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Abstract

Background: Metabolism of energy nutrients by the mitochondrial electron transport chain (ETC) is implicated in the aging
process. Polymorphisms in core ETC proteins may have an effect on longevity. Here we investigate the cytochrome b (cytb)
polymorphism at amino acid 7 (cytbI7T) that distinguishes human mitochondrial haplogroup H from haplogroup U.

Principal Findings: We compared longevity of individuals in these two haplogroups during historical extremes of caloric
intake. Haplogroup H exhibits significantly increased longevity during historical caloric restriction compared to haplogroup
U (p = 0.02) while during caloric abundance they are not different. The historical effects of natural selection on the cytb
protein were estimated with the software TreeSAAP using a phylogenetic reconstruction for 107 mammal taxa from all
major mammalian lineages using 13 complete protein-coding mitochondrial gene sequences. With this framework, we
compared the biochemical shifts produced by cytbI7T with historical evolutionary pressure on and near this polymorphic
site throughout mammalian evolution to characterize the role cytbI7T had on the ETC during times of restricted caloric
intake.

Significance: Our results suggest the relationship between caloric restriction and increased longevity in human
mitochondrial haplogroup H is determined by cytbI7T which likely enhances the ability of water to replenish the Qi binding
site and decreases the time ubisemiquinone is at the Qo site, resulting in a decrease in the average production rate of radical
oxygen species (ROS).
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Introduction

Mitochondria have long been implicated in the aging process

[1–4]. The electron transport chain (ETC), embedded within the

inner membrane of the mitochondria, is the major producer of

reactive oxygen species (ROS), which are presumed to be the

primary agent for cell damage and premature apoptosis, affecting

aging and longevity [5–8]. The primary intermediate responsible

for producing the ROS superoxide is ubisemiquinone, the

coenzyme Q (CoQ) radical produced in complexes I, II and III

of the ETC [9]. Reducing the production of ubisemiquinone in the

ETC has been shown to reduce free radical levels and prolong life

span in animals [10,11].

The mechanism by which ROS affect aging and longevity has

recently come under scrutiny (e.g. [12–14]). For years the

paradigm of aging (e.g. [15–20]) has predicted that over time

ROS leakage leads to accumulation of mitochondrial DNA

(mtDNA) mutations and oxidative damage to the cell. Over the

lifespan of an individual, the damage may then lead to premature

cell death, followed by organ and tissue failure, which are

characteristics of aging and associated degenerative disorders. The

paradigm concludes that to avoid cumulative damage over time

and increase longevity, antioxidants must be taken to combat

oxidative stress on cell components.

Recent studies indicate that these basic assumptions should be

revisited. It has been shown that free radical leakage fluctuates

according to the signals that ROS themselves produce [12,13].

Further, antioxidants have been shown not to prolong lifespan (e.g.

[14,15]). Together, the ROS fluctuations and the lack of an

antioxidant effect on longevity indicate that the role of free radicals

in aging and longevity is more complex than previously thought.

A theory of aging that accounts for a signaling role for

endogenous free radicals in maintaining the metabolic status of the

cell has been proposed [12], balancing their role in cellular
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damage. The underlying principles of this theory of aging include:

1) ROS leakage produces mtDNA mutations; 2) ROS produced

by ailing mitochondria also signals cellular apoptosis activities; 3)

when a threshold of both ailing mitochondria and ROS signals is

reached, the cell prematurely commits to apoptosis followed by

organ and tissue failure.

Studies have shown that when a given mutation is found in

different species it has varying effects based on the comparative

rate of ROS leakage in the species [16]. The threshold of ROS

signal needed for the cell to commit apoptosis depends on the rate

at which ROS are produced from the mitochondria. Intuition

might suggest that the threshold of ROS signal needed for the cell

to commit to apoptosis is static. However, it appears to be

dependent upon the rate of ROS production from the mitochon-

dria, exhibiting a tight correlation between mutations and a ROS-

signal apoptotic threshold [17].

