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Abstract
The discovery of the new crosstalk between the aryl hydrocarbon receptor (AhR) and the NF-κB
subunit RelB may extend our understanding of the biological functions of the AhR and at the same
time raises a number of questions, which will be addressed in this review. The characteristics of this
interaction differ from that of AhR with RelA in that the latter appears to be mostly negative unlike
the collaborative interactions of AhR/RelB. The AhR/RelB dimer is capable of binding to DNA
response elements including the dioxin response element (DRE) as well as NF-κB binding sites
supporting the activation of target genes of the AhR as well as NF-κB pathway. Further studies show
that AhR/RelB complexes can be found not only in lymphoid cells but also in a human hepatoma
cell line (HepG2) or breast cancer cell line (MDA-MB-231). RelB has been implicated in
carcinogenesis of breast cancer for instance and RelB is known to be a critical factor for the function
and differentiation of dendritic cells; interestingly the participation of AhR in both processes has
been suggested recently, which offers the great potential to expand the scope of the physiological
roles of the AhR. There is evidence indicating that RelB may serve as a pro-survival factor, including
its ability to promote “inflammation resolution” besides the association of RelB with inflammatory
disorders. Based on such information, a hypothesis has been proposed in this review that AhR
together with RelB functions as a coordinator of inflammatory responses.
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1. Introduction
The AhR is a member of basic helix-loop-helix (bHLH-PAS) transcription factors including
Period (Per), AhR nuclear translocator (ARNT), and single minded (SIM) regulating hypoxia,
circadian rhythm, and cellular processes like differentiation and apoptosis [1]. The AhR is
generally considered as a ligand-dependent transcription factor which dimerizes with ARNT
to activate gene transcription through DRE located on the promoter of these target genes.
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Numerous exogenous compounds (e.g. polycyclic aromatic hydrocarbons, benzimidazoles and
flavonoids) with various binding affinities have been shown to bind to and activate the AhR
[2]. A number of endogenous ligands with varying binding affinities to the AhR have also been
proposed. Especially derivates from the essential amino acid tryptophan have been identified
as high-affinity ligands to the AhR and are considered as potential endogenous AhR ligands
[3,4]. The non-activated form of the AhR is complexed with heat shock protein 90 (HSP90)
and X-associated protein 2 (XAP2) in the cytosol, but depending on cell type and physiological
conditions the AhR is also located in the nucleus even in absence of exogenous ligand [5].
XAP2 may enhance the rate of nuclear translocation of the ligand-bound human AhR complex
and modulates the sub-cellular localization of the mouse AhR [6,7]. The mechanism of classical
AhR/Arnt signaling pathway will be discussed in detail elsewhere.

Although AhR agonists are known to induce immunosuppression, there is increasing evidence
that one of the significant toxic actions of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is
elicitation of chronic active inflammation in different organs and sites of the body [8-11].
TCDD is a prototype of polycyclic aromatic hydrocarbons (PAH) and exogenous compounds
which binds with high affinity to the AhR. One of the routes of propagation of inflammatory
signaling may be induction of proinflammatory genes including Tumor necrosis factor (TNF)
α, Interleukin (IL)-1β, Cyclooxygenase 2 (COX-2), and others by TCDD, which has been
confirmed in numerous studies [12-15]. Recently we found that TCDD induces also IL-8 in
human macrophages as well as in liver of C57BL/6 mice in an AhR-dependent manner
[16-19]. IL-8 is a member of the CXC chemokine family. One of its functions is to control the
process of leukocyte invasion into injured tissue which is a hallmark of inflammation [20]. The
important point of showing all these examples of TCDD-induced inflammation and
immunosuppression occurring in various tissues and cells is that these are the type of events,
which cannot be readily explained on the basis of the existing model of the classical action
mechanism of TCDD that is based on binding of AhR/ARNT to DRE.

Although tissue inflammation stimulates adaptive immunity, certain types of inflammation,
particularly excessive or chronic inflammation, paradoxically suppresses adaptive immunity
as well. In general, inflammation induces compensatory anti-inflammatory mechanisms that
are essential to limit potentially dangerous immune responses and reduce tissue damage.
Therefore it should be considered that inflammation enhances immunogenicity, but in some
contexts, inflammation may also stimulate active suppression. The mechanism underlying
TCDD’s immunosuppressive effect is not well understood and it is still an open question if the
AhR-mediated inflammatory responses might be the first event which eventually leads to
immune suppression.

This review summarizes existing and original data of the new crosstalk between the AhR and
NF-κB RelB and provides a new perspective of how AhR together with RelB may participate
in immuneregulatory functions.

