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The structurally related MAPK-activated protein kinases

(MAPKAPKs or MKs) MK2, MK3 and MK5 are involved in

multiple cellular functions, including cell-cycle control

and cellular differentiation. Here, we show that after

deregulation of cell-cycle progression, haematopoietic

stem cells (HSCs) in MK2-deficient mice are reduced in

number and show an impaired ability for competitive

repopulation in vivo. To understand the underlying

molecular mechanism, we dissected the role of MK2 in

association with the polycomb group complex (PcG)

and generated a MK2 mutant, which is no longer able to

bind to PcG. The reduced ability for repopulation is res-

cued by re-introduction of MK2, but not by the Edr2-non-

binding mutant of MK2. Thus, MK2 emerges as a regulator

of HSC homeostasis, which could act through chromatin

remodelling by the PcG complex.
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Introduction

Haematopoietic stem cells (HSCs) represent the best-charac-

terized type of adult stem cells. Profound analysis of surface

antigens and established protocols to determine the self-

renewal capacity and differentiation make HSCs a favourite

model for stem cell biology. The complex microenvironment

in the bone marrow regulates the fate of HSCs, controlling the

balance between differentiation and self-renewal by provid-

ing cytokine and growth factors. However, intracellular

signalling pathways involved in HSCs maintenance remain

elusive. Recent studies showed controversial roles of evolu-

tionarily conserved signalling pathways such as Smad-,

Notch- and Wingless/Int(Wnt)-type (Reya et al, 2003;

Duncan et al, 2005; Blank et al, 2006). The p38 mitogen-

activated protein kinase (MAPK) pathway mainly regulates

haematopoiesis by myelosuppressive cytokines that inhibit

the growth of human primitive haematopoietic progenitors

(reviewed in Platanias, 2003). p38 MAPK was also described

to be necessary for erythropoietin expression and erythropoi-

esis (Tamura et al, 2000) and for thrombopoietin-induced

self-renewal and expansion of HSCs through homeobox

protein Hoxb4 (Kirito et al, 2003). More recently, the involve-

ment of p38 MAPK in oxidative stress-elicited HSC depletion

was shown (Ito et al, 2006). However, redundancy in these

signalling pathways as well as the early embryonic lethality

of most knockout mouse models makes the systemic analysis

of the involvement of these pathways still puzzling.

The three MAPKAP kinases (MKs), MK2, MK3 and MK5,

are involved in the regulation of inflammatory-cytokine

production, in rearrangement of the cytoskeleton and cell

migration, in cell-cycle checkpoint control, in developmental

regulation, as well as in chromatin repression and remodel-

ling (reviewed in Gaestel, 2006). Whereas the regulatory

function of MKs in cytokine production is well known

(Kotlyarov et al, 1999; Winzen et al, 1999), their role in

controlling chromatin repression and remodelling remains

elusive. Recent evidence indicates that polycomb group pro-

teins may be targets for MK2 (Yannoni et al, 2004) and MK3

(Voncken et al, 2005). The polycomb group family, originally

identified in Drosophila melanogaster as a repressor of

homeotic genes, represents epigenetic chromatin modifiers

with transcriptional silencing function (Zink and Paro, 1989;

Valk-Lingbeek et al, 2004). In Drosophila and mammals, two

cooperating PcG complexes have been identified (Lund and

van Lohuizen, 2004). The polycomb repressive or initiation

complex (PRC2), which shows histone-modifying activity,

cooperates with the polycomb maintenance complex

(PRC1), which interacts with modified histones to repress

the expression of genes (Levine et al, 2004), such as the

developmental regulators in murine embryonic stem cells

(Boyer et al, 2006). In humans, PRC1 is a multiprotein

complex including the human polycomb proteins HPC1–3,

core proteins such as RING1A, RING1B, BMI1, as well as the

early development regulator/human polyhomeotic EDR1/

HPH1 and EDR2/HPH2. PcG proteins can interact with a

series of additional molecules to exert control on gene

expression in a highly regulated and dynamic manner

(reviewed in Lund and van Lohuizen, 2004).

A crucial role of PRC1 and its individual components

has been shown by analysis of mice with targeted deletion

of mouse homologues of BMI1 (Bmi1), EDR1/HPH1

(Edr1/Mph1/Phc1/Rae28) and EDR2/HPH2 (Edr2/Mph2/

Phc2). Bmi1-deficient mice are characterized by progressive
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loss of HSCs and cerebellar neurons (van der Lugt et al,

1994). More recently, direct evidence implicated Bmi1 in the

self-renewal of stem cells (Lessard and Sauvageau, 2003;

Molofsky et al, 2003; Park et al, 2003). Similarly, Mph1/

Rae28-deficient HSCs show decreased proliferative and self-

renewal capacity (Ohta et al, 2002; Park et al, 2003). In

addition to defects in the homeostasis of HSCs, PRC1 and

PRC2 PcG mutant mice also suffer from lymphoid differentia-

tion defects (reviewed in Valk-Lingbeek et al, 2004) and, in

case of Phc2/Edr2, from changes in skeleton and premature

senescence (Isono et al, 2005). Thus, PcG proteins play a

crucial role in regulating stem cell self-renewal and differ-

entiation (recently reviewed in Rajasekhar and Begemann,

2007).

