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1. Introduction

In machine learning, nonnegative matrix factorisation
(NMF) was introduced by Lee and Seung [1] as an alternative
to k-means clustering and principal component analysis
(PCA) for data analysis and compression (also see [2]). In
NMF, given a W × K nonnegative matrix X = {xν,τ}, where
ν = 1 : W , τ = 1 : K , we seek positive matrices T and V such
that

xν,τ ≈ [TV]ν,τ =
∑

i

tν,ivi,τ , (1)

where i = 1 : I . We will refer to the W × I matrix T as the
template matrix, and I × K matrix V the excitation matrix.
The key property of NMF is that T and V are constrained
to be positive matrices. This is in contrast with PCA, where
there are no positivity constraints or k-means clustering
where each column of V is constrained to be a unit vector.
Subject to the positivity constraints, we seek a solution to the
following minimisation problem:

(T ,V)∗ = arg min
T ,V>0

D(X‖TV). (2)

Here, the function D is a suitably chosen error function. One
particular choice for D, on which we will focus here, is the

information (Kullback-Leibler) divergence, which we write
as

D(X‖Λ) = −
∑

ν,τ

(
xν,τ log

λν,τ

xν,τ
− λν,τ + xν,τ

)
. (3)

Using Jensen’s inequality [3] and concavity of log x, it can
be shown that D(·) is nonnegative and D(X||Λ) = 0 if and
only if X = Λ. The objective in (2) could be minimised by
any suitable optimisation algorithm. Lee and Seung [1] have
proposed a very efficient variational bound minimisation
algorithm that has attractive convergence properties and
which has been successfully applied in various applications
in signal analysis and source separation, for example, [4–6].

The interpretation of NMF, like singular value decom-
position (SVD), as a low rank matrix approximation is
sufficient for the derivation of a useful inference algorithm;
yet this view arguably does not provide the complete picture
about assumptions underlying the statistical properties of X .
Therefore, we describe NMF from a statistical perspective
as a hierarchical model. In our framework, the original
nonnegative multiplicative update equations of NMF appear
as an expectation-maximisation (EM) algorithm for maxi-
mum likelihood estimation of a conditionally Poisson model
via data augmentation. Starting from this view, we develop
Bayesian extensions that facilitate more powerful modelling
and allow more sophisticated inference, such as Bayesian
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model selection. Inference in the resulting models can be
carried out easily using variational (structured mean field) or
Markov Chain Monte Carlo (Gibbs sampler). The resulting
algorithms outperform existing NMF strategies and open up
the way for a full Bayesian treatment for model selection
via computation of the marginal likelihoods (the evidence),
such as estimating the dimensions of the template matrix
or regularising overcomplete representations via automatic
relevance determination.

2. The Statistical Perspective

The interpretation of NMF as a low-rank matrix approxima-
tion is sufficient for the derivation of an inference algorithm;
yet this view arguably does not provide the complete
picture. In this section, we describe NMF from a statistical
perspective. This view will pave the way for developing
extensions that facilitate more realistic and flexible modelling
as well as more sophisticated inference, such as Bayesian
model selection.

Our first step is the derivation of the information diver-
gence error measure from a maximum likelihood principle.
We consider the following hierarchical model:

T ∼ p
(
T | Θt

)
, V ∼ p

(
V | Θv

)
, (4)

sν,i,τ ∼ PO(sν,i,τ ; tν,ivi,τ), xν,τ =
∑

i

sν,i,τ . (5)

Here, PO(s; λ) denotes the Poisson distribution of the ran-
dom variable s ∈ N0 with nonnegative intensity parameter λ,
where

PO(s; λ) = exp(s log λ− λ− log Γ(s + 1)) (6)

and Γ(s + 1) = s! is the gamma function. The priors p(T |
·) and p(V | ·) will be specified later. We call the variables
Si = {sν,i,τ} latent sources. We can analytically marginalise
out the latent sources S = {S1 · · · SI} to obtain the marginal
likelihood

log p(X | T ,V) = log
∑

S

p(X | S)p(S | T ,V)

= log
∏

ν,τ

PO
(
xν,τ ;

∑

i

tν,i, vi,τ

)

=
∑

ν

∑

τ

(
xν,τ log[TV]ν,τ − [TV]ν,τ

− log Γ
(
xν,τ + 1

))
.