2. TCDD and the AhR
2.1. General mechanisms of action of TCDD

Following the original elucidation of the structure of the AhR by Chris Bradfield and his
colleagues [21], there has been tremendous progress made in the field of AhR biology in terms
of its basic structure [22], its cytosolic association with XAP2 [23] along with HSP90 proteins,
its nuclear translocation and formation of its gene transactivation complex with its dimerization
partner ARNT and several nuclear coactivators [24]. This line of investigation has been very
fruitful and constructive in establishing the identity of this important receptor, particularly in
mediating toxic signaling of TCDD and related dioxin-type pollutants with special emphasis
on induction of a number of xenobiotic metabolizing enzymes of the AhR gene battery. Besides
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dimerization with its well known partner ARNT, the AhR may also bind to other transcription
factors to regulate gene expression [25-30]. Despite the above accomplishments, some
questions remain unanswered in this field of science. The most pressing questions are: how
does activation of AhR leads to toxic consequences especially inflammation as well as
immunosuppression and how are developmental processes and physiological functions
regulated through AhR?

2.2. Physiological roles of AhR
In this regard, the most illustrative findings indicating the role of AhR have been provided by
several groups of scientists, who created strains of the AhR null mice. Among those, AhR null
mice from one strain created by Frank Gonzalez and his colleagues [31] showed liver
abnormality during the neonatal development which is associated with high rates of apoptosis.
More recently, Chris Bradfield’s group has reported that their strain of AhR null mice develop
liver abnormality which is characterized with a patent developmental structure known as the
ductus venosus (DV) during the first 48 h of their postnatal life. This abnormality is caused by
the failure of the DV to close (decrease the diameter of the portal and the umbilical veins
[32]. These observations clearly support the physiological role of AhR in the normal
development of embryos and neonates. In addition, AhR null mice exhibit high production of
TGFβ3 in liver, which is accompanied with excess vitamin A [33]. Furthermore, Rodriguez-
Sosa et al. [34] have reported that spleen of AhR null mice over-produces Interferon (IFN)γ
and IL-12 when challenged with ovalbumin, which is in line with previous findings [35] that
AhR plays an important role in the normal development and function of the immune system.
AhR null mice show decreased accumulation of lymphocytes in the spleen and lymph nodes
[35]. This suggests the AhR is also located in the nucleus to regulate these physiological
processes in the absence of exogenous ligands. Nuclear localization and activity of the AhR
during embryonic development has also been reported [36].

Interestingly, from recent studies it becomes clear now that the AhR can regulate the generation
of regulatory T cells (Treg) or pro-inflammatory T cells producing IL-17 (TH17) depending on
the nature of its ligand. Activation of the AhR by TCDD induces differentiation of T-cell
progenitor cells into Treg whereas ligand binding of AhR by 6-formylindolo[3,2-b]carbazole
(FICZ) leads to differentiation of those progenitor cells into TH17 cell which produces
interleukin (IL)-22 [37,38]. FICZ is a tryptophan-derived photoproduct that is thought to be
an endogenous ligand with high affinity for the AhR [4]. It has long been recognized that
derivates of tryptophan can activate AhR [3]. In contrast to FICZ, the tryptophan-derived AhR
endogenous ligand 2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE)
suppressed autoimmune encephalomyelitis (EAE) in mice as demonstrated for TCDD [37].
Dioxin (= TCDD) is a prototype of a class of environmental contaminants with high affinity
to the AhR. AhR activation by TCDD has broad effects on the immune system in humans
[39] and the AhR-dependent induction of a T-cell population with characteristics of Treg has
been described earlier [40,41]. The concept emerging from recent studies on T cell
differentiation regulated by AhR proposes that activation of AhR dependent on its activating
ligand can induce immunity or tolerance. Our most recent findings show, that activation of
AhR by TCDD induces indoleamine-2,3-dioxygenase 1 (IDO1) and indoleamine-2,3-
dioxygenase-like protein (IDO2) [42]. Expression of IDO1 and IDO2 is known to generate
Treg which suggest a critical role of IDO to mediate immunosuppressive effects after activation
of AhR by TCDD.

Future studies are necessary to show, if these ligand-specific effects on T cell differentiation
are due to the capability of the AhR to interact with different transcription factors leading to
distinct different outcomes or to the different pharmacological features of the AhR activating
compounds.
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It must be added that, while the connection between such a function of AhR to regulate the
balancing of Treg versus TH17 and that of RelB is not apparent so far, the possibility of the
involvement of RelB will be elaborated in a later section.

3. The NF-κB subunit RelB
3.1 Physiological roles of the NF-κB subunit RelB

The NF-κB or Rel proteins comprise a family of structurally related eukaryotic transcription
factors that play critical roles in diverse cellular processes including adaptive and innate
immunity, inflammatory responses, cell differentiation, proliferation, and apoptosis. The
functions of Rel/NF-κB transcription factors are conserved from the fruit fly Drosophila
melanogaster to humans; more recently, Rel/NF-κB homologs have also been found to occur
even in organisms as simple as Cnidarians (e.g., sea anemones and corals) and Porifera
(sponges). Transcriptionally active NF-κB dimers are formed by combinatorial association of
five subunits: p50, RelA (p65), p52, c-Rel, and RelB [43]. Nuclear translocation of the NF-
κB subunits is controlled by two main signaling pathways. The well known classical
(canonical) NF-κB pathway consists majorly of the classic inducible NF-κB heterodimer p50
and RelA (=p65) subunits, each contacting one half of the DNA binding site. All Rel members
can form heterodimers or homodimers, except for RelB, which can only form heterodimers.
The individual dimers have specific DNA-binding sites and slight variations in the 10 base pair
NF-κB consensus sequence (5’-GGGGYNNCCY-3’) which is critical for the preference of
selected Rel combinations [44] and regulation of a distinct set of genes. The activity of Rel
dimers is controlled by a family of inhibitor proteins, known as IκBs, whose degradation can
be induced by a variety of stimuli and involves signal responsive activation of IkB kinase
(IKK).