In vitro evidence indicates that MK2 and MK3 may selec-

tively interact with EDR2/HPH2 and target components of

PRC1 (Yannoni et al, 2004; Voncken et al, 2005), suggesting a

functional link between MAPKAP kinases and polycomb

proteins. Here, we analyse the interaction between mouse

PRC1 and MK2 and unequivocally document a role for the

MK2 complex in maintaining the ‘stemness’ of HSCs in vivo.

Results

Phenotypic characterization of haematopoietic stem

cells of MK2�/� mice

To numerically assess HSCs, we first quantified the Lin-

(CD3e�, CD11b�, B220�, Gr-1�, TER119�)-Sca1þ c-Kitþ
(LSK) population, classically defined as the HSC compart-

ment. Compared with wild-type mice cells, LSK cells ap-

peared to have increased in relative and absolute numbers

in MK2�/� mice (Figure 1A and B). As LSK cells contain LT-

HSC, ST-HSC, ELPs and multipotent progenitors, we also

analysed HSCs defined by expression of SLAM family recep-

tors (Kiel et al, 2005). As shown in Figure 1B and C, MK2�/�
mice showed a decrease in CD150þCD48� cells compared

with wild-type control mice. Furthermore, upon staining total

bone marrow with the Hoechst dye 33342, MK2�/� mice

showed a five-fold reduction in side population (SP) cells,

known to contain quiescent HSC (Goodell et al, 1996)

(Figure 1D). LSK cells were further analysed for expression

of CD34 and Flt3 to differentiate long-term (LT)

(CD34�Flt3�)-, short-term (ST) (CD34þ Flt3�)-HSCs and

multipotent progenitor cells (MPPs)(CD34þ Flt3þ ). The

relative proportion and absolute number of LT-HSCs

are decreased in MK2�/� mice whereas these values are

increased for MPPs (Figure 1E and F). To assess whether the

lack of MK2 has any effects on the differentiation of HSC, we

analysed erythroid, myeloid, and lymphoid cells in the bone

marrow and spleen. In consistence with the results published

earlier (Kotlyarov et al, 1999), the proportions of TER119,

CD11b and Gr1 were not different between MK2�/� and

control mice; furthermore, no differences were seen in

phenotypic studies characterizing common lymphoid and

myeloid progenitor cells (Supplementary Figures 1–5). In

addition, by blood cell count we could not detect a haema-

topoietic failure in 4-, 8- and 12-months old mice, thus

confirming data published earlier (Hegen et al, 2006;

Jagavelu et al, 2007). These findings indicate that the HSC

pool is significantly reduced in MK2�/� mice, whereas

differentiation of HSCs and progenitor cells is not affected.

Functional characterization of MK2-deficient HSC

We hypothesized that inefficient PcG-mediated transcrip-

tional repression may lead to a release of the actively main-

tained state of quiescence in HSC. This, in turn, should be

associated with increased proliferative responses of HSCs to

cytokines. To directly measure the HSC proliferation, we

isolated LSK cells from wild-type and MK2�/� mice and

cultured them in the presence of a recombinant cytokine

cocktail consisting of SCF, IL3, IL6, Flt3L and TPO. As

expected, MK2�/� LSK cells showed a significantly higher

proliferative response as assessed by 3H-thymidine incorpora-

tion (Figure 2A). We were also interested in monitoring the

proliferation of different HSC sub-populations in the absence

of cytokine stress in vivo. MK2�/� and wild-type mice were

fed with BrdU for 48 h, and the BrdU incorporation into

LSK cells was determined by FACS analysis. MK2�/� LT-,

ST-HSCs and MPPs showed increased staining for BrdU

(Figure 2B), indicating that enhanced proliferation of HSC

is not only associated with cytokine exposure in vitro but also

occurs in the physiological bone marrow environment

in vivo.

To further assess a putative state of promoted cell-cycle

progression in LSK cells, we carried out cell-cycle analysis

using propidium iodide staining of in vitro-cultured LSK cells

as well as LSK cells directly prepared from mice. In compar-

ison with wild-type cells, MK2�/� cells showed fewer cells

in G1/G0 phase and more cells in S and G2/M phases

(Figure 2C), thus confirming increased cell-cycle progression

in the absence of MK2. Cyclin-dependent kinase inhibitors

are important mediators of cell quiescence and serve as

checkpoints, restricting cell-cycle transition. P21Cip1Waf1-

deficient HSCs show impaired self-renewal and increased

proliferation (Cheng et al, 2000). To determine the expression

levels of P21Cip1Waf1, we carried out RT–PCR analysis in

CD150þCD48� HSCs from MK2�/� and wild-type mice. As

shown in Figure 2D, MK2�/� CD150þCD48� HSCs show

decreased abundance of p21Cip1/Waf1 mRNA, a finding in

line with accelerated cell cycle progression in MK2�/� cells.

Similar findings of decreased p21 mRNA level and increased

cell-cycle progression were reported in Gfi1-deficient HSCs

(Hock et al, 2004). To shed light on the molecular mechanism

of reduced stem-cell quiescence, we determined expression

levels of direct downstream targets of Bmi1, p16Ink4a and

p19Arf. In the absence of Bmi1, repression of the Ink4a locus

is relieved, resulting in expression of p16Ink4a and p19Arf

(Jacobs et al, 1999). As shown in Figure 2E, MK2-deficient

CD150þCD48� HSCs show higher expression levels of

p19Arf, whereas the expression levels of Ink4a and p27

(Kip1) were comparable to those of wildtype control cells

(data not shown).