(7)

This result follows from the well-known superposition
property of Poisson random variables [7], namely, when
si ∼ PO(si; λi) and x = s1 + s2 + · · · + sI , then the
marginal probability is given by p(x) = PO(x;

∑
i λi). The

maximisation of this objective in T and V is equivalent to
the minimisation of the information divergence in (3). In
the derivation of original NMF in [8], this objective is stated
first; the S variables are introduced implicitly later during the
optimisation on T and V . In the sequel, we show that this
algorithm is actually equivalent to EM, ignoring the priors
p(T | ·) and p(V | ·).

2.1. Maximum Likelihood and the EM Algorithm. The log-
likelihood of the observed data X can be written as

LX(T ,V) ≡ log
∑

S

p(X | S)p(S | T ,V)

≥
∑

S

q(S) log
p(X , S | T ,V)

q(S)
≡ BEM[q],

(8)

where q(S) is an instrumental distribution, that is arbitrary
provided that the sum on the right exists; q can only vanish
at a particular S only when p does so. Note that this
defines a lower bound to the log-likelihood. It can be shown
via functional derivatives and imposing the normalisation
condition

∑
Sq(S) = 1 via Lagrange multipliers that the lower

bound is tight for the exact posterior of the latent sources,
that is,

arg max
q(S)

BEM[q] = p(S | X ,T ,V). (9)

Hence the log-likelihood can be maximised iteratively as
follows:

E Step q(S)(n) = p
(
S | X ,T(n−1),V (n−1)),

M Step
(
T(n),V (n)) = arg max

T ,V
〈 log p(S,X | T ,V)〉q(S)(n) .

(10)

Here, 〈 f (x)〉p(x) =
∫
p(x) f (x)dx, the expectation of some

function f (x) with respect to p(x). In the E step, we compute
the posterior distribution of S. This defines a lower bound on
the likelihood

B(n)(T ,V | T(n−1),V (n−1)) = 〈 log p(S,X | T ,V)〉q(S)(n) .

(11)

For many models in the exponential family, which includes
(5), the expectation on the right depends on the sufficient
statistics of q(S)(n) and is readily available; in fact calculating
q(S) should be literally taken as calculating the sufficient
statistics of q(S). The lower bound is readily obtained as a
function of these sufficient statistics, and maximisation in the
M Step yields a fixed point equation.

2.1.1. The E Step. To derive the posterior of the latent
sources, we observe that

p(S | X ,T ,V) = p(S,X | T ,V)
p(X | T ,V)

. (12)

For the model in (5), we have

log p(S,X | T ,V)

=
∑

ν

∑

τ

(∑

i

(−tν,ivi,τ+sν,i,τ log
(
tν,ivi,τ

)−log Γ
(
sν,i,τ+1

))

+ log δ
(
xν,τ−

∑

i

sν,i,τ

))
.

(13)
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It follows from (5), (12), (13), and (7)

log p(S | X ,T ,V)

=
∑

ν

∑

τ

(∑

i

(
sν,i,τ log

(
tν,ivi,τ∑
i′ tν,i′vi′,τ

)
− log Γ

(
sν,i,τ + 1

))

+ log Γ
(
xν,τ + 1

)
+ log δ

(
xν,τ −

∑

i

sν,i,τ

))

=
∑

ν

∑

τ

log M
(
sν,1,τ , . . . , sν,I ,τ ; xν,τ , pν,1,τ , . . . , pν,I ,τ

)
,

(14)

where pν,i,τ ≡ tν,ivi,τ /
∑

i′ tν,i′vi′,τ are the cell probabilities.
Here, M denotes a multinomial distribution defined by

M(s; x, p) =
(

x
s1 s2 · · · sI

)
ps11 p

s2
2 · · · psII δ

(
x −

∑

i

si

)

= δ
(
x −

∑

i

si

)
x!

I∏

i=1

psii
si!

,

(15)

where s = {s1, s2, . . . , sI}, p = {p1, p2, . . . , pI}, and p1 + p2 +
· · · + pI = 1. Here, pi, i = 1 · · · I are the cell probabilities,
and x is the index parameter where s1 + s2 + · · · + sI = x.
The Kronecker delta function is defined by δ(x) = 1 when
x = 0, and δ(x) = 0 otherwise. It is a standard result that the
marginal mean is

〈si〉 = xpi, (16)

that is, the expected value of each source si is a fraction of the
observation, where the fraction is given by the corresponding
cell probability.