The activation of the IKK complex in the classical NF-κB pathway is generally regulated by
IKKβ. In contrast, the alternative (non-canonical) NF-κB pathway is activated by
phosphorylation of p100 through an IKKα homodimer lacking the regulatory subunit IKKγ.
IKKγ, however, is absolutely required for activation of the classical pathway through ligation
of members of the tumor necrosis factor receptor (TNFR) superfamily or initiation of pathogen
sensing receptors the toll like receptors (TLR). Activation of the non-classical or alternative
NF-κB pathway has been described to be mediated by several developmental stimuli such as
Lymphotoxin (LT)-α1β2 or TNFR ligands like B cell activating factor (BAFF), CD40 ligand
(CD40L), or receptor activator of NF-κB ligand (RANKL). Upon binding of these ligands NF-
κB-inducing kinase (NIK) and IKKα will be activated and p100 will be processed to mature
p52 followed by nuclear translocation of RelB/p52 NF-κB dimers. Activation of the alternative
NF-κB pathway through ligation of Lymphotoxin β receptor (LTβR) for instance regulates
expression of organogenic chemokines such as SLC (CCL12), BLC (CXCL13), ELC (CCL19),
or SDF-1 (CXCL12) which is needed for organization of secondary lymphoid organs like
maturation of spleen and lymph nodes [45-47]. NF-κB activation through the alternative
pathway in response to developmental signals is weaker and delayed compared to inflammatory
signals mediated via the classical pathway, which is usually a transient signal [48].

Genetic studies revealed that lymph node development requires the activity of both NF-κB
pathways the classical (RelA and IKKβ) and the alternative (RelB and IKKα) pathway. For
instance, signals mediated via CD40R or BAFFR which control B cell maturation were also
shown to utilize the NIK pathway for RelA activation. Thus, the NF-κB RelA/p50 dimer does
not only control a critical role in immune activation but plays also a role in immune
development. For instance, development and maintenance of lymph nodes requires both RelA
and RelB mediated NF-κB pathways. Their results further indicate that constitutive nuclear
RelA/p50 activity is required to ensure expression of RelB and thus LTβR mediated activation
of the alternative RelB/p52 dimer. Recent studies performed by Alexander Hoffmann’s group
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support the crosstalk of the classical and alternative NF-κB pathway showing that inflammatory
and developmental signaling of NF-κB dimers are not separate but highly interconnected
pathways [49].

The cross-regulation of both NF-κB systems has been shown in RelA deficient mice which are
defective in RelB activation. Evidence came from recent reports, showing that stimulation of
the alternative pathway via LTβR implicates a first phase of RelA activity which is important
for expression and de novo synthesis of RelB [50]. RelB deficient mice showed increased
inflammatory infiltration in multiple organs as well as severe deficits in adaptive immunity
[51]. The most impressive findings regarding the function of RelB have been reported by
Burkly et al. [52]. In RelB deficient mice, they could demonstrate that the expression of RelB
is required for the development of thymic medulla and dendritic cells (DC). More recent studies
have shown that the expression of RelB is upregulated early during differentiation of DC and
is required for proper development and function of DC [53]. DCs are considered as key
regulators of immunity or tolerance and are also an important source of IDO1 to induce Treg
[54]. It has been shown that the alternative NF-κB pathway is critical for the induction of IDO1
in DC through ligation of CD40 for instance [55]. Thus, it is not unlikely that the TCDD-
mediated induction of IDO1 does not only require AhR as shown recently [42], but also
involves RelB as in the case of IL-8 [18].

3.2 The alternative NF-κB pathway in pathophysiology and the etiology of diseases
NF-κB transcription factors are persistently active in a number of disease states, including
arthritis, chronic inflammation, asthma, neurodegenerative diseases, cardiovascular disease,
and cancer. Inflammation caused by deregulation of NF-κB activity has been well identified
as a tumor promoter. Both the classical and the alternative NF-κB pathways were found to be
activated by viral oncoproteins, in particular the HTLV1-encoded Tax protein in adult T-cell
leukemia and the EBV-encoded LMP1 protein in B-cell lymphoma [56].