Cytokine-induced proliferation of HSC in vitro is associated

with loss of ‘stemness’. We hypothesized that the sequence of

events resulting in loss of stemness might occur more rapidly

in unrestricted proliferation of MK2-deficient HSC. As no

phenotypic marker unequivocally reflects HSC function, we

monitored the cell-surface expression of Sca1 as a surrogate

parameter for early haematopoietic progenitor activity.

CD150þ /CD48� HSCs from MK2�/� and wild-type mice

were sorted (Figure 3A, upper panel) and cultured in vitro

in the presence of the recombinant cytokines SCF, IL3,

IL6, Flt3L, and TPO. Immediately after cell sorting, both

MK2�/� and wild-type CD150þ /CD48� HSCs showed an
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equal pattern of expression of c-Kit and Sca1 (Figure 3A,

middle panel). However, after 3 days in vitro, only between

16–21% of MK2�/� progenitor cells stained positive for

Sca1, whereas between 60–75% of wild-type progenitor

cells maintained Sca1 expression (Figure 3A, lower panel

and quantification below), suggesting that MK2 is crucial for

the maintenance of an early state of differentiation or quies-

cence. Similar results were obtained for LSK cells (data not

shown). To assess whether cytokine-stimulated HSCs showed

a skewed differentiation, we analysed the expression of line-

age-specific cell surface markers. In comparison to wildtype

cells, a larger fraction of MK2-deficient cells showed expres-

sion of CD11b and Gr1 (Supplementary Figures 6 and 7).

Analysis of CD150þ /CD48� HSCs using a CFSE dilution

assay indicates higher proliferation of MK2-deficient cells

(Figure 3B) similar to LSK cells (Figure 2A–C).

The in vitro culture system described above allowed us to

test whether a direct inhibitor of p38 MAPK signalling

similarly unleashes HSC quiescence. Wild-type LSK cells

were purified and incubated for 48 h in the absence or

presence of 5mM SB239063, which does not reduce the

overall viability of the cells (Supplementary Figure 8). As

shown in Figure 3C, cells exposed to a specific p38 inhibitor

almost completely lost the expression of Sca1, whereas cells

stimulated in the absence of SB239063 remained largely

positive for expression of Sca1. These findings corroborate

the idea that p38 signalling is crucial for the maintenance of

HSC quiescence.
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Figure 1 Phenotypic analysis of the haematopoietic stem cell compartment in MK2�/� mice. (A) FACS plots indicating relative increase of
LSK cells in MK2�/� mice. Lineage-marker (CD3e, CD11b, B220, Gr-1, TER119)-negative cells were gated and further analysed for expression
of Sca1 and c-Kit. Data are representative of three independent experiments. (B) Absolute numbers of LSK, SP and CD150þ CD48� cells
determined from the bone marrow of both hind limbs (N¼ 6 mice). Data are representative of two independent experiments. Asterisks indicate
statistical significance (Po0.01). (C) FACS plots indicating reduced frequency of CD150þ CD48� cells in MK2�/� mice. Data are
representative of two independent experiments. (D) Side population (SP) analysis upon staining of BM cells with Hoechst 33342 dye. Cells
stained with Hoechst 33342 dye in the presence of verapamil serve as controls for the specificity of the SP population. Data are representative of
two independent experiments. (E) FACS plots indicating relative decrease of long-term (LT)-HSCs (CD34–Flt3–LSK) and short-term (ST)-HSCs
(CD34þ Flt3–LSK), and increase of multipotent progenitor cells (MPPs) (CD34þ Flt3þLSK) in MK2�/� mice. Total BM cells of MK2þ /þ
and MK2�/� were prepared and stained with an antibody cocktail that recognizes lineage markers (CD11b, Gr1, B220, CD3e, TER119), Sca1
and c-Kit, and analysed by flow cytometry. LSK cells were pre-gated and further analysed for CD34 and Flt3 expression. (F) Absolute numbers
of LT-HSCs (left), ST-HSCs (middle) and MPPs (right) determined from the bone marrow of both hind limbs (N¼ 5 mice). Asterisks indicate
statistical significance (Po0.05). Data in (E) and (F) are representative of three independent experiments.
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recombinant cytokines for 48 h, pulsed with 3H-thymidine, and subjected to scintillation counting. The mean values of triplicate samples are
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p38 MAPK/MK2 signalling in self-renewal of HSCs
J Schwermann et al

&2009 European Molecular Biology Organization The EMBO Journal VOL 28 | NO 10 | 2009 1395



To directly assess the self-renewal capacity of HSC, we

carried out competitive repopulation experiments. Various

numbers of wild-type and MK2�/� bone marrow cells

(CD45.2) were mixed with 105 wild-type CD45.1 competitor

cells and transplanted into lethally irradiated CD45.1 recipi-

ent mice. Three months later, the mice were killed and the

specific contribution of CD45.1 and CD45.2 cells to haema-

topoiesis was assessed by FACS analysis. In line with earlier

experiments (Kotlyarov et al, 1999) and the data shown in

Supplementary Figures 1–5, no defect of differentiation in

various haematopoietic lineages could be observed in mice

transplanted with MK2�/� cells (data not shown), confirm-

ing that MK2 is not crucially involved in controlling HSC

differentiation. When 105 HSCs were mixed with 105 compe-

titor cells, MK2-deficient cells contributed to 54% of haema-

topoiesis, whereas wild-type cells contributed to 75% of

haematopoiesis. However, under limiting conditions, when

fewer HSCs were transplanted, the statistically significant
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Absolute numbers of donor (CD45.2)-derived CD150þ CD48� cells were determined from the bone marrow of both hind limbs (N¼ 5 mice).
The asterisk indicates statistically significance (Po0.05). Data are representative of two independent experiments.
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difference between MK2-deficient cells and wildtype cells

