotations might be inaccurate or unsuitable to the specific data. This
is a common case.

five gene categories corresponding to five embedded modules, and
the other five gene categories contain randomly selected genes.
This is to simulate the reality that annotation database may
contain both informative and uninformative knowledge. Regarding
generating the gene categories that are corresponding to an
embedded module, different strategies were applied (Fig. 3).

In order to evaluate the performance of ECTDISA, we introduce
two measurements: A score PA and C score PC , i.e.

PA = 1

|M|
|M|∑

m=1

(−logPTm∗ ,Mm

)
and PC = 1

|T |
|T |∑
j=1

(
−logPTj,Mj∗

)
,

where |M| is the number of identified clusters, |T |is the number of
true embedded modules in the data matrix, PTj,Mm

is the enrichment
P-value of a true embedded module Tj in the identified cluster

Mm,m∗ =argmax
m

(
−logPTj,Mm

)
, j∗ =argmax

j

(
−logPTj,Mm

)
.

A score PA is defined as the average of the largest enrichment
scores of all the identified clusters. It indicates how likely a cluster
identified by ECTDISA is a real embedded module. C score PC
is defined as the average of the largest enrichment scores of all
the embedded true modules. PC indicates whether all embedded
modules are identified accurately by ECTDISA. In the following
experiments, to obtain an A score or C score for any tested algorithm
at any test condition, the algorithm is run on independent datasets
until a stable score can be achieved.

In the first experiment, we evaluated impact of the noise effect
on the performance of ECTDISA. A score PA and C score PC of
ECTDISA were evaluated under different noise variance and they
were also compared with those of the ISA algorithm (Bergmann

Fig. 4. Performance VS Noise standard deviation. Performance of TDISA
and K-means in terms of A score PA and C score PC for different noise level.
ECTDISA and ECISA perform much better than ISA and K-means.

et al., 2003) and K-means algorithm, which is a simple and widely
used one way clustering approach. K-means clustering result is
obtained by collecting all resulting modules from running K-means
clustering 10 times using k ={1, 2, … ,10}. In order to illustrate
the contributions of time dependency and enrichment frame work,
respectively, we also construct an algorithm ECISA, which use
ECF to optimize parameters of ISA but without considering time
dependency. We used an ideal annotation database as Figure 3a.
Five additional functional categories were also constructed, each
containing 30–50 randomly selected genes. The results were shown
in Figure 4. We noticed that both Cand A scores of ECTDISA,
ISA and ECISA decreases with increase of noise level. Compared
with ISA, ECTDISA and ECISA have much better performance,
especially when noise level is low; while the performance of
ECISA and ECTDISA are quite similar, which suggests that the
improvement mainly accounts for ECF on this occasion. We also
notice that even when the noise is close to 0, K-means cannot
achieve satisfactory C and A scores, and its performance stays almost
constant with noise level. This suggests that K-means cannot retrieve
TTMs.

Next, we evaluated the impact of annotation database. First, we
considered a scenario where only a fraction of genes in a module
have functional annotation, for example, only 30% genes, while the
rest have no annotation. The annotation is generated by strategy 2 in
Figure 3b. The results were shown in Figure 5. Though ECTDISA
tends to perform better when having complete prior knowledge, it
still can provide good performance when only 30% of genes are
annotated. This experiment demonstrated the ability of ECTDISA
to uncover function of un-annotated genes based on expression and
partial prior knowledge.

Then, we considered another more realistic situation, where
embedded modules are not consistent with prior knowledge, i.e.
annotation is incomplete and contains error, or not suitable to the
specific data. We simulated the scenario by only assigning a function
category to a fraction of genes in an embedded module and replace
the other genes by randomly selected genes. This corresponds to
strategy 3 in Figure 3c. The results were shown in Figure 6. We
see that compared with ECISA, ECTDISA can retrieve modules
more accurately especially when annotation database is not highly
consistent with embedded modules, which is also a real situation.
This implies the ability of ECTDISA to uncover new modules from
functional related known modules. To summarize, it can be seen that,
first, compared with ISA, time dependency does improve A score of
the clustering significantly (Figs 4–6). This implies time dependency
reduces significantly false positive components. Second, when the
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Fig. 5. Impact of prior biological knowledge. When noise SD is 0.3, the two
plots show the performances of the four algorithms when annotation file is not
complete, i.e. not all genes are annotated. The horizontal axis represents the
percentage of annotated genes. It shows, although more complete annotation
can help to identify modules more accurately, the algorithm ECTDISA can
still perform very well without complete annotations.

Fig. 6. Impact of the consistence between prior knowledge and module.
The consistent rate in horizontal axis is defined as the percentage of common
genes that shared by the embedded module and the corresponding annotation
gene category. This figure shows that the performance of ECTDISA when
annotated gene category is not consistent with the embedded modules, i.e.
not all genes involved in an annotated pathway behaves similarly. Simulation
result shows ECTDISA is very robust towards the annotation files.

annotation database is not ideal (or consistent with real embedded
module), ECTDISA outperforms ECISA in terms of both A and C
scores, especially when annotation database is highly noisy (Fig. 6).