Several reports indicate that the alternative NF-κB pathway is activated in specific subtypes
of lymphoid leukemia and lymphoma. Chromosomal translocations disrupting the p100 gene
that generate truncated p100 proteins and constitutive processing of p100 to p52 were identified
in cutaneous T-cell lymphoma, and, more rarely, in B-cell non-Hodgkin lymphoma, chronic
lymphocytic leukemia, and multiple myeloma [45,56,57]. Transgenic expression of a truncated
p100 protein led to the development of B-cell lymphomas in mice, thus demonstrating the
oncogenic potential of p100 mutations [58]. Recently, we demonstrated the AhR-mediated
development of lymphoma in vivo which was associated with increased expression of
inflammatory markers such as COX-2. In addition, the expression of Bcl-xl an anti-apoptotic
gene of the Bcl-2 family was significantly increased in clearly enlarged superficial lymph nodes
of TCDD treated animals [59]. Interestingly, RelB/p52 complexes have been shown to induce
Bcl-2 promoter activity [60] and future studies are needed to verify the possible involvement
of AhR/RelB in lymphoproliferative disorder promoted by the TCDD-activated AhR.

In other cancer types such as breast cancer NF-κB has been shown to be constitutively active
and located in the nucleus in over 90% of the breast cancers [61]. This could be due to chronic
stimulation of the IKK pathway or defective IkB genes. Both NF-κB pathways can affect tumor
growth. More recently the overexpression of RelB has been demonstrated in mammary
tumorigenesis. Therefore the alternative signaling pathway has been considered to play a
critical role in controlling the activity of NF-κB which is associated with cancer cells. Beside
breast cancers (ER-negative, inflammatory type) [62], RelB has also been found to be over-
expressed in some of prostate cancers [63]. It has been observed that in the above types of
cancers as those cancer cells progress toward more advanced states of malignancy the nuclear
titer of RelA protein decreases and that of RelB protein increases. The important point is that
these are the type of breast cancer cells, which also exhibit overexpression of AhR and require
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RelB, not RelA to survive in the hostile environment (Vogel and Matsumura, unpublished data,
2008). Such an observation of RelB contributing to cancer cell survival should include their
acquisition of immune tolerance. Studies investigating the epithelial-mesenchymal transition
(EMT) in mammary tumorigenesis showed overexpression and nuclear translocation of RelB
contributes to the phenotype of inflammatory breast cancer which is the most aggressive breast
cancer with high metastatic potential [64,65]. Especially in estrogen receptor (ER)α negative
breast tumor cell types the expression of RelB is increased which is obviously based on a
negative control of RelB de novo synthesis by ERα [60]. From their studies the authors
concluded an inverse relationship exists between the expression of ERα and RelB in MCF-7,
transformed mammary epithelial cells. Other data suggest that estrogenic status is also
important in AhR regulation and can influence the effects of xenobiotics-mediated
carcinogenicity [66]. A strong link between mammary tumorigenesis and AhR overexpression
derived from studies performed by David Sherr’s group [67]. Recent reports by G. Lazennec
show that development of this type of breast tumor is associated with inflammation and an
inappropriate production of chemokines especially IL-8 which is a critical phase in breast tumor
metastasis [68-71]. Besides these recent findings little is known about the role of AhR together
with RelB in human breast disease. Since we know that AhR/RelB complexes are involved in
the regulation of IL-8 and that IL-8, AhR, and RelB are overexpressed and active in many
breast cancer cells, we consider that it is not a mere coincidence that formation of the AhR/
RelB dimer is found in those ERα-negative, transformed mammary epithelial cells. Rather the
AhR/RelB dimer likely contributes to mammary tumorigenesis. This hypothesis is supported
by the association of elevated AhR activity in breast tumor cells with formation of the AhR/
RelB complex as found by co-immunoprecipitation in MDA-MB-231 breast cancer cells
(personal communication, D. Sherr and G. Sonenshein, Boston University). Our own data
confirm a distinct increase (10-fold) of AhR/RelB binding activity in EMSA with nuclear
extracts of the breast epithelial cell line MCF10A after long-term treatment with estradiol for
20 weeks (P. Wong, C.F. Vogel and F. Matsumura, unpublished data). A better understanding
of the overexpression of inflammatory markers such as IL-8 in breast cancer is crucial to get
a better insight into the role of the cytokines/chemokines in mammary tumorigenesis.

4. AhR and RelB
4.1. Implication for the interaction of AhR and RelB

Recently it was reported from this laboratory [18] that in U937 macrophages the NF-κB subunit
RelB is functionally associated with the AhR and mediates transcription of chemokines such
as IL-8 via activation of AhR that is assisted by protein kinase A (PKA). RelB was found to
physically interact with AhR, as attested to by their co-immnoprecipitation and their
association as detected in electromobility shift assays (EMSA). We have shown that this dimer
binds to a previously unrecognized RelB/AhR response element (RelBAhRE) of the IL-8
promoter linking two signaling pathways to activate gene transcription. We found a time-
dependent recruitment of AhR to the RelBAhRE site of IL-8 mediated by the AhR ligand,
TCDD and via activation of PKA. Furthermore, NF-κB-binding sites that are preferentially
recognized by RelB/p52 are a target for RelB/AhR complexes without addition of any
exogenous ligands, implicating the endogenous function of the AhR. RelB/AhR complexes
are also found to bind on DRE as well as NF-κB consensus elements, and RelB drastically
increases the TCDD-induced DRE-Luc reporter activity.