Whether the role of free radicals in aging and longevity involves

the toxicity of ROS over time or the important signaling role of

ROS in programmed cell death, it is important that studies of

longevity turn attention toward mechanisms by which ROS is

produced in the respiratory chain of the mitochondria, and how

leakage affects the cell and might be reduced.

In this regard, it is also essential to come to an understanding of

these mechanisms in the context of caloric intake, since electron

input to the ETC may alter ROS production [8]. It has been

proposed that as mitochondria function in decreased phosphor-

ylating modes, the ETC remains in a more reduced state

(maximally occupied with electrons) for longer time periods,

increasing the production of ubisemiquinone and ROS, thereby

decreasing longevity [8,10,18]. The major contributor toward a

more reduced state is excessive calorie consumption (increased

electron input), but other factors can exacerbate the problem as

well. For example, the ETC may remain more reduced because of

inhibition or dysfunction of ATP production via oxidative

phosphorylation, blocking the electron flow of the respiratory

chain. Reduced ADP, caused by a lack of physical exercise (during

which ADP is not present because ATP is not being used), may

also inhibit the turning over of electrons and keep the ETC more

reduced. As the electron flow is inhibited, not only do more

reactive electrons accumulate, but oxygen levels increase as well.

This may increase the probability that backed up electrons and

oxygen will react and produce free radicals.

The electron transport chain is composed of protein complexes

whose individual protein subunits are encoded in either nuclear or

mitochondrial DNA. Nonsynonymous single nucleotide polymor-

phisms (SNPs) in any of the genes encoding ETC subunits could

alter the quality of electron flow or affect CoQ binding sites, and

subsequently affect ROS production, aging and longevity.

Mitochondria have maintained a core set of genes that encode

essential proteins in the ETC. Nonsynonymous mutations in

these genes have the potential to affect the ETC, ROS

production and longevity in a way that is dependent upon

calorie restriction and/or calorie over-consumption. Throughout

the last 150 years there have been dramatic extremes in per

capita caloric intake. For example, during the Great Depression

(1920–1940) many individuals throughout North America were

under extremely restricted caloric intake. In more recent decades

there has been an increase in caloric intake toward the other

extreme, particularly in North America. If there is a relationship

between the redox state of the ETC, longevity, mtDNA

mutations and extremes of caloric intake, it could be demon-

strated by an analysis of historical longevity within mtDNA

haplogroups during extended and continental periods of calorie

reduction and over-consumption.

The human population is subdivided into mitochondrial

haplogroups. Haplogroups are distinguished by a unique set of

mitochondrial SNPs, the nonsynonymous of which are of interest

in relationship to their potential effect on the mitochondrial

respiratory chain and longevity. Many studies have demonstrated

the association of certain mtDNA haplogroups with increased

longevity (e.g. [19–21]). We chose to focus on haplogroup H,

which is one of the more recent haplogroups, but also now the

most prevalent European mtDNA haplogroup, and compare

historical longevity in closely related haplogroup U individuals

under extremes of caloric intake.

Figure 1 shows the haplogroup relationship with regard to

mtDNA mutations between H and U. Haplogroup H is separated

from haplogroup U by mitochondrial SNP T14766C, which

results in an amino acid substitution of a threonine for an

isoleucine at amino acid site 7 in cytochrome b (cytb), which

encodes the central catalytic enzyme of the mitochondrial protein

complex III (cytochrome bc1 complex) of the ETC.

In this study we first identify the difference in longevity in

haplogroups H and U specifically during times of caloric

restriction as well as times of calorie over-consumption. This is

accomplished by identifying individuals with haplotype H and U

from two genetic genealogy databases and collecting longevity

information about their maternally related ancestors from the

pedigrees in those databases. In addition, many of the ancestors

were then found in a family history database, and longevity

information was gathered about their extended maternal relatives

who share their maternally inherited haplogroups H and U. The

longevity data for haplogroups H and U were compared in cohorts

of 20 year increments, with 1920–40 longevity representing

historical calorie restriction, and 1960–80 and 1980-present

representing caloric over-consumption.