was striking (0.005 versus 29% for 104 HSCs and 0.005 versus

0.17% for 103 HSCs) (Figure 3D). Hence, MK2�/� HSCs

showed an obvious disadvantage in their repopulation capa-

city, when compared with wild-type cells. To confirm and to

further extend this finding, the repopulation experiment was

also carried out with the LSK cell fraction enriched in HSCs. A

similar defect was observed with respect to the LSK-repopu-

lation capacity of MK2�/� cells (Figure 3E). We also carried

out a secondary transplant experiment to confirm the self-

renewal capacity of HSCs. Mice transplanted with a cell

population of 2�106 WT and MK2�/� bone marrow cells

(CD45.2) mixed with 105 competitor cells showed a mild

reduction of CD45.2-positive MK2�/� cells compared with

WT cells 12 weeks after transplantation (Figure 3F, primary

recipients). When 2�106 bone marrow cells of these primary

recipients were transplanted into secondary recipients, a

defect of MK2�/� HSC became manifest (32% CD45.2

MK2�/� cells versus 78% CD45.2 MK2þ /þ cells)

(Figure 3F, secondary recipients), almost independently of

addition of wild-type competitor cells (Supplementary Figure

9). Finally, the restoration of the CD150þCD48� HSC com-

partment after transplantation into WT mice, depending on

the genotype of the donor cells, was analysed and was shown

to be reduced for MK2-deficient donor cells (Figure 3G).

Together these experiments show that a decreased quiescent
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HSC pool in MK2�/� mice results in functional impairment

under stress conditions.

Identification of Edr1 and Edr2 as interaction partners

of MK2

To identify new interacting proteins for mouse MK2, a yeast-

two-hybrid screen was carried out using a murine day-11-

embryo brain library. The analysis revealed 27 positive

clones: three of them carried cDNAs of the known MK2-

interaction partner p38a, 17 clones carried 11 different cDNA

fragments coding for C-terminal parts of mouse Edr1 (n¼ 4),

p36-Edr2 (n¼ 6) and p90-Edr2 (Yamaki et al, 2002) (n¼ 1).

Interestingly, all Edr1/2 clones contained a single zinc-finger

domain with the FCS signature followed by the region coding

for the C-terminal homology domains (HD) II and III. HDII is

also known as a sterile alpha motif (SAM) domain that has

been shown to self-associate, bind to other SAM domains or

form heteromeric interactions with some non-SAM domains

of other proteins (Qiao and Bowie, 2005). The specificity of

MK2–Edr1/2 interaction was confirmed by GST-pull-down

experiments upon recombinant expression in Escherichia

coli, using His–p38a/GST–MK2 interaction as a positive con-

trol. As shown in Figure 4A, His-Edr1 and His-Edr2 specifi-

cally bind to GST-MK2 but not to GST. In subsequent

experiments, we limited our investigations to Edr2 interac-

tions, as ectopic overexpression of Edr1 in mammalian cells

was inefficient and available antibodies showed a low degree

of specificity. Specific interaction of MK2 with endogenous

Edr2 was shown by GST pull-down of endogenous Edr2 from

HEK293-T cells transfected with different GST constructs

(Figure 4B). Although endogenous Edr2 was found to bind

to GST-MK2 and to the GST fusion of the structurally closely

related MK3, which is expressed in LSK cells at levels

comparable to MK2 (Supplementary Figure 10), as well as

to the PcG member GST–Bmi1—used here as a positive

control, GST fusion of the structurally more distant MK5,

GST-MK5, was not able to bind Edr2 efficiently. We then

extended the analysis of MK2–Edr2 interaction by carrying

out co-immunoprecipitation of endogenous MK2 and Edr2

from mouse embryonic fibroblasts (Figure 4C). The specifi-

city of the positive signal is shown by inefficient co-immu-

noprecipitation from lysates of MK2/3-deficient fibroblasts.

MK2 interacts with PRC1

Next, we were interested to know whether MK2 interacts

with Edr2 within the physiological PRC1 complex. To this

end, we tried to detect another core component of PRC1, the

ring finger protein Ring1B, in the protein fraction bound to

GST-MK2. As a negative control, we used again a GST-MK5

pull-down. As shown in Figure 4D, MK2, but not MK5,

precipitates Ring1B, supporting the notion that MK2 is able

to interact with the physiological PRC1 complex. To rule out

the possibility that this interaction is because of the ectopic

overexpression of the recombinant fusion proteins, we ana-

lysed the co-existence of the endogenous proteins in high

molecular-weight fractions from lysates of mouse embryonic

fibroblasts (MEFs). Lysates were separated by gel filtration

and protein fractions were analysed by western blot using

antibodies against Ring1B and MK2 (Figure 4E). In lysates

from wildtype MEFs, co-separation of Ring1B and a small

sub-population of MK2 can be detected in a fraction corre-

sponding to a molecular mass of about 1MDa (asterisk). To

show the specificity of the bands for MK2, we repeated this

analysis with lysate from MK2-deficient MEFs. Although

Ring1B can be detected in the corresponding fraction, the

two corresponding bands for MK2 (boxed) are missing. This

supports the notion that a sub-population of endogenous

MK2 exists in the 1-MDa fraction, reflecting its interaction

with endogenous PRC1. This interaction obviously does not

include p38 MAPK, as it cannot be detected in the 1-MDa

fraction (data not shown).