Since this discovery of the interaction of AhR and RelB is so recent, not many data are available
from the literature showing the crosstalk of the AhR and RelB. However, some recent reports
from other groups support the interaction between both transcription factors AhR and RelB
[72] and may give us some more insight into the physiological and toxicological relevance of
this novel heterodimer.
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In a previous report we showed that TCDD dose-dependently induces the expression of IL-8
in human U937 macrophages [19]. Mechanistic studies on IL-8 activation showed that TCDD
or forskolin (FSK) mediated nuclear entry of the AhR which represents a new alternative
mechanism of AhR regulation which dependent at least partly on activation of PKA and the
association of AhR with RelB [18]. Previous studies from other groups have shown that FSK
induces IL-8 [73] and that FSK or cAMP may activate AhR through a PKA-dependent
mechanism [74]. Interestingly, the PKA-dependent activation of AhR was associated with
nuclear translocation, but without dimerization with ARNT. The potential dimerization partner
of AhR remained unknown at that time. Recently, we found that the FSK-and TCDD-induced
activation of the IL-8 involves an unidentified RelB/AhR binding element (RelBAhRE) close
to the TATA box of the IL-8 gene. This RelBAhRE sequence is distinctly different from DRE
or NF-κB consensus elements since it does not bind to ARNT nor to the NF-κB subunit p50,
which are well known dimerization partners of AhR and RelB, respectively. Further studies in
our laboratory have revealed that NF-κB binding sites, which preferentially bind RelB/p52
complex, are also bound by the AhR/RelB dimer. Besides IL-8, such RelB/AhR responsive
elements have been found on genes like B-cell activating factor of the tumor necrosis factor
family (BAFF), B-lymphocyte chemoattractant (BLC), CC-chemokine ligand 1 (CCL1), and
the transcription factor interferon γ responsive factor (IFR3), which are known targets of the
alternative NF-κB pathway [29]. Results from these studies also showed that the RelB/AhR
heterodimer binds to DRE as well as NF-κB consensus elements suggesting that AhR together
with RelB may also regulate classical NF-κB and AhR signaling pathways. Binding of AhR/
RelB on DRE elements is not limited to hematopoetic cell lines like U937 and was also found
in the human hepatoma cell line HepG2 (Fig. 1) and other cell lines like mouse Hepa1c1c7 or
3T3 L1 fibroblasts (Data not shown). This is an important point since Chris Bradfield’s group
has found that DNA binding of the AhR is required to mediate liver development as well as
toxic endpoints elicited by TCDD [75]. Based on these data we proposed a model of an
alternative AhR/RelB pathway for the action of the non-liganded AhR in which the crosstalk
between AhR and RelB regulates the expression of inflammatory genes like IL-8 [18].

The unexpected finding that the AhR also binds on NF-κB consensus sites suggests that the
AhR may affect the classical NF-κB pathway as well. Previous studies have shown that TCDD-
mediated activation of the AhR may suppress the effects elicited by LPS or TNFα for instance
[26]. The antagonistic action of AhR with the classical NF-κB pathway will be discussed in
more detail in a different chapter of this issue. However, there is no doubt that TCDD together
with LPS or TNFα may also act synergistically on target genes such IL-8 or COX-2 [76]. In
collaboration with Nancy Kerkvliet we asked the question if the AhR may play a role in the
induction mechanism of the classical NF-κB pathway mediated by inducers like LPS, for
instance. For this purpose AhR null mice were challenged in Nancy Kerkvliet’s lab with 50
μg LPS for 3 and 6 hrs. Then we analyzed the expression of NF-κB target genes like KC (=IL-8
equivalent in mice) and COX-2 in liver and lung of LPS treated AhR null mice and compared
the response towards LPS in wild type C57BL/6 mice. Surprisingly, we found that the LPS-
induced up-regulation of KC mRNA expression in liver as well as that of COX-2 mRNA in
lung was significantly lower in AhR null mice compared to wild type C57BL/6 mice (Fig. 2A
and D). In contrast, LPS-mediated induction of KC in lung and COX-2 in liver was not
significantly different in AhR null mice from that what was found in the matched wild type
mice (Fig. 2B and C). As expected, TCDD had no effect on the expression of KC or COX-2
in AhR null mice (Fig. 2A-D). Previous studies have shown that both KC and COX-2 are
targets of the AhR activated by TCDD [17,77], and therefore, these data indicate that even in
the absence of exogenously added ligand the AhR must be helping those cells in liver and lung
to maintain their responsiveness to LPS. The main implication of this finding may be that the
AhR functions not only in AhR signaling but also NF-κB signaling that is activated by classical
inducers like LPS. Results from another study by Thatcher et al. [72] showing the accelerated
degradation of RelB in AhR null mice after LPS challenge, support the critical role of AhR
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and RelB in response to LPS. Thatcher et al. [72] investigated the inflammatory response in
lung of LPS and cigarette smoke exposed mice. They found that mice which inhaled cigarette
smoke or LPS express higher levels of TNFα and IL-6 in the bronchoalveolar lavage of AhR
null mice compared to wild type mice. In contrast to our findings (Fig. 2) and a previous report
[17], these authors found that both constitutive as well as LPS-induced expression of KC was
expressed at a higher level in AhR null mice compared to wild type BL/6 mice. The authors
concluded that this phenomenon might be due to an elevated NF-κB activity in control animals
of AhR null mice which is not the case in wild type mice under normal and healthy conditions
[72]. Interestingly, the increased inflammatory response in cigarette smoke or LPS exposed
AhR deficient mice was associated with a rapid loss of RelB protein. In a more recent study
the same group reported that the heightened inflammatory response observed in fibroblasts
from AhR null mice is not the result of NF-κB (p50/RelA) activation [78] as speculated
previously [72]. The authors concluded that AhR helps to maintain the expression of RelB and
thus limits pro-inflammatory COX-2 and prostaglandin (PG) production induced by cigarette
smoke [78]. This report is in contrast to a previous study performed by the same group showing
that the AhR is required and plays an important role in cigarette smoke-mediated COX-2 and
PG production in human lung fibroblasts and may contribute to tobacco-associated
inflammation [79]. One possibility is that specific components of cigarette smoke such as PAHs
require AhR to mediate their effects whereas other components of cigarette smoke rather
activate the classical NF-κB pathway through oxidative stress and may benefit from the absence
of the AhR and RelB to induce an inflammatory response.