2.1.2. The M Step. It is indeed a good news that the posterior
has an analytic form. Since now the M step can be calculated
easily as follows:

〈log p(S,X | T ,V)〉p(S|X ,T ,V)

=
∑

ν

∑

τ

(∑

i

(− tν,ivi,τ+〈sν,i,τ〉 log
(
tν,ivi,τ

)−〈log Γ
(
sν,i,τ+1

)〉)

+
〈

log δ
(
xν,τ −

∑

i

sν,i,τ

)�)
.

(17)

Fortunately, for maximisation with respect to T and V , the
last two difficult terms are merely constant, and we need only
to maximise the simpler objective

Q(T ,V) =
∑

ν

∑

τ

(∑

i

(− tν,ivi,τ +
〈
sν,i,τ

〉(n)
log
(
tν,ivi,τ

)))
,

(18)

where we only need the expected value of the sources given
by the previous values of the templates and excitations:

〈sν,i,τ〉(n) = xν,τ
t(n)
ν,i v

(n)
i,τ

∑
i′ t

(n)
ν,i′v

(n)
i′,τ

. (19)

Maximisation of the objective Q and substituting 〈sν,i,τ〉(n)

give the following fixed point equations:

∂Q

∂tν,i
= −

∑

τ

v(n)
i,τ +

∑
τ

〈
sν,i,τ

〉(n)

tν,i
,

t(n+1)
ν,i =

∑
τ

〈
sν,i,τ

〉(n)

∑
τv

(n)
i,τ

= t(n)
ν,i

∑
τxν,τv

(n)
i,τ /

∑
i′ t

(n)
ν,i′v

(n)
i′,τ

∑
τv

(n)
i,τ

,

∂Q

∂vi,τ
= −

∑

ν

t(n)
ν,i +

∑
ν

〈
sν,i,τ

〉(n)

vi,τ
,

v(n+1)
i,τ =

∑
ν

〈
sν,i,τ

〉(n)

∑
νt

(n)
ν,i

= v(n)
i,τ

∑
νt

(n)
ν,i xν,τ /

∑
i′ t

(n)
ν,i′v

(n)
i′,τ

∑
νt

(n)
ν,i

.

(20)

Equation (20) is identical to the multiplicative update rules of
[8]. However, our derivation via data augmentation obtains
the same result as an EM algorithm. It is interesting to note
that in literature, NMF is often described as EM-like; here, we
show that it is actually just an EM algorithm. We see that the
efficiency of NMF is due to the fact that the W × I×K object
〈S〉 needs not to be explicitly calculated as we only need its
marginal statistics (sums across τ or ν).

We note that our model is valid when X is integer valued.
See [9] for a detailed discussion about consequences of this
issue. Here, we assume that for nonnegative real valued X̃ ,
we only consider the integer part, that is, we let X̃ = X + E,
where E is a noise matrix with entries uniformly drawn in
[0, 1). In practice, this is not an obstacle when the entries of
X are large.

The interpretation of NMF as a maximum likelihood
method in a Poisson model is mentioned in the original
NMF paper [1] and discussed in more detail by [5, 10]. The
equivalence of NMF and probabilistic latent sematic analysis
is shown in [11]. Kameoka in [5] focuses on the optimisation
and gives an equivalent description using auxiliary function
maximisation. In contrast, the auxiliary variables can be
viewed as model variables (the sources s) that are analytically
integrated out [10]. A general framework is described in
[12]. Prior structures are placed on conditionally Gaus-
sian NMF models to enforce sparsity in [13]. However,
all of these approaches are based on regularisation, that
is, aim at calculating a maximum a posteriori estimate.
In contrast, we provided in this article a full Bayesian
treatment where the templates and excitations are integrated
out.

2.2. Hierarchical Prior Structure. Given the probabilistic
interpretation, it is possible to propose various hierarchical
prior structures to fit the requirements of an application.
Here we will describe a simple choice where we have a
conjugate prior as follows:

tν,i ∼ G
(
tν,i; atν,i,

btν,i

atν,i

)
, vi,τ ∼ G

(
vi,τ ; avi,τ ,

bvi,τ
avi,τ

)
. (21)
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Figure 1: (a) A schematic description of the NMF model with
data augmentation. (b) Graphical model with hyperparameters.
Each source element sν,i,τ is Poisson distributed with intensity
tν,ivi,τ . The observations are given by xν,τ = ∑

isν,i,τ . In matrix
notation, we write X = ∑

Si. We can analytically integrate out
over S. Due to superposition property of Poisson distribution,
intensities add up, and we obtain 〈X〉 = TV . Given X , the NMF
algorithm is shown to seek the maximum likelihood estimates of
the templates T and excitations V . In our Bayesian treatment, we
further assume that elements of T and V are Gamma distributed
with hyperparameters Θ.