Edr2 and MK2 co-localize in polycomb bodies

characteristic for PRC1

MK2 and p38a exist as a complex in the nucleus of resting

cells. Upon activation of the p38 MAPK cascade, MK2 is

phosphorylated, activated, and because of de-masking of a

nuclear export signal, translocates to the cytoplasm (Ben-

Levy et al, 1998; Engel et al, 1998; Neininger et al, 2001). In

view of this finding, we hypothesized that a physiologically

relevant nuclear PRC1–MK2 interaction may be released

upon activation of the p38 MAPK cascade. First, we analysed

the sub-cellular localization of MK2 and Edr2 in quiescent

HEK293 cells upon transfection with MK2–YFP and Edr2–CFP

fusion constructs. Both proteins showed perfect co-localiza-

tion in speckles in the nucleus (polycomb bodies), reminis-

cent of the characteristic distribution pattern of proteins

organized in PRC1 complexes such as endogenous Edr1,

Edr2, Bmi1 and Ring1B (Suzuki et al, 2002) (Figure 5A).

Second, we visualized stress-dependent translocation of GFP-

MK2 in HeLa cells co-transfected with HA-Edr2. In contrast to

our hypothesis, arsenite-induced stress activation of the p38

MAPK cascade did not trigger complete translocation of MK2

into the cytoplasm. In strict dependence on Edr2 co-expres-

sion, a sub-fraction of MK2 was retained in the polycomb

bodies (Figure 5B), suggesting that activated MK2 alone or

in complex with p38 may also have a physiological function

at the nuclear PRC1 (cf. also schematic presentation of

Figure 7).

Identification of the Edr2-interacting region in MK2

To further dissect the molecular interaction between MK2 and

Edr2, we carried out GST–Edr2 pull-down assays using GFP

fusion proteins with defined MK2 subdomains. Two regions

of the small lobe of the kinase, subdomains I–III (amino acids

29–99) and IV-V (amino acids 97–131), are sufficient to

interact with Edr2 (Figure 6A and B), indicating that both

regions contribute to the interaction. The specific role of

these subdomains for interacting with Edr2 was further

substantiated using a MK2/MK5 hybrid molecule. When

amino acids 38–128 are replaced by the homologous region

of MK5, the hybrid molecule no longer binds to Edr2, as

shown in pull-down experiments (Figure 6C), as well as in

the co-localization assay (Figure 6D). As these domains do

not overlap with the C-terminal docking site for p38a at

amino acids 371–375 (Tanoue et al, 2000), it is possible that

MK2, Edr2 and p38 can form a ternary complex at PRC1.

Functional rescue of MK2-deficient HSCs requires

Edr2-binding of MK2

Finally, we were interested to determine a direct functional

link between the HSC phenotype of MK2�/� mice and the

Edr2-binding properties of MK2. To address this issue, we

made use of the MK2/5 hybrid molecule, which is unable to
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associate with Edr2 (see Figure 6C and D) but maintains full

catalytic kinase activity, as shown in MK2/3 double knockout

cells (Figure 6E). MK2/3 double-knockout embryonic fibro-

blasts do not display any stress-induced Hsp25 phosphoryla-

tion. In contrast, retrovirus-mediated expression of MK2/5

and MK2 yielded a comparable level of Hsp25 phosphoryla-

tion upon UV stimulation. Hence, MK2 and MK2/5 are

indistinguishable with respect to their kinase activity and

differ only in Edr2 binding, allowing the dissection of kinase

function from Edr2-mediated effects in the MK2/5 hybrid

kinase. We hypothesized that MK2-deficient cells would be

reconstituted by MK2 but not by the MK2/5 hybrid kinase

with respect to stem-cell fitness.

The viral constructs were then used to introduce MK2 and

MK2/5 into lineage-marker negative MK2-deficient CD45.2

cells, yielding similar transduction rates (30%) as assessed by

expression of the marker gene GFP. 104 bi-cistronic expres-

sion construct-transduced CD45.2 MK2-deficient LSK cells

were mixed with the same number of control GFP-con-

struct-transduced CD45.1 LSK WT competitor cells, trans-

planted into lethally irradiated CD45.1 recipient mice,

which were analysed 3 month later. As seen in Figure 6F,
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the LSK repopulation capacity of MK2�/� cells (6.8% in

experiment 1 (N¼ 3); 4.1% in experiment 2 (N¼ 3)) is

significantly increased by re-introduction of MK2 (42 and

49%), but not by the re-introduction of the Edr2 non-binding

mutant of MK2, MK2/5 (0.4 and 0.2%). Taken together, this

indicates that MK2–Edr2 interaction is essential for LSK

repopulation capacity.

Discussion

MK2 is a downstream component of the p38 MAPK signalling

cascade with pleiotropic functions. Acting as a protein kinase,

MK2 controls the regulation of the actin cytoskeleton (Stokoe

et al, 1992; Guay et al, 1997), stress-dependent small

heat-shock protein phosphorylation (Vertii et al, 2006), and

stability and translation of the AU-rich element containing

cytokine mRNAs (Neininger et al, 2002; Hitti et al, 2006).

Independently of its catalytic activity, MK2 stabilizes p38a
(Kotlyarov et al, 2002) and could act as a shuttling protein,

mediating nuclear export of p38a (Ben-Levy et al, 1998).