Next, we examined the biochemical shift that the polymorphism

cytbI7T produces in cytb, protein complex III, and the ETC

overall. We then estimate selective pressure on amino acid

properties throughout mammalian evolution, particularly at site

7 in cytb, to gain a historical evolutionarily context of this region

and a better perspective on how this recent human polymorphism

may change the mitochondrial system. Finally, we correlate these

data and present a mechanism by which cytbI7T may affect ETC

efficiency and ROS production by complex III, and consequently

longevity in haplogroup H during a restricted dietary environment

compared to an environment of excessive caloric intake.

Materials and Methods

Haplotype and Longevity Data Collection
The haplotypes and life spans of individuals who lived between

1870 and the present were collected from Family Tree DNA

(http://www.familytreeDNA.com) and the Sorenson Molecular

Genealogy Foundation (http://www.smgf.org). The female indi-

viduals whose haplogroup was identified from these databases

were used to identify maternally related pedigrees from Family

Search (http://www.familysearch.org). Data for 737 individuals

from Haplogroup H and 890 individuals from Haplogroup U were

collected and evaluated.

Individuals were included if they met the following criteria.

First, only females were included to avoid the differences between

female and male longevity. Second, individuals were included if

they died in North America. This criterion was chosen in order to

increase the probability that individuals included in this study lived

under somewhat similar caloric environments. Finally, the

individuals were included only if they died at or after the age of

60. This was done to increase the probability that included
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individuals died from age related factors including degenerative

disorders rather than by accidents or other unrelated causes.

The human population has undergone dramatic shifts in caloric

intake during different time periods throughout the last 200 years.

In order to elucidate the impact of caloric intake on longevity,

individuals were grouped together by the time period in which

they died. Table 1 shows the number of individuals from each of

the two haplogroups H and U in each time period.

Biochemical and Evolutionary Correlation
As shown in Figure 1, haplogroup H is separated from

haplogroup U and other haplogroups by mitochondrial SNP

T14766C, which results in an amino acid substitution of a

threonine for an isoleucine at site 7 in cytb, thus possibly affecting

protein complex III and the ETC. In order to computationally

generate information about the possible physicochemical effects of

this SNP on cytb, respiratory chain efficiency, and longevity in

Haplogroup H individuals, the analytical program TreeSAAP

[22–24] was used to examine the following:

N The effect(s) cytbI7T may have on the physicochemical
properties of the N-terminal region of the cytb protein.

N The naturally occurring effects of selection on the
physicochemical properties of the N-terminal region of
the cytb protein over the phylogenetic history of mammals
– to establish a context within which to interpret the
broader scope of the human SNP cytbI7T.

The details of these two steps will be discussed in the remainder

of this section.

TreeSAAP was originally developed to detect molecular

adaptation due to natural selection across a protein sequence by

statistical analysis of the amino acid substitutions across a

phylogenetic tree. This adaptation is expressed in terms of amino

acid property changes. TreeSAAP measures the physicochemical

magnitude of amino acid substitutions and indicates which amino

acid properties have likely been affected by natural selection

during the evolutionary process.

As the first step, we modified the use of TreeSAAP, allowing the

program to analyze the physiochemical changes produced by a

single amino acid substitution [25]. TreeSAAP was thus used to

detect the radical physicochemical shifts that are produced by a

mutation substituting a threonine for an isoleucine at site 7 in cytb

of mitochondrial complex III. TreeSAAP was implemented by

grouping changes into one of eight magnitude categories, 1 being

the most conservative and 8 being the most radical. In this study

Figure 1. Haplogroup relationship for H and U. The mitochondrial SNPs that separate them are shown. Non-synonymous SNPs are shown in
red. RNA gene mutations are shown in black. The data was obtained from MITOMAP (http://www.mitomap.org) [41,42]. The only protein-coding SNP
that separates the two haplogroups and that is therefore analyzed in this study is T14766C, which results in an amino acid substitution of a threonine
for an isoleucine at site 7 in cytochrome b.
doi:10.1371/journal.pone.0005836.g001

Table 1. The number of individuals used in this study from
each haplogroup during each time period.