3.2 Test on yeast cell cycle dataset
We applied ECTDISA algorithm to the yeast cell cycle data in
Spellman et al. (1998) obtained with equal sampling rate. The
result is compared with ISA with GO enrichment analysis (Table 1).
It can be seen that, although ECTDISA identifies less number of
modules than ISA does, more GO terms are significantly enriched
in ECTDISA result, which indicates that ECTDISA uncovers more
significant functions. Further, on average, there are more GO terms
significantly enriched in each module for ECTDISA than for ISA.
It means that ECTDISA is more efficient in uncovering significant
functions. To sum up, although ISA algorithm has been shown to
be able to identify a number of biologically meaningful modules on
the same data, ECTDISA apparently performs much effectively and
more efficiently by uncovering a wider range of biological functions
with less number of modules.

In Figure 12 of the Supplementary Material, we also observe both
temporal and constant modules. For instance, a constant module
(C59) apparently has a cyclic behavior, and is enriched by GO term
‘cell cycle’, and C48 is a temporal module significantly enriched

Table 1. Comparison of ECTDISA and ISA on yeast cell cycle data

Number of
identified
modules

Number of
significantly enriched
GO Terms (P-value
< 10−10)

Average number of
enriched GO terms
in each module
(P-value <10−10)

ISA 192 179 0.93
ECTDISA 64 210 3.28

Detailed result is available in the Supplementary Material.

with GO:002613 (P-value < 10−34). A 10-fold cross validation is
also conducted to evaluate ECTDISA’s ability of finding meaningful
transcription modules, and the detailed result is available in the
Supplementary Material.

3.3 Test on Kaposi’s sarcoma-associated herpesvirus
infection data

We applied the ECTDISA algorithm to analyze the human time
series microarray data derived from Kaposi’s sarcoma-associated
herpesvirus (KSHV) infection of human primary endothelial cells
(Gao et al., 2003). The data were produced with Affymetrix Human
Genome U133A Chips, consisting of the expression sample at time
t =[0, 1, 3, 6, 10, 16, 24, 36, 54, 78] (hour) after infection. Since
priority was given to earlier states, sample times were unevenly
chosen.

3.3.1 Preprocessing and post processing The 19 142 features
(probe set ID) of total 22 383 have corresponding official gene
symbol; 19 142 features with corresponding gene symbols are
further merged into 11 945 genes by taking the maximum value of
all corresponding probe set IDs. An intensity filter (the intensity of
a gene should be above 100 in at least one sample), and a variance
filter (the inter-quartile range of log2-intensities should be at least
0.2) were then applied to select 3825 differentially expressed genes
along with their expression profile in original scale. Normalization
is further applied to make all remaining genes contributing equally
to the algorithm.

For the similarity measure ρ, Euclidean distance is applied to
the first order time difference of expression profile rather than
normalized data, which was introduced as a measure of trend of
expression. Clustering was applied on time difference because we
believe co-regulated genes should have similar trend instead of
similar expression level.

Post-processing concerns merging similar modules (which is
defined in the Supplementary Material). If two modules are consider
similar, then the one has a smaller enrichment score will be
eliminated. Since the parameters might be different for modules
identified, there are modules in final result that are very similar in
shape but not in enrichment scores and the gene contents. We believe
that such modules reflect different biological functional groups and
thus should be considered as different.

3.3.2 Result The canonical pathways of the Molecular Signatures
Database was adopted as prior knowledge (Subramanian et al.,
2005), based on which enrichment score is calculated by Fisher’s
exact test. The optimal module was obtained by searching the 2D
grids (τT , τG) for τT = [0.05:0.05:0.5], τG = [0.05:0.05:0.5]. The
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Table 2. The most enriched three pathways in 48th module (M48)

Pathway name Pathway annotation -Lg(p)

HIFPATHWAY Under normal conditions, hypoxia
inducible factor HIF-1 is degraded;
under hypoxic conditions, it
activates transcription of genes
controlled by hpoxic response
elements

3.81

DREAMPATHWAY The transcription factor DREAM
blocks expression of the
prodynorphin gene, which encodes
the ligand of an opioid receptor that
blocks pain signaling

3.6

BLADDER_CANCER Genes involved in bladder cancer 3.40

For complete result, please refer to Supplementary Material.

Fig. 7. Selected modules (M2, 5, 7, 11, 16, 21, 22, 35, 37, 38, 45, 48).

window size of the ECTDISA was W =3. After post processing,
48 modules were identified and normalized expression levels of the
modules are shown in Figure 8 of the Supplementary Material. The
top enriched pathways for M48 were enlisted in Table 2.