Here, G denotes the density of a gamma random variable x ∈
R+ with shape a ∈ R+ and scale b ∈ R+ defined by

G(x; a, b) = exp
(

(a− 1) log x − x

b
− log Γ(a)− a log b

)
.

(22)

The primary motivation for choosing a Gamma distribution
is computational convenience: Gamma distribution is the
conjugate prior to Poisson intensity. The indexing highlights
the most general case where there are individual parameters
for each element tν,i and vi,τ . Typically, we do not allow
many free hyperparameters but tie them depending upon
the requirements of an application. See Figure 1 for an
example. As an example, consider a model where we tie

a = 0.01
a = 0.1 

a = 1

a = 10

a = 100

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

G(x; a, 1/a)

Figure 2: (Left) The family of densities p(v; a, b = 1) = G(v; a, b/a)
with the same mean 〈v〉 = b = 1. Small values of a (for a < 1)
enforce sparser representations, and large values of a ≈ 100 tie all
values to be close to a nonzero mean (nonsparse representation).

the hyperparameters such as atν,i = at , btν,i = bt, avi,τ =
av, and bvi,τ = bv for i = 1 · · · I , ν = 1 · · ·W , and
τ = 1 · · ·K . This model is simple to interpret, where each
component of the templates and the excitations is drawn
independently from the Gamma family shown in Figure 2.
Qualitatively, the shape parameter a controls the sparsity
of the representation. Remember that G(x; a, b/a) has the
mean b and standard deviation b/

√
a. Hence, for large a,

all coefficients will have more or less the same magnitude
b, and typical representations will be full. In contrast, for
small a, most of the coefficients will be very close to zero, and
only very few will be dominating, hence favouring a sparse
representation. The scale parameter b is adapted to give the
expected magnitude of each component.

To model missing data, that is, when some of the xν,τ are
not observed, we define a mask matrix M = {mν,τ}, the same
size as X where mν,τ = 0, if xν,τ is missing and 1 otherwise
(see Appendix A.4 for details). Using the mask variables, the
observation model with missing data can be written as

p(X | S)p(S | T ,V)

=
∏

ν,τ

(
p
(
xν,τ | sν,1:I ,τ

)
p
(
sν,1:I ,τ | tν,1:I , v1:I ,τ

))mν,τ .

(23)

The hierarchical model in (21) is more powerful than
the basic model of (5), in that it allows a lot of freedom
for more realistic modelling. First of all, the hyperparameters
can be estimated from examples of a certain class of source to
capture the invariant features. Another possibility is Bayesian
model selection, where we can compare alternative models
in terms of their marginal likelihood. This enables one to
estimate the model order, for example, the optimum number
of templates to represent a source.

3. Full Bayesian Inference

Below, we describe various interesting problems that can
be cast to Bayesian inference problems. In signal analysis
and feature extraction with NMF, we may wish to calculate
the posterior distribution of templates and excitations,
given data and hyperparameters Θ ≡ (Θt,Θv). Another
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(1) Initialise:
L(0)
t = E(0)

t ∼ G(·;At ,Bt./At) L(0)
v = E(0)

v ∼ G(·;Av ,Bv./Av)
(2) for n = 1 . . . MAXITER do
(3) Source sufficient statistics

Σ(n)
t := L(n−1)

t .∗ (((X .∗M)./(L(n−1)
t L(n−1)

v ))L(n−1)
v


)

Σ(n)
v := L(n−1)

v .∗ (L(n−1)
t


((X .∗M)./(L(n−1)

t L(n−1)
v )))

(4) Means

E(n)
t := α(n)

t .∗ β(n)
t α(n)

t = At + Σ(n)
t β(n)

t = 1./(At./Bt +ME(n−1)
v


)

E(n)
v := α(n)

v .∗ β(n)
v α(n)

v = Av + Σ(n)
v β(n)

v = 1./(Av./Bv + E(n)
t


M)