Here, we propose a new function for MK2 in maintaining

HSC quiescence. This function involves MK2-targeting to

PRC-1 through Edr1/2 binding and subsequent modulation

of the transcriptional control mechanisms governing HSC
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by fluorescence microscopy. Nuclei were stained using TO-PRO. (B) Stress-dependent changes in subcellular localizations of a GFP–MK2 fusion
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quiescence (summarized in Figure 7). This represents a

mechanism for attracting signal-transducing protein kinases

to specific target genes in mammalian cells as already de-

scribed for the yeast, S. cerevisiae (Pokholok et al, 2006; Proft

et al, 2006). We document the specific interaction of MK2 and

members of PRC1 and define the regions involved in Edr2–

MK2 interaction as a SAM domain on Edr2 and subdomains

I–V in the small lobe of the kinase. The latter does not overlap

with the p38a docking site on MK2, possibly allowing

formation of a ternary complex.

Recently, the p38 MAPK pathway has been shown to

control the lifespan of HSCs (Ito et al, 2006). Sustained
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activation of p38 MAPK under oxidative stress, which is

probably paralleled by increased cytoplasmic accumulation

of p38/MK2 complexes (Ben-Levy et al, 1998) and, hence, by

their reduction at the PRC1, induces loss of ‘stemness’,

similar to our findings in MK2-deficient mice. Thus, our

analysis of MK2-deficient HSC may provide a missing link

between the stress-induced MAPK pathway and Bmi1-

controlled HSC maintenance.

It has been shown that the protein kinase MK3/3pK, which

is closely related to MK2 and shows 75% identity in primary

structure, is able to directly phosphorylate His-tagged Bmi1

in vitro at as yet unidentified sites (Voncken et al, 2005). In light

of this observation, the MK2 could directly phosphorylate

Bmi1 in vivo, as both enzymes share activators and sub-

strates (Clifton et al, 1996; Ronkina et al, 2007).

Physiologically, we identified a new role for MK2 in

maintaining HSC quiescence. Although we could show that

the haematopoietic differentiation program seems to be intact

in MK2-deficient cells, we identified a selective deficiency of

the HSC compartment, as shown by decreased numbers of

HSCs in MK2-deficient mice. Furthermore, we defined an

increased fraction of proliferating cells in the early haemato-

poietic progenitor cell pool as well as increased in vitro

proliferation, suggesting that MK2 is needed to put brakes

on a state of quiescence by modulating the PRC1 complex. As

a consequence of MK2 deficiency, ‘stemness’ is lost, as the
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HSC’s long-term engraftment and repopulation potential re-

sides predominantly in the G0 fraction (Passegue, 2005).

Mechanistically, we propose that targeting of the MK2 to

PRC1 is responsible for the observed effects on HSCs. This

idea is supported by our finding that the Edr2-binding do-

main of MK2 is necessary to rescue the repopulation capacity

of MK2�/� LSK cells. Interestingly, it seems that the Edr2-

non-binding mutant MK2/5 even suppresses repopulation

capacity. We speculate that this could be because of the

interference with MK3 action, which might, to a certain

degree, functionally compensate for the loss of MK2. This

idea is supported by the comparable expression of MK2- and

MK3-mRNA in LSK cells (Supplementary Figure 10) and

comparable Edr2-binding (Figure 4B) of both enzymes.

However, a detailed analysis of the effects of the MK2/5

mutant in WT cells will be necessary to further substantiate

this speculation.

Few extrinsic and intrinsic factors have been implicated in

controlling HSC maintenance (Suda et al, 2005; Adams and

Scadden, 2006). Bmi1, a component of PRC1, is a crucial

molecule in governing ‘stemness’ of HSC (van der Lugt et al,

1994; Lessard and Sauvageau, 2003; Iwama et al, 2004) and

neuronal stem cells (Molofsky et al, 2003). Interestingly, in

contrast to Bmi1-deficient stem cells, the Ink4a locus as a

downstream target of Bmi1 (Jacobs et al, 1999; Park et al,

2003), encoding p16Ink4a and p19Arf under the control of

two distinct promoters (Quelle et al, 1995), is selectively

affected in MK2-deficient HSC: Only the expression of

p19Arf, a protein involved in p53-dependent apoptosis, is

increased. The reason for this selectivity is currently un-

known, but it might reflect the difference between Bmi1

deletion and loss of Bmi1 phosphorylation, or a different

as-yet unknown function of MK2. Regardless of the molecular

mechanism, MK2 emerges as a new important player and

potential target to be manipulated in normal and malignant

haematopoiesis.

Materials and methods

Mice
Mapkapk2tm1Mgl mice (C57/Bl6) representing the conventional
complete knockout of MK2 (Kotlyarov et al, 1999) were bred and
maintained under specific pathogen-free conditions in the central
animal facility at Hannover Medical School. In all experiments,
age- and sex-matched mice were used at 4–12 weeks of age. All
experiments were approved by the institutional review board.

Cell sorting and culture
For in vitro studies, purified SLAM (CD150þCD48�) or
Lin�Sca1þc-kitþ cells from MK2þ /þ and MK2�/� mice were
cultured in IMDM medium supplemented with 10% FCS, 2 mM
L-glutamine, 1% penicillin–streptomycin, 1 mM non-essential ami-
no acids, 10 ng/ml rm-IL3, 10 ng/ml rm-IL6, 50 ng/ml rm-SCF,
50 ng/ml and rh-Flt3L (all from Peprotech, Rocky Hill, NJ).