From the figures, we noticed that ECTDISA can uncover not
only temporal transcriptional, but also constant time modules. The
features of temporal module were clearly shown by the result. The
21st module (M21) in Figure 7 depicts a very good example, where
genes of the module behave quite differently in first four samples but
share a common trend afterwards. Similar behavior can be captured
in most of the modules including M5, M22 and M37. However, at
the same time, we also noticed that ECTDISA is not restricted for
just temporal modules; a number of constant modules such as M2,
M11 and M16 were also successfully retrieved, where genes behave
similarly from the beginning to the end.

We also observed that several modules are very similar in shape
(e.g. M7, M16 and M35); however, a close examination of pathway
enrichment revealed that these modules were enriched by different
annotated pathways. To further examine this phenomenon, the
correlations of centroids of modules and those of the enrichment
scores were calculated and a 2-way K-means clustering of the
correlations are displayed in Figure 8. Although Figure 8a suggests
that a lot of modules are similar in shape, Figure 8b, in contrast,
reveals that they are not similar in enrichement score and are actually
enriched by different pathways, thus potentially reflecting different
biological facts. Shape is not the only important factor to identify
an informative module, it is also of crucial importance to select the
right size (threshold) that can better address the related biological
problem. ECTDISA can capture all these similar modules because it

Fig. 8. Correlation of modules. The figures shows the 2-way K-means
clustering results of the correlations.

searches using different parameters. If (τT , τG) are fixed (like ISA),
only one module in this group (M7, M16 and M35) can be identified
and all other equivalent informative modules might be lost.

Among all the modules, the expression pattern of cellular genes
in module M48 is relatively tight, and has an overall increased
expression trend except the last time point (78 hpi) when KSHV
undergoes full lytic replication (Gao et al., 2003; Yoo et al.,
2005). This module consists of 13 enriched pathways (Table 1;
for details, please refer to Supplementary Material), several of
which have previously been shown to be upregulated following
KSHV infection, including the HIF PATHWAY, IL6PATHWAY,
ST_STAT3_ PATHWAY and ETS PATHWAY (Carroll et al., 2006;
Punjabi et al., 2007; Xie et al., 2005; Ye et al., 2007). The fact
that these pathways are clustered together and behave in tight range
suggesting that they might be regulated by similar mechanism(s).
However, further experimental examination is needed to confirm
these observations.

4 DISCUSSION
ECTDISA is a new approach to analyze large-scale time-series
gene microarray datasets. We discuss next a few distinct features
of ECTDISA.

First, a sliding time window is used to consider the time
dependency between samples by adding information from time
adjacent samples and constraining the continuity of modules in time
dimension. The use of this time window is based on the fact that
the information from previous and latter samples could help make
decision for a current sample. The window size W = 2L +1 defines
how much information from adjacent points you want to include
into the analysis of a local time sample. The amount should be
directly dependent on the sample interval and the changing speed of
cell state. Presumably, if sample intervals are long and cell state
changes fast, which result in less correlated samples, a smaller
window should be used and vice versa. As a result of this sliding
window, time-dependent modules that are only co-expressed for a
short period of time can be uncovered. However, it does not exclude
ECTDISA’s ability to also retrieve modules of long-time span; many
such modules can be observed in Figure 5.

Second, enrichment analysis is used as a guidance of module
search, which helps to identify modules that are most likely to be
biologically meaningful by choosing the optimal parameters for the
algorithm. Embedded modules might not be identified accurately
due to ad hoc choice parameters (τT , τG). ECF essentially serves
as a result filter by removing thousands of modules that are not
considered significant according to prior knowledge, keeping only a
considerably small number of significant ones. The idea of obtaining
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an enrichment result has been a focus of recent computational
biology research. Compared with the wide-used GSEA, this work
represents an effort to extend such concept to clustering analysis. An
interesting result that we want to emphasize is that, the ECTDISA
is not sensitive to the selection of previous knowledge; even when
the genes are not all annotated, and the annotated modules are not
highly consistent with embedded modules, such annotation can still
help. Moreover, as suggested by Figure 8, ECTDISA can further
divide the co-expressed modules into functional sub-groups.

Third, when annotation database is not highly consistent with real
modules, wrong decision could be made in ECF and thus it will be
of crucial importance to provide only accurate result to ECF. We
showed that time dependency can also help reduce the impact of
inconsistency (Figs 5 and 6) and this is also the case when real data
was analyzed. These experiments suggest that ECTDISA is a useful
tool for uncovering gene functions.

4.1 Limitations
First, an optimal window size is still open questions. For the specific
dataset used here, we reasonably assume that the dependency
between each pair of adjacent samples is the same even though the
samples are unevenly placed. The case of unequally sampling rate is
apparently a very complicated issue deserving more investigation.
We provide more discussion on the issue and proposed a possible
solution in the Supplementary Material. Second, a potentially better
approach to define the enrichment score is to consider only the
top several enriched gene categories. Third, the efficiency of the
search of optimal parameters can be further improved by employing
sophisticated numerical optimization algorithms. They will be the
focus of our future work.
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