Time Period Haplogroup H Haplogroup U

1870–1920 302 286

1920–1940 88 121

1940–1960 101 151

1960–1980 154 207

After 1980 92 125

Total 737 890

doi:10.1371/journal.pone.0005836.t001
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we chose to focus on amino acid property changes of category 6, 7,

and 8 because they unambiguously indicate a significant change in

the protein [24].

In the second step, the entire protein-coding portion of the

mitochondrial genome (13 complete coding sequences) was

collected for 107 mammalian species, including sequences from

all major mammalian lineages, from GenBank (Supplementary

Table S1). These sequences were aligned and used for phyloge-

netic analysis (Supplementary Figure S1). The cytb gene sequences

for the 107 mammalian species and the phylogenetic tree created

from all 13 mtDNA genes were used as input for TreeSAAP as in

Chamala et al. [26].

We used TreeSAAP to gain a historical context of the amino

acid property changes at site 7 in cytb. Specifically, the property

changes that TreeSAAP detected in step 1 of the analysis were

correlated with the same properties TreeSAAP detected to be

under natural selection throughout mammalian evolution. The

overall purpose of this second step is to establish context for

properly interpreting the results of step one. By estimating the

naturally occurring pattern of adaptation, the effects of SNPs may

be compared to the location and effects of extant genetic variation

and historical adaptations within the broader taxonomic group.

When a SNP fails to share characteristics with the historical

adaptations of the group, that SNP is more likely have a

detrimental effect. Conversely, if a SNP has much in common

with the adaptations of the group, that SNP may have a similar

adaptive effect [26].

Results

Difference in Longevity between H and U
The mean age at death was calculated for each time period

cohort of individuals. To test for statistical difference between

Haplogroup H and U, a two-tailed t-test assuming equal variances

was performed on the means. Figure 2 shows the mean age at

death for each time period cohort. We see an expected general

increase in longevity during the 20th century in both haplogroups.

Before 1920 there is no significant difference between the longevity

of individuals in haplogroup H and U. During the caloric

restriction of the Great Depression, 1920–1940, haplogroup H

shows significant increase in longevity compared to haplogroup U

(mean difference = 2.6 years, p = 0.02).

This significant difference during caloric restriction is further

illustrated by a survival curve of individuals in the two haplogroups

during this two decade time period (Figure 3). Following 1940,

there is little difference in longevity between Haplogroup H and U

individuals. This lack of difference continues to include recent

years of caloric over-consumption.

CytbI7T TreeSAAP Results
Table 2 shows the TreeSAAP results for the single substitution

cytbI7T. TreeSAAP indicated that substituting a threonine for an

isoleucine at site 7 in cytb results in radical shifts in seven amino

acid properties. The large number of properties of magnitude 6–8

(radical to extremely radical changes) that are associated with this

polymorphism suggests a radical change in the resulting protein.

These properties will be described in detail.

Three properties relate to the level of hydrophilicity in the region.

In general, the amino acid property ‘‘Surrounding Hydrophobicity’’

refers to the tendency for the region around the amino acid site in

question to interact with water. In the case of cytbI7T, there is a

radical decrease of magnitude 8 in this property, indicating that the

region surrounding site 7 becomes less hydrophobic and more

hydrophilic by introducing a threonine instead of an isoleucine.

This biochemical shift is likely the result of the hydroxyl group on

the R-group of threonine that may easily interact with water

molecules. Isoleucine is hydrophobic and thus lacks this ability.

Hydrophobicity is similar to the property ‘‘Hydropathy’’, which also

decreases due to the polymorphism I7T.

‘‘Equilibrium Constant’’ deals with the ability of any ionizable

functional group of the residue to dissociate and make an ion [27–

29]. TreeSAAP indicates that cytbI7T increases this property by a

moderately radical (magnitude 6) change. An increased equilib-

rium constant for the ionization of COOH would indicate a more

product-driven reaction. This would, as in the other properties,

make the region more water-soluble and hydrophilic. As will be

noted, this may be of greatest importance regarding reduced ROS

production and increased longevity during calorie restriction.