(5) Optional: Compute Bound (See Appendix, (A.13))
(6) Means of Logs

L(n)
t = exp

(
Ψ
(
α(n)
t

))
.∗ β(n)

t L(n)
v = exp

(
Ψ
(
α(n)
v
))
.∗ β(n)

v

(7) Optional: Update Hyperparameters (See Appendix, Section A.5)
(8) end for

Algorithm 1: Variational nonnegative matrix factorisation.

important quantity is the marginal likelihood (also known
as the evidence), where

p(X | Θ) =
∫
dT dV

∑

S

p(X | S)p(S | T ,V)p(T ,V | Θ).

(24)

The marginal likelihood can be used to estimate the hyper-
parameters, given examples of a source class

Θ∗ = arg max
Θ

p(X | Θ) (25)

or to compare two given models via Bayes factors

l
(
Θ1,Θ2

) = p
(
X | Θ1

)

p
(
X | Θ2

) . (26)

This latter quantity is particularly useful for comparing
different classes of models. Unfortunately, the integrations
required cannot be computed in closed form. In the sequel,
we will describe the Gibbs sampler and variational Bayes as
approximate inference strategies.

3.1. Variational Bayes. We sketch here the Variational Bayes
(VB) [3, 14] method to bound the marginal log-likelihood as

LX(Θ) ≡ log p(X | Θ) ≥
∑

S

∫
d(T ,V)q log

p(X , S,T ,V | Θ)
q

= 〈log p(X , S,V ,T | Θ)〉q +H[q] ≡ BVB[q],

(27)

where q = q(S,T ,V) is an instrumental distribution, and
H[q] is its entropy. The bound is tight for the exact posterior
q(S,T ,V) = p(S,T ,V | X ,Θ) but as this distribution is
complex, we assume a factorised form for the instrumental

distribution by ignoring some of the couplings present in the
exact posterior as follows:

q(S,T ,V) = q(S)q(T)q(V)

=
(
∏

ν,τ

q
(
sν,1:I ,τ

)
)(
∏

ν,i

q
(
tν,i
)
)(
∏

i,τ

q
(
vi,τ
)
)
≡
∏

α∈C

qα,

(28)

where α ∈ C = {{S}, {T}, {V}} denotes set of disjoint
clusters. Hence, we are no longer guaranteed to attain the
exact marginal likelihood LX(Θ). Yet, the bound property
is preserved, and the strategy of VB is to optimise the
bound. Although the best q distribution respecting the
factorisation is not available in closed form, it turns out that
a local optimum can be attained by the following fixed point
iteration:

q(n+1)
α ∝ exp

(
〈log p(X , S,T ,V | Θ)〉q(n)

¬α

)
, (29)

where q¬α = q/qα. This iteration monotonically improves
the individual factors of the q distribution, that is, B[q(n)] ≤
B[q(n+1)] for n = 1, 2, . . . given an initialisation q(0). The
order is not important for convergence; one could visit
blocks in arbitrary order. However, in general, the attained
fixed point depends upon the order of the updates as well
as the starting point q(0)(·). We choose the following update
order in our derivations:

q(S)(n+1) ∝ exp
(〈log p(X , S,T ,V | Θ)〉q(T)(n)q(V)(n)

)
,

(30)

q(T)(n+1) ∝ exp
(〈log p(X , S,T ,V | Θ)〉q(S)(n+1)q(V)(n)

)
,

(31)

q(V)(n+1) ∝ exp(〈log p(X , S,T ,V | Θ)〉q(S)(n+1)q(T)(n+1)

)
.

(32)

3.2. Variational Update Equations and Sufficient Statistics.
The expectations of 〈log p(X , S,T ,V | Θ)〉 are functions
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of the sufficient statistics of q (see the expression in the
Appendix A.2). The update equation for the latent sources
(30) leads to the following:

q
(
sν,1:I ,τ

)∝ exp
(∑

i

(
sν,i,τ

(〈log tν,i〉 + 〈log vi,τ〉
)

− log Γ
(
sν,i,τ + 1

)))
δ
(
xν,τ −

∑

i

sν,i,τ

)

∝M
(
sν,1,τ , . . . , sν,i,τ , . . . , sν,I ,τ ;

xν,τ , pν,1,τ , . . . , pν,i,τ , . . . , pν,I ,τ
)
,

pν,i,τ =
exp

(〈
log tν,i

〉
+
〈

log vi,τ
〉)