For in vitro proliferation experiments, LSK cells were cultured for
48 h as mentioned above and subsequently pulsed with 1mCi 3H-
thymidine for 12 h. Incorporated 3H-thymidine was quantified by
scintillation counting.

For p38 inhibitor studies, Lin�Sca1þc-kitþ cells from MK2þ /þ
mice were sorted and cultured either in the presence or in the
absence of SB239063 (5 mM, Calbiochem) for 72 h.

For cell-cycle analysis, sorted LSK cells were cultured for 48 h
in vitro and fixed with ice-cold absolute ethanol for 1 h on ice. Cells
were washed, incubated with propidium iodide (0.5mg/ml, Sigma)
and RNase A (5 mg/ml, Qiagen) for 1 h, and analysed by flow
cytometry.

Side population (SP) studies
SP studies were conducted as described earlier (Goodell et al, 1996).
Briefly, RBC-depleted total bone marrow cells of MK2þ /þ and
MK2�/� mice were re-suspended in pre-warmed DMEM medium
containing Hoechst 33342 dye (5mg/ml, Sigma) either in the
presence or in the absence of verapamil (50mM, Sigma) and
incubated for 90 min at 371C. Cells were washed twice with ice-cold
HBSS, stained with propidium iodide (2mg/ml) and analysed by a
Moflo cell sorter (DAKO Cytomation, Glostrup, Denmark).

Flow cytometry
Single cell suspensions were analysed by flow cytometry using
FACS SCAN or FACS Canto and CELLQuest software, FACS Diva
software (BD Biosciences) or FlowJo software (Tree Star, Inc.,
Ashland, OR). Cell sorting of defined sub-populations was carried
out using the Moflo cell sorter with Summit software or FACSAria
cell sorter (BD Biosciences). The following monoclonal antibodies
(all from BD Pharmingen, San Diego, CA except noted otherwise)
were used: CD3e-biotin, CD-4-biotin, CD8-biotin, CD11b-biotin,
CD11c-biotin, CD19-biotin, CD48-biotin (eBiosciences, San Diego,
CA), CD117-APC, CD150-PE (eBiosciences), B220-biotin, Gr-1-
biotin, Sca-1-PE and TER119-biotin.

BrdU incorporation
In vivo incorporation of BrdU into LSK cells was assessed using the
FITC BrdU Flow kit (BD Pharmingen). After a single intraperitoneal
injection of BrdU (Sigma, 1 mg per 6 g of mouse weight), an
admixture of 1 mg/ml of BrdU was added to the drinking water for 3
days. Mice were killed, BM cells were prepared and stained with
antibodies recognizing lineage, Scal and c-kit markers, and analysed
by flow cytometry.

CFSE proliferation assay
For CFSE studies, purified CD150þCD48� cells were labeled with
2 mM CFSE (Molecular Probes, Karlsruhe, Germany) in IMDM
complete medium at 371C for 10 min. Cells were washed with PBS,
cultured as indicated above and analysed by flow cytometry.

RNA isolation and real-time PCR
Total RNA was isolated using commercially available kit systems
(Absolutely RNA mini prep kit,Stratagene, La Jolla, CA). cDNA was
synthesized using oligo-dT primer and expand reverse transcriptase
(Roche). p19 and p21 expression levels were determined by real-
time PCR using the primers described in Supplementary data. The
PCR reaction was carried out in duplicates using a LightCycler–
FastStart DNA Master SYBR Green I kit (Roche) according to the
manufacturer’s instructions.

Competitive repopulation studies
Defined numbers of (i) RBC-depleted donor (CD45.2) BM or of (ii)
LSK cells of 8-week-old MK2þ /þ and MK2�/� mice or (iii) 104

MK2�/� LSK cells transduced with the bicistronic pMMP–IRES
viral construct (see below) were mixed with (i) 105 competitor
bone marrow or (ii) 104 competitor LSK cells or (iii) 104 LSK
cells transduced with the viral GFP-expressing control construct
(CD45.1) cells, respectively, and transplanted i.v. into lethally
irradiated (10 Gy) congenic recipients (CD45.1). In the LSK
repopulation experiments ((ii) and (iii)), 105 total-BM-compensa-
tory carrier cells (CD45.1) were added to the cell mixture to create a
supportive environment during the initial period after transplanta-
tion and to increase the viability of the transplanted animals. The
number of stem cells in these compensatory cells is negligibly small
compared with the number of stem cells in the LSK populations.
Transplanted mice were maintained under specific pathogen-free
conditions for 3 months. For secondary transplantation, 2�106 BM
cells were transplanted into lethally irradiated congenic recipients
and 12 weeks after transplantation, 2�106 BM cells were isolated,
analysed for CD45.2 derived cells and subsequently transplanted
into lethally irradiated congenic secondary recipients. At 16 weeks
after transplantation, BM of secondary recipients was analysed for
CD45.2-derived cells.

