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A five step-synthesis of fused bis-tetrahydrofurans and attached bis-tetrahydrofurans from butadiene
diepoxide is described. Two sequential Pd-catalyzed carboetherification reactions between protected
1,2-diols and aryl/alkenyl bromides, each of which form both a C-O bond and a C-C bond, are used
to generate the heterocyclic rings with >20:1 dr. Installation of different R1 and R? groups is achieved
in a straightforward fashion through use of different aryl or alkenyl bromide coupling partners.

A large number of interesting compounds contain attached-ring or fused-ring tetrahydrofuran
scaffolds (Figure 1). The 2,6-dioxabicyclo[3.3.0]octane framework (1) is found in both
naturally occurring1 and synthetic molecules that are relevant to human health (e.g., 3;
antitumor a\ctivity)2 and agriculture (e.g., 4; herbicide).3 Attached-ring tetrahydrofurans (2)
are displayed in a vast number of natural products, including the annonaceous acetogenins,4
of which asimicin (5) is a member.

A variety of different approaches have been developed for the construction of these useful
compounds.‘ll5 Many of these strategies involve generation of the bis-tetrahydrofuran
framework via sequential (or tandem) ring-closing reactions of 1,2-diols bearing pendant
functional groups such as alkenes, epoxides, alcohols, or allylic acetates/halides.® Although
these methods effectively form the heterocyclic ring, they do not allow the simultaneous
construction of a C—C bond. Thus, substituents attached to the tetrahydrofuran C2-position,
such as the side chains present in 3-5, must be installed in separate steps either prior to or
following ring-closure.
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We felt that an alternative approach to the construction of substituted fused-ring
tetrahydrofurans with the general structure 8 could be developed using sequential Pdcatalyzed
carboetherification reactions’ 8 of unsaturated 1,2-diols such as 6. As shown in Scheme 1,
treatment of 6 with an aryl or alkenyl halide in the presence of NaOtBu and a palladium catalyst
should provide 7, which could be converted to 8 in a second catalytic transformation. This
strategy could also be applied to the synthesis of attached-ring tetrahydrofurans (e.g., 9 to
10) by simply extending the tether between the alcohols and the alkenes by one methylene unit.
Importantly, each carboetherification reaction would generate both a C—O bond (to form the
heterocylic ring) and a C-C bond, thus providing a more concise approach to substituted bis-
tetrahydrofurans compared to currently available methods.

In order to examine the feasibility of the strategy outlined above, we elected to examine the
selective monocyclization of known diols 6% and 9,9 which can be generated by Cu-catalyzed
addition of vinylmagnesium bromide or allylmagnesium bromide to commercially available
butadiene diepoxide. We also prepared mono-TBS-protected10 derivatives 11 and 12 (Figure
2), as our prior studies indicated that carboetherification reactions of mono-protected 1,2-diols
are often more efficient than transformations of the corresponding unprotected diols.8

Preliminary attempts to effect selective monocyclization of unprotected diols 6 and 9 provided
unsatisfactory results (Figure 3). Treatment of 6 with one equivalent of bromobenzene under
our standard carboetherification conditions (NaOtBu, cat. Pds (dba)ngpe-Phos)11 afforded
mixtures of bis-cyclized product 13 and unreacted starting material. Treatment of 6 with four
equivalents of bromobenzene led to complete consumption of starting material and the
formation of 13 with >20:1 dr, albeit in only 30% yield. Efforts to achieve monocyclization of
9 did lead to the formation of desired tetrahydrofuran 14, but yields were low and isomerization
of the second alkene was problematic. Use of excess aryl halide in this reaction failed to
generate significant amounts of the bis-tetrahydrofuran target, and instead provided an 81%
combined yield of 14 and inseparable alkene isomers.

Although carboetherification reactions of 6 and 9 were generally ineffective, transformations
of TBS-protected substrates 11 and 12 proceeded smoothly. As shown in Table 1, treatment
of 11 with an aryl bromide in the presence of NaOtBu and a catalyst composed of Pd,(dba)3
and Dpe-Phos provided tetrahydrofurans 15 in good yields with excellent diastereoselectivities.
Cleavage of the silyl ether protecting group was achieved under standard conditions, and
carboetherification of the resulting alcohols 16 provided fused tetrahydrofurans (8) as single
stereoisomers (>20:1 dr). Both cyclizations led to products that are trans—2,5-disubstituted
around the tetrahydrofuran ring(s), which is consistent with our previously reported
observations and stereochemical models for the conversion of y-hydroxy alkenes to
tetrahydrofurans.8

The first carboetherification reaction in this sequence (11 to 15) was sensitive to the electronic
properties of the aryl bromide, and the best yields were obtained with electron-neutral
substrates (entries 1-6). However, the scope of the second carboetherification reaction (16 to
8) was much broader, and a number of different aryl bromides were effectively coupled. In
addition, use of B-bromostyrene in the second transformation was also successful (entry 7).
Diastereoselectivities were uniformly high in all of the carboetherification reactions (>20:1
dr), and in many cases the overall yield of 8 exceeded 50% over the three-step sequence.

The synthesis of attached-ring bis-tetrahydrofurans was achieved by subjecting protected diol
12 to an analogous sequence of carboetherification (12 to 17), deprotection (17 to 18), and
carboetherification (18 to 10). As observed in the transformations of 11, the scope of the second
carboetherification step is considerably broader than the first (with respect to the aryl bromide
component). Yields of attached-ring tetrahydrofurans were slightly lower than the
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corresponding fused-ring products described above. However, diastereoselectivities were
excellent, and all products were obtained with >20:1 dr favoring 2,5-trans-stereochemistry
around both tetrahydrofuran rings.

To further probe the synthetic utility of these transformations, we sought to determine if
nonracemic starting materials could be converted to bis-tetrahydrofuran products without loss
of enantiomeric purity. To this end, (-)—12 was prepared in 96% ee via asymmetric
dihydroxylation of commercially available trans—1,5,9-decatrienel? followed by mono-TBS-
protection of the resulting diol. This substrate was converted to (—=)—10h using a sequence of
reactions identical to that shown in Table 2, entry 8, and the product was obtained with >20:1
dr and 95% ee (Figure 4).

The synthesis of more elaborate tetrahydrofuran products is also feasible using this method.
For example, protected tetraol derivative 19 was generated from Dmannitol using standard
transformations.13 This substrate was converted to bis-tetrahydrofuran 22 with >20:1 dr using
the same reaction sequence described above (Scheme 2).

In conclusion, we have developed a concise approach to the construction of both attached-ring
and fused-ring bis-tetrahydrofurans using sequential Pd-catalyzed carboetherification

reactions. This strategy allows for preparation of derivatives bearing different substituents at
the 2-position of each tetrahydrofuran ring, and provides access to derivatives that could not
be easily generated with existing methods. Further studies on the application of these reactions
to the synthesis of natural products and molecules of medicinal interest are currently underway.
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Figure 1.
Examples of Biologically Active bis-Tetrahydrofurans
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Scheme 1.
Synthetic Strategy
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Figure 3.
Attempted Monocyclization of 1,2-Diols
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Figure 4.
Synthesis of an Enantioenriched bis-Tetrahydrofuran
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Scheme 2.
Synthesis of a Highly Substituted bis-Tetrahydrofuran
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