∑
i exp

(〈
log tν,i

〉
+
〈

log vi,τ
〉) ,

〈
sν,i,τ

〉 = xν,τ pν,i,τ .
(33)

These equations are analogous to the multinomial posterior
of EM given in (14); only the computation of cell probabil-
ities is different. The excitation and template distributions
and their sufficient statistics follow from the properties of the
gamma distribution:

q
(
tν,i
)∝ exp

((
atν,i +

∑

τ

〈
sν,i,τ

〉− 1
)

log
(
tν,i
)

−
(
atν,i

bν,i
+
∑

τ

〈
vi,τ
〉)
tν,i

)

∝ G
(
tν,i;αtν,i,β

t
ν,i

)
,

αtν,i ≡atν,i+
∑

τ

〈
sν,i,τ〉, βtν,i≡

(
atν,i

btν,i
+
∑

τ

〈
vi,τ
〉)−1

,

exp
(〈

log tν,i
〉) = exp

(
Ψ
(
αtν,i

))
βtν,i,

〈
tν,i
〉 = αtν,iβ

t
ν,i,

q
(
vi,τ
)∝ exp

((
avi,τ +

∑

ν

〈
sν,i,τ

〉− 1
)

log vi,τ

−
(
avi,τ
bvi,τ

+
∑

ν

〈
tν,i
〉)
vi,τ

)

∝ G
(
vi,τ ;αvi,τ ,βvi,τ

)
,

αvi,τ ≡avi,τ+
∑

ν

〈
sν,i,τ

〉
, βvi,τ≡

(
avi,τ
bvi,τ

+
∑

ν

〈
tν,i
〉)−1

,

exp
(〈

log vi,τ
〉) = exp

(
Ψ
(
αvi,τ
))
βvi,τ ,

〈
vi,τ
〉 = αvi,τβ

v
i,τ .

(34)

3.3. Efficient Implementation. One of the attractive features
of NMF is easy and efficient implementation. In this section,
we derive that the update equations of Section 3.2 in compact
matrix notation are to illustrate that these attractive prop-
erties are retained for the full Bayesian treatment. A subtle

but key point in the efficiency of the algorithm is that we
can avoid explicitly storing and computing the W × I × K
object 〈S〉, as we only need the marginal statistics during
optimisation. Consider (33). We can write
∑

τ

〈
sν,i,τ

〉 =
∑

τ

xν,τ pν,i,τ

= exp
(〈

log tν,i
〉)

×
∑

τ

(
xν,τ(∑

i′exp
(〈

log tν,i′
〉)

exp
(〈

log vi′,τ
〉))

)

× exp
(〈

log vi,τ
〉)

,

Σt = Lt .∗
((
X./
(
LtLv

))
Lv
)
.

(35)

Here, the denominator has to be nonzero. In the last line, we
have represented the expression in compact notation where
we define the following matrices:

Et =
{〈
tν,i
〉}

, Lt =
{

exp
(〈

log tν,i
〉)}

,

Σt =
{∑

τ

〈
sν,i,τ

〉}
, At =

{
atν,i

}
,

Bt =
{
btν,i

}
, αt =

{
αtν,i

}
, βt =

{
βtν,i

}
,

Ev =
{〈
vi,τ
〉}

, Lv =
{

exp
(〈

log vi,τ
〉)}

,

Σv =
{∑

ν

〈
sν,i,τ

〉}
, Av =

{
avi,τ
}

,

Bv =
{
bvi,τ
}

, αv =
{
αvi,τ
}

, βv =
{
βvi,τ
}
.

(36)

The matrices subscripted with t are in RW×I
+ and with v are

in RI×K
+ . For notational convenience, we define .∗ and ./ as

elementwise matrix multiplication and division, respectively,
and 1W as a W × 1 vector of ones. After straightforward
substitutions, we obtain the variational nonnegative matrix
factorisation algorithm, that can compactly be expressed as
in panel Algorithm 1.

Similarly, an iterative conditional modes (ICM) algo-
rithm can be derived to compute the maximum a posteriori
(MAP) solution (see Appendix A.4):

V := (Av +V .∗ (T((M .∗ X)./(TV))
))

./
(
Av./Bv + TM

)
,

(37)

T := (At + T .∗ (((M .∗ X)./(TV))V))

./
(
At./Bt +MV).