Figure 2. The mean age at death of individuals grouped by time period. Tests for statistical difference were performed using a two-tailed t-
test. Haplogroup U is labeled in red and Haplogroup H is labeled in yellow. Haplogroup H shows significantly increased longevity during 1920–1940.
doi:10.1371/journal.pone.0005836.g002
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The other four properties relate to the level of compactness in

the region. The amino acid properties ‘‘Average Number of

Surrounding Residues’’ and ‘‘Buriedness’’ measure how compact

and buried the amino acid site is. TreeSAAP indicated that

cytbI7T decreases both of these properties with a magnitude 6

change. With a decrease in these properties, we can imagine a

region around site 7 that is more open and free to interact (as

opposed to compact).

This conclusion is further supported by the decrease in the

amino acid property ‘‘Long-range non-bonded energy’’ resulting

from cytbI7T. This property describes the interactions between

molecules that are not directly in contact with one another (such as

Van der Waals interactions), affecting the stability of molecules

involved. It has been shown that the structures in globular proteins

are influenced not only by local, bonding interactions, but also by

long-range interactions [29,30]. TreeSAAP indicated a radical

decrease in this property of magnitude 6. A decrease in ‘‘Long-

range non-bonded energy’’ indicates a decrease in stability in this

residue and surrounding residues, further suggesting that the

region around site 7 is more open, less globular, and less compact

due to this polymorphism.

The solvent accessible surface of a protein is the region where

solvent and solutes interact with the protein [31]. The amino acid

property ‘‘Solvent Accessibility Reduction Ratio’’ is defined as the

ratio of the solvent accessible surface area of a residue in the native

state to that of the residue in an extended tri-peptide (Ala-X-Ala)

conformation [27–29].

All of these property changes involve either an increase in

hydrophilicity or a decrease in compactness in the region

surrounding site 7 in cytb among haplogroup H individuals.

Mammalian Evolution TreeSAAP Results
The second part of our analysis involved the use of TreeSAAP

across the cytb sequences and phylogenetic tree of 107

Figure 3. The survival curve for individuals who died after the age of 60 between 1920 and 1940. Haplogroup U individuals are labeled
in red and Haplogroup H individuals are labeled in yellow. The graph shows the fraction of the time period cohort that survived (y axis) to a given age
(x axis).
doi:10.1371/journal.pone.0005836.g003

Table 2. TreeSAAP results for cytbI7T.

Amino Acid Property Magnitude Category Direction of Change

Surrounding Hydrophobicity 8 Decrease

Hydropathy 6 Decrease

Equilibrium Constant (Ionization of COOH) 6 Increase

Average Number of Surrounding Residues 6 Decrease

Buriedness 6 Decrease

Long-Range Non-Bonded Energy 6 Decrease

Solvent Accessible Reduction Ratio 6 Decrease

The amino acid property changes, the radicality of the change, and the direction of the change are shown.
doi:10.1371/journal.pone.0005836.t002

CytbI7T Affects Longevity
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mammalian species from all major mammalian lineages in order

to estimate a historical evolutionary context of the amino acid

properties that have been under selection for radical change at site

7 in cytb. Particularly, the amino acid properties that are changed

by the cytbI7T polymorphism itself (Table 2) were inspected in the

TreeSAAP results of 107 mammalian cytb sequences.

Figure 4 shows the TreeSAAP results across cytb that are

consistent with the amino acid properties found by running the

individual cytbI7T polymorphism through TreeSAAP. Though

TreeSAAP found radical shifts in 7 amino acid properties while

analyzing the individual cytbI7T polymorphism, only six of these

were significantly affected in the mammalian data set – TreeSAAP

did not detect evidence of adaptation for the property ‘‘Average

Number of Surrounding Residues’’.

The peaks in the graphs of Figure 4 represent radical

changes in those properties during phylogenesis at particular

amino acid sites. Site 7 in cytb, where the polymorphism that

distinguishes haplogroup H occurs, are marked in each graph.

There are no peaks in any of these graphs at site 7, though

there have been naturally occurring radical changes in these

properties elsewhere along the sequence. This indicates that the

7 properties affected by cytbI7T have been highly conserved

and stable at this site throughout the evolution of these 107

mammalian species.