Nevertheless, these studies confirm our previous findings [17] on the critical role of the AhR
in regulation of the inflammatory response. More importantly these studies support our reports
of the interaction of AhR complexed with RelB [18], if we interpret their data to mean that the
presence of AhR helps stabilization of RelB in normal mice by extending their observation
that in the absence of AhR, RelB protein is more susceptible for degradation.

Lee et al. [80] investigated the effect of TCDD on the differentiation of DCs. Activation of the
AhR through environmental pollutants like dioxin is well known to induce profound
suppression of immune responses, especially T cell dependent responses, which is the primary
toxicity associated with the exposure to dioxin [81]. Emerging from recent studies it becomes
clear that the AhR can regulate the generation of regulatory T cells (Treg) which could explain
TCDD’s immune suppressive effects. Interestingly, induction of Treg after activation of AhR
by an anti-inflammatory compound (VAF347) has been found to be mediated at least in part
through DCs [82]. Therefore, DCs should be considered as a potential target for TCDD. DCs
are the most potent antigen-presenting cells (APC) and are key regulators of the choice between
immunity and tolerance [83]. One of the most potent ways in which DCs can create
immunosuppression is by activating Treg cells [84]. Lee et al. [80] showed that treatment of
mouse DC derived from bone marrow with TCDD significantly affected the differentiation
and maturation of DCs. TCDD-treated DCs expressed significantly higher level of DC
differentiation markers such as MHC class II and the co-stimulatory molecule CD86, whereas
the expression of CD11c and the production of IL-10 was reduced by TCDD. These results
agree with studies performed in Nancy Kerkvliet’s lab [85,86] showing an increased expression
of the DC surface markers CD86, MHC class II, and ICAM-1, whereas LFA-1 was found to
be decreased in splenic DC of TCDD treated mice. In summary, the authors described an
activation-like stimulus to DC after treatment with TCDD in an AhR-dependent manner which
is supported by our most recent report [42]. In that we could show that activation of AhR by
TCDD or the tryptophan derived photoproduct FICZ increases the expression of surface
markers especially CD86 in human U937 monocyte-derived DCs, which was associated with
morphological changes of DCs into more elongated and stellate cells typical for dendritic cells.
In addition, we found that activation of AhR by TCDD leads to indolamine-2,3,-dioxygenase
(IDO) expressing DCs and induction of IDO1 and IDO2 in spleen of BL/6 mice. The induction
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of IDO in spleen was associated with the increase of the Treg marker Foxp3 which was
suppressed by treatment with a pharmacological inhibitor of IDO. These data indicate that
induction of IDO by TCDD may play an important role in AhR-dependent regulation of T cell
differentiation and immune suppression.

Lee et al. [80] reported that DCs from TCDD-treated mice showed enhanced ability to stimulate
allogeneic T cell proliferation in a mixed lymphocyte reaction. Furthermore, the authors found
that TCDD as well as Benzo(a)pyren downregulate the expression of RelB upon stimulation
of DC maturation with LPS in an AhR-dependent manner. As mentioned earlier one critical
physiological function of RelB is regulation of differentiation of DCs. Thus the TCDD-
mediated and AhR-dependent effects on DC differentiation seem to implicate the function of
RelB. With respect to our findings describing the role of the AhR/RelB complex in the
regulation of cytokines and chemokines it is likely that the interference on DC differentiation
caused by TCDD is mediated through an activated AhR complexed with RelB.