Yeast two-hybrid screen
A mouse-brain library (MY4008AH, MATCHMAKER, Clontech) in
strain Y187 (MATa) was mated with pGBKT7-MK2 to identify the
interaction partners of mouse MK2. About 2.5�107 colonies that
contained 3.5�106 independent cDNA clones were screened.
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Transfections, pull-down and co-immunoprecipitation
HEK293-T and HeLa cells were cultured and transfected as
described (Schumacher et al, 2004). For in vitro pull-down assays,
a total of 1�107 transfected HEK293-T cells expressing GST-tagged
MK2, MK3, MK5 or Bmi1 were used and GST pull-down was carried
out as described (Schumacher et al, 2004). Bound proteins were
analysed by western blot using antibodies against Edr2 or Ring1B
(Atsuta et al, 2001). Alternatively, purified recombinant hexahisti-
dine-tagged Edr1, Edr2 or p38 proteins were incubated with
recombinant GST or GST-tagged MK2 protein bound to glutathione
Sepharose 4B beads. Binding of His-fusion proteins was detected by
western blot using 6x-His antibodies (Clontech). For co-IP, 2�107

immortalized WT or MK2/3 double-knockout MEFs were lysed in
1.3 ml buffer (50 mM HEPES (pH 7.5), 1% Triton X-100, 10%
glycerol, 150 mM NaCl, 1.5 mM MgCl2, 1 mM EGTA). In all 2.5 mg of
cell lysate was incubated with 5 ml of MK2 antibody (Cell
Signaling3042) overnight at 41C and subsequently incubated with
25ml of protein G Sepharose (Amersham) for 1.5 h at 41C. Beads
were washed five times with cold lysis buffer and western blot was
carried out using Edr2 antibody (Atsuta et al, 2001).

Gel filtration
In total, 4�107 immortalized WT or MK2–/– mouse embryonic
fibroblasts (Kotlyarov et al, 1999) were lysed in 400ml lysis buffer
(20 mM HEPES pH 7.5, 50 mM KCl, 2 mM MgCl2, 0.5% Nonidet P40,
0.5 mM DTT, protease inhibitor cocktail tablet (Roche Diagnostics))
and centrifued at 800 g for 8 min at 41C. Supernatant was removed
and the pelleted nuclei were lysed in Buffer A (50 mM HEPES pH
7.6, 250 mM NaCl, 10% glycerol, 0.5% Triton X-100, 1 mM EDTA,
1 mM DTT, protease inhibitor cocktail tablet (Roche Diagnostics))
for 20 min on ice. Nuclei were passed 10 times through a 20-gauge
needle and centrifuged at 16 000 g, 41C. In total, 500 mg of nuclear
extract was separated by FPLC (LCC-500 Plus) using two Superose
6HR 30/10 columns connected in series (Pharmacia LKB Bio-
technology, Uppsala, Sweden), developed with 0.05 M K2HPO4/
KH2PO4, pH 7.2, 0.15M NaCl with a flow-rate of 0.1 ml/min.
Proteins from fractions were precipitated by adding 1/100 volume of
2% deoxycholate, incubation for 30 min at 41C and addition of 1/10
volume of 100% trichloroacetic acid. Samples were incubated
overnight at 41C, centrifuged for 15 min at 16 000 g, air-dried,
dissolved in 4� SDS sample buffer and separated by 10% SDS–
PAGE. Western blotting was carried out using anti-Ring1B (Atsuta
et al, 2001) and anti-MK2 (Cell Signaling 3042) antibodies.

Fluorescence microscopy
For subcellular localization of YFP- and CFP-tagged proteins, the
transfected cells (with lipofectamine/plus reagent, Invitrogen) were
replated in chambered coverglass (Lab-Tek, Nunc) and analysed
using a Leica DM IRBE microscope with the Leica TCS confocal

systems program. For immunocytochemistry, HeLa cells were
seeded on poly-L-lysine-coated coverslips. At 24 h after transfection
of EGFP- and HA-tagged proteins, cells were fixed with 4%
paraformaldehyde and incubated overnight with HA antibodies
(Santa Cruz, sc-805) followed by Alexa 555 (Invitrogen, A31572)
staining.

Cloning, construction of deletion mutants and site-directed
mutagenesis
Cloning techniques are described in detail in Supplementary data.
For generation of deletion mutants, the fusion of amino acids 29–
131, 29–99 and 97–131 of MK2 to EGFP was carried out by inserting
EcoRI–BamHI-cut PCR fragments, amplified from pEGFP-MK2
(Engel et al, 1995) using the primers given in Supplementary data,
into pEGFP-C1 (Clontech). The pEGFP–MK2/MK5 hybrid was
generated by deletion of MK2-amino acids 37–131 from pEGFP–
MK2 using PstI/SacI and cloning of PstI–SacI-cut PCR fragment of
MK5-amino acid 10–110, amplified with the primers given in
Supplementary data.

Viral transductions of MEFs and L-negative cells
MEFs were tranduced with the retroviral constructs pMMP–IRES–
GFP, pMMP–MK2–IRES–GFP and pMMP–MK2/5–IRES–GFP as
described (Ronkina et al, 2007). pHsp25 was detected by western
blotting using an anti-phosphoS86-Hsp25 antibody (BioSource).
Before retroviral transduction, L-negative cells were stimulated with
mSCF (100 ng/ml), hIL-11 (100 ng/ml) and hFlt3-Lig (100 ng/ml) for
48 h in StemSpan. Lin(�) Ly 5.1 cells were transduced with pMMP–
IRES–GFP (MOI¼ 3) whereas Lin(�) Ly 5.2 were transduced with
the different retroviral transfer vectors with MOI¼ 3 after 48 and
60 h. The Lin(�) transduced cells were sorted for Sca-1þc-KitþLSK
before mixing for repopulation assay.

Supplementary data
Further experimental data, data about plasmids and primers used
for cloning and PCR as well as cloning details are provided in the
Supplementary data. Supplementary Figures are provided. Supple-
mentary data are available at The EMBO Journal Online (http://
www.embojournal.org).
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