TreeSAAP results suggest that the region around site 7 likely

was not a site of adaptation in hydrophilicity and compactness

throughout mammalian evolution. This result, however, does not

preclude positive selection at this site in the human lineage.

Threonine was either fixed or maintained at cytb site 7 until a T7I

mutation occurred that led to an isoleucine polymorphism in

primates. Subsequent primates, including most human mitochon-

drial haplogroups, still exhibit isoleucine at site 7. Relatively

recently, the human substitution cytbI7T occurred, forming

haplogroup H. Radical physicochemical shifts in haplogroup H

restore the historical pre-primate character state, suggesting that

cytbI7T may have a positive effect. Given its location within

protein complex III and the radical nature of the physicochemical

effect, we are led to conclude that cytbI7T was likely advantageous

relative to the precise efficiency of complex III and the respiratory

chain that is linked to increased longevity during calorie

restriction.

Discussion

The I7T polymorphism analyzed in this study is located in the

cytb protein subunit. Cytb is encoded by mitochondrial DNA and

is located centrally in complex III (cytochrome bc1 complex) of the

ETC. Complex III is a dimer enzyme embedded in the inner

membrane of the mitochondria. The complex couples electron

transfer from ubiquinol to cytochrome c (cytc) with proton

translocation across the membrane to contribute to an increased

proton concentration in the intermembrane space of the

mitochondria [32–34]. The resulting proton gradient drives ATP

synthesis via oxidative phosphorylation by ATPase (protein

complex V).

The coupling of ubiquinol and cytc is accomplished by the Q

cycle, which involves oxidation of ubiquinol at the Qo binding site

to create ubiquinone, which is then reduced at the Qi binding site

[35–37]. Both of these binding sites are located in the protein

subunit cytb situated within the hydrophobic center of the inner

Figure 4. Mammalian evolution TreeSAAP results for the cytochrome b protein subunit. Each graph shows evolutionary selection for a
given amino acid property across the amino acid sequence of cytb. A z-score above 3.09 indicates radical changes occurring for the given property
throughout the evolution of 107 mammalian species (see Materials and Methods). The amino acid site number 7 where the cytb polymorphism
occurs is annotated. (A) Shows the TreeSAAP results for the property ‘‘Buriedness’’. (B) Shows the results for property ‘‘Equilibrium Constant’’. (C) and
(D) Show results for ‘‘Hydropathy’’ and ‘‘long-Range Non-Bonded Energy’’ respectively. (E) and (F) Depict the graphs for the TreeSAAP results of the
properties ‘‘Solvent Accessible Reduction Ratio’’ and ‘‘Surrounding Hydrophobicity’’.
doi:10.1371/journal.pone.0005836.g004
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membrane (Fig. 5). The cytbI7T polymorphism is located on the

N-terminus tail of cytb, near the Qi binding site.

Ubiquinone is reduced to ubiquinol at the Qi binding site

[36,38] (Fig. 6). Two important aspects of this reaction are: 1) the

presence of water and ubiquinone within the binding site, and 2)

water molecules filling the binding site after ubiquinol vacates.

High-resolution structures of protein complex III show that water

is involved in hydrogen bonds between the quinone and

surrounding cytb residues [39,40]. Water is also replenished in

the vacant binding site to replace the H+ used in the reduction

reaction [36]. Therefore, water molecules are an essential

ingredient for the ubiquinone to ubiquinol cycle at the Qi site,

and an initial step in proton translocation across the inner

mitochondrial membrane.

As mentioned, the CoQ binding sites are embedded within the

globular complex and the hydrophobic inner membrane. Given

this information, we suggest it is not trivial to replenish the

essential H20 molecules in the Qi binding site. A careful look at the

region surrounding the binding site sheds light on this problem.

The three-dimensional structure reveals a hydrophilic region that

could potentially be a channel for water to be shuttled into the Qi

binding site that is embedded within the globular complex in the

membrane (Fig. 7).