In another study Ruby et al. [87] investigated whether TCDD would alter the activation of NF-
κB/Rel in DCs. The dendritic cell line DC2.4 was exposed to TCDD before treatment with
TNF-α or anti-CD40, to activate both the classical and alternative NF-κB/Rel pathway. TCDD
suppressed the binding of NF-κB/Rel to its cognate response element in TNF-α- and anti-
CD40-treated cells and blocked translocation to the nucleus. The AhR was shown to associate
with RelA, after coimmunoprecipitation, and seemed to block its binding to DNA. In contrast
to the studies of Lee et al. [80] and our studies in U937 macrophages, this interaction was
limited to RelA, but RelB did not seem to interact with AhR in DCs transfected with AhR.
Ruby et al. [87] concluded from their results that the defects in the DCs and suppression of the
immune response mediated by TCDD may be due to a shifted balance between NF-κB/Rel
heterodimers and transcriptional inhibitory p50 homodimers in DCs. In contrast to TCDD,
Lawrence et al. [88] reported recently that an anti-inflammatory low molecular weight
compound (VAF347) activates the AhR signaling pathway resulting in anti-inflammatory
effects on DC by inhibiting expression of the DC markers CD86 and MHC class II. Thus, the
role of the AhR mediating activation-like or anti-inflammatory responses in DC might be due
to its capacity to interact with different transcription factors in a ligand-specific manner as
suggested for the differentiation of T cells into Treg or TH17. Another explanation could be
that VAF347 affects additional signaling pathways independent of the AhR. The knowledge
of how activation of AhR by specific ligands results in biologically different endpoints might
improve our understanding of the toxicity of various AhR ligands and more importantly the
physiological role of the AhR.

5. Concluding Remark
Evidence has been accumulating to indicate that there are close interactions between AhR and
NF-κB family members such as RelA and RelB. Interestingly interactions appear to occur
between RelB with the form of AhR either bound with its ligand or without. The consequence
of RelA/AhR interactions appears to be mostly negative (i.e. antagonistic) as in the case of
CYP1A1 [26] or IL-6 [89] gene activity by forming complexes with AhR which have obviously
no DNA-binding capacity or transcriptional activity with the exception of the c-myc gene (Fig.
3). Kim et al. [90] reported that AhR and RelA may functionally cooperate to bind to NF-κB
elements and induce c-myc gene expression. So far as we have found, the interaction of RelB/
AhR appears to be rather positive by increasing DRE-reporter activity of CYP1A1 and
transcription of NF-κB target genes such as IL-8 and other chemokines [17,18] through binding
on specific RelBAhRE sequences (Fig. 4). However, we have to consider that the interaction
of the AhR with NF-κB signaling pathways (classical or alternative) seems to be much more
complex and should not exclude the possibility that enhanced formation of AhR/RelB dimers
could also have suppressive action on the activity of certain target genes under certain
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conditions. It must be added that in both cases (i.e. RelA/AhR and RelB/AhR interactions),
their joint effects are exacerbated when AhR is activated by its prototypical ligand TCDD. The
main question we must raise is then why does such an opposite consequence of their interactions
exist between RelA/AhR versus RelB/AhR? This difference between RelA and RelB cannot
be coincidental; after all, if RelA and RelB serve for the same purpose, there would be no need
for two elaborate although interacting NF-κB signaling pathways (i.e. the classical pathway
for RelA and the alternative pathway for RelB). One of the possibilities is that AhR assists the
function of RelB not only to mediate chronic inflammation but also to promote RelB’s function
in resolution of inflammation via negative feedback mechanisms for instance [91,92], whereas
AhR antagonizes the action of RelA to moderate acute cellular inflammation, particularly after
stimulation by LPS or other potent inflammation inducing agents and/or protect cells from
unwanted side-effects of full activation of inflammatory effects of RelA. Viewed in this way,
it makes it easier to understand the reason why RelB/AhR interactions tend to produce mostly
synergistic consequences of inflammation, while that of RelA/AhR could act antagonistically.

Exacerbated activation of the alternative NF-κB RelB pathway is associated with various
inflammatory disorders including cancer. Recent reports indicate that activation of RelB
through IKKα (as opposed to activation of RelA, which largely depends on activation of
IKKβ) may also lead to resolution (a term used to express the effect of anti-inflammatory agents
such as aspirin or the negative feedback of cells to reduce the effects of inflammation) of RelA-
induced inflammation [93]. Indeed, Matos and Jordan [94] consider that RelB acts essentially
as the negative feedback to the inflammation pathway mediated by RelA. Furthermore, there
is now enough evidence to indicate that RelB acts as a major cell survival factor such as
conferring radiation resistance [95] and anti-apoptotic properties of cancer cells [96]. Since
the finding of the RelB/AhR interaction is so recent, the possible assisting role of AhR in the
above cases has not been addressed adequately yet. If such a view is confirmed, it would provide
the important clue to one of the major functions of AhR to act as the factor promoting
inflammation in cells and alternately it can act as a factor promoting resolution of inflammation
to protect cells that are experiencing intense inflammation.

Certainly studies on the interaction of NF-κB proteins and signaling pathways are evolving
rather fast, and we must closely keep up with future changes occurring in this fascinating
research area. Nevertheless, the realization that AhR participates in NF-κB signaling pathways
in regulating inflammation, immune responses, resolution, survival, and probably other
functions, this aspect of the biological roles of the AhR merits close attention in the future.
Furthermore, this finding also fits the model of AhR being capable of directly forming dimers
with individual members of other types of nuclear transcription factors, even without its ligand,
e.g. with ERα as in the case of BRCA-1 gene activation [97]. With the additional evidence of
direct interactions of AhR with other transcription factors presented in this special issue, such
a mode of AhR action to coordinate its activities with other major cellular regulatory pathways
through direct AhR protein interactions in the nucleus should be considered as one of the major
paradigm of AhR operations. Finally studies on the interaction between AhR and RelB support
our previous findings that one of the cellular physiological roles of AhR includes regulation
of the cellular inflammatory state.
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XAP2  
X-associated protein 2
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Figure 1.
Nuclear protein extracts from control (C), FSK- (F), or TCDD-stimulated (T) HepG2 cells
were incubated with 32P-labeled oligonucleotide containing a DRE consensus element of the
CYP1A1 promoter. Nuclear proteins were extracted after treatment (Treat.) of HepG2 cells
(ATCC, Manassas, VA) with 10 nM TCDD or 5 μM FSK for 2h. TCDD (>99% purity) was
originally obtained from Dow Chemical Co. (Midland, MI) and FSK was purchased from
Sigma (St. Louis, MO). A possible binding of AhR, ARNT, and RelB was identified by
supershift analyses using AhR-, ARNT-, or RelB-specific antibodies (Ab). Monoclonal ARNT
(Santa Cruz Biotech Inc, Santa Cruz, CA), RelB (Active Motif, Carlsbad, CA) and polyclonal
AhR (Novus Biologicals, Littleton, CO) antibodies were used for supershift analysis. To
confirm specificity a 100-fold excess of unlabeled DRE consensus oligonucleotide was added.
A 100-fold molar excess of unlabeled oligonucleotides was added as competitor (Compet.).
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Figure 2.
C57BL/6 wild type (wt) and AhR homozygous null mice (AhR-/-) were treated with 50 μg LPS
E. coli 055:B5 (Sigma L4005, St. Louis, MO). In addition AhR-/- mice were treated with 15
μg/kg TCDD. After 6 hrs animals were sacrificed and tissues were prepared for RNA analysis
by real time PCR. Values of KC and prostaglandin endoperoxide H synthase-2 (PGHS-2 or
COX-2) mRNA are normalized to the expression of β-actin. C57BL/6J (BL6) and AhR null
(AhR-/-) mice were originally purchased from The Jackson Laboratory (Bar Habor, ME).
* significantly different from LPS-treated wild type mice p≤0.05
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Figure 3.
Putative crosstalk between the classical pathway of NF-κB and AhR activation.
Ligand engagement of specific membrane receptors (TNFR, IL-1R or TLR) triggers
phosphorylation and activation of IKKβ. Free NF-κB translocates to the nucleus and activates
target genes via p50/RelA dimers. Activated free RelA may also bind to ligand-activated AhR
generating transcriptionally inactive complexes that could suppress the classical activation
pathways of NF-κB [89] and AhR [26] or positively regulate gene expression as shown for c-
myc [90]. IL-1R, IL-1 receptor; NEMO, NF-κB essential modulator; TLR, Toll like receptor;
TNFR, TNF receptor.
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Figure 4.
New mechanism of cross talk between AhR and RelB.
Ligand-activated or unliganded AhR activated by PKA translocates into the nucleus and
interacts with RelB and occupy RelB/AhR-response elements (RelBAhRE) of promoters as in
the case of IL-8 (alternative AhR/RelB pathway). AhR agonists induce the recruitment of AhR/
ARNT complexes to DRE-responsive promoters such as CYP1a1 (classical AhR/ARNT
pathway). Alternative pathway of NF-κB activation through the LTβR, RANK, CD40, or
BAFFR leads to the release of active NIK which phosphorylates IKK. After processing of
p100, RelB/p52 heterodimers are generated and activate target genes. BAFFR, B-cell
activating factor receptor; FSK, forskolin; IKK, IKB kinase; LTβR, Lymphotoxin β receptor;
NIK, NF-κB-inducing kinase; NF-κB, nuclear factor-κB; PKA, Protein kinase A; RANK,
receptor activator of NF-κB. From Vogel et al. [18] reproduced with permission from
Molecular Endocrinology 2008.
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