The cytbI7T polymorphism lies at the heart of this water

channel and likely has an impact on the ability of water to

replenish the Qi site because threonine may bind a water molecule

with its hydroxyl group, whereas isoleucine lacks this ability.

TreeSAAP indicates that the cytbI7T mutation radically changes

seven amino acid properties that have to do with either increasing

the hydrophilicity or reducing the compactness in the area.

Increasing hydrophilicity and making the area more open and less

globular in the cytb N-terminal region, water will likely be more

attracted to the shuttle area and reach the Qi binding site more

easily. This would increase the efficiency of the binding site and

the Q-cycle overall, thereby decreasing the time that ubisemiqui-

none exists at the Qo site, on average decreasing ROS production.

To corroborate this idea, TreeSAAP showed that these seven

amino acid properties have been highly stable and conserved

throughout mammalian evolution in the region surrounding the

cytb N-terminal region prior to the T7I SNP in the basal primate

branch. With the reintroduction of cytbI7T that created the

mitochondrial haplogroup H branch of humans, which is most

prevalent in European populations, these properties are radically

altered and the immediate impact presents itself as an increase in

the potential efficiency of the Q-cycle and the ETC overall,

resulting in increased longevity.

The cytbI7T polymorphism may be viewed in the context of

caloric intake in order to better understand how a more efficient

ETC could affect longevity in haplogroup H individuals. Caloric

intake is essentially the ultimate input to the ETC, and the cytbI7T

polymorphism may react differently with different levels of input.

Haplogroup H individuals have significantly increased longevity

during caloric restriction, but are not significantly different from

haplogroup U individuals during other time periods, even during

recent years of caloric over-consumption. The increased ETC

efficiency of the haplogroup H individuals, which cytbI7T seems

to be responsible for, is most advantageous during caloric

restriction.

This could be for a variety of reasons. ROS leakage from the

mitochondrial ETC is responsible for signaling apoptosis to the cell

when the cell meets a certain threshold. An increase in Q-cycle

and ETC efficiency, particularly under caloric restriction (sparse

electron input), likely lowers the ROS leakage from the

mitochondria and prevent more cells in certain tissues from

undergoing apoptosis, thus increasing longevity in haplogroup H

individuals. As we see no difference in longevity among haplotype

H and U individuals during caloric over-consumption, this

increased efficiency may not be of any advantage during these

time periods because other factors may override the advantage.

For example, a potential factor could be that of excessive electron

input to the ETC as a result of hyper-calorie intake. Having a

highly reduced ETC due to excessive electrons in the system may

drastically increase the rate of ROS production, thus swamping

the benefit haplogroup H individuals receive from cytbI7T. On

Figure 5. Cytochrome b within the cytochrome bc1 complex. Only one monomer is shown. The cytochrome b subunit is shown in grey with
surrounding subunits shown in green. The CoQ coenzymes are shown bound in the outside (Qo) and inside (Qi) binding sites. The heme groups that
are involved in the transfer of the electrons between binding sites are also shown. The cytbI7T polymorphism (yellow) is located on the N-terminus
tail of cytb near the Qi site. The three-dimensional coordinates of the complex were obtained from the protein data bank (http://www.pdb.org) [43]
under the entry 1ntz [35]. The structure was visually rendered with PyMOL [44].
doi:10.1371/journal.pone.0005836.g005
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the other hand, we suggest that during caloric restriction the

benefit from cytbI7T plays a critical role on the precise efficiency

of the ETC and increases longevity in haplogroup H as a result.
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Figure 6. The reduction of ubiquinone to ubiquinol in the Qi binding site in cytochrome b. (A) Shows ubiquinone bound in the Qi pocket
to surrounding cytb residues. A water molecule involved in H-bonding is highlighted in red. The reduction of ubiquinone proceeds from (B) to (D)
with the vacation of ubiquinol shown in (E). (F) Shows the vacant Qi site with replenished water molecules (red) that replace the H+ used in the
reaction. The cycle continues in (G) with another ubiquinone entering the binding site and the process starts again. The figure was adapted from
Kolling et al. [38] and Crofts [36].
doi:10.1371/journal.pone.0005836.g006
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