(38)

Note that when the shape parameters go to zero, that is,
At,Av → 0, we obtain the maximum likelihood NMF
algorithm.

3.4. Markov Chain Monte Carlo, the Gibbs Sampler. Monte
Carlo methods [15, 16] are powerful computational tech-
niques to estimate expectations of form

E = 〈 f (x)〉p(x) ≈
1
N

N∑

n=1

f
(
x(i)) = ẼN , (39)
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(1) Initialize:
T (0) =∼ G

(·;At ,Bt
)

V (0) ∼ G
(·;Av ,Bv

)

(2) for n = 1 . . . MAXITER do
(3) Sample Sources
(4) for τ = 1 · · ·K ,ν = 1 · · ·W do
(5) p(n)

ν,1:I ,τ = T (n−1)(ν, 1 : I) .∗V (n−1)(1 : I , τ)./(T (n−1)(ν, 1 : I)V (n−1)(1 : I , τ))
(6) S(n)(ν, 1 : I , τ) ∼M

(
sν,1:I ,τ ; xν,τ , p(n)

ν,1:I ,τ

)

(7) end for
Σ(n)
t =

∑

τ

S(n)
ν,i,τ Σ(n)

v =
∑

ν

S(n)
ν,i,τ

(8) Sample Templates
α(n)
t = At + Σ(n)

t β(n)
t = 1./

(
At./Bt + 1W

(
V (n−1)1K

))

T (n) ∼ G
(
T ;α(n)

t ,β(n)
t

)

(9) Sample Excitations
α(n)
v = Av + Σ(n)

v β(n)
v = 1./

(
Av./Bv +

(
1WT (n−1)

)
1K
)

V (n) ∼ G
(
V ;α(n)

v ,β(n)
v

)

(10) end for

Algorithm 2: Gibbs sampler for nonnegative matrix factorisation.

where x(i) are independent samples drawn from p(x). Under
mild conditions on f , the estimate ẼN converges to the true
expectation for N → ∞. The difficulty here is obtaining
independent samples {x(i)}i=1···N from complicated distri-
butions.

The Markov Chain Monte Carlo (MCMC) techniques
generate subsequent samples from a Markov chain defined by
a transition kernel T , that is, one generates x(i+1) conditioned
on x(i) as follows:

x(i+1) ∼ T
(
x | x(i)). (40)

Note that the transition kernel T is not needed explicitly
in practice; all is needed is a procedure to sample a new
configuration, given the previous one. Perhaps surprisingly,
even though subsequent samples are correlated, provided
that T satisfies certain ergodicity conditions, (39) remains
still valid, and estimated expectations converge to their
true values when number of samples N goes to infinity
[15]. To design a transition kernel T such that the desired
distribution is the stationary distribution, that is, p(x) =∫
dx′T (x | x′)p(x′), many alternative strategies can be

employed [16]. One particularly convenient and simple
procedure is the Gibbs sampler where one samples each block
of variables from full conditional distributions. For the NMF
model, a possible Gibbs sampler is

S(n+1) ∼ p
(
S | T(n),V (n),X ,Θ

)
,

T(n+1) ∼ p
(
T | V (n), S(n+1),X ,Θ

)
,

V (n+1) ∼ p
(
V | S(n+1),T(n+1),X ,Θ

)
.

(41)

Note that this procedure implicitly defines a transition kernel
T (· | ·). It can be shown [15] that the stationary distribution
of T is the exact posterior p(S,T ,V | X ,Θ). Eventually,
the Gibbs sampler converges regardless of the order that
the blocks are visited, provided that each block is visited
infinitely often in the limit n → ∞. However, the rate of

convergence is very difficult to assess as it depends upon
the order of the updates as well as the starting configuration
(T(0),V (0), S(0)). It is instructive to contrast above (41) with
the variational update of (30)–(32): algorithmically the two
approaches are quite similar. The pseudo-code is given in
Algorithm 2.

3.4.1. Marginal Likelihood Estimation with Chib’s Method.
The marginal likelihood can be estimated from the samples
generated by the Gibbs sampler using a method proposed
by Chib [17]. Suppose we have run the block Gibbs sampler
until convergence and have N samples as follows:

{
T(n)}

n=1 :N ,
{
V (n)}

n=1 :N ,
{
S(n)}

n=1 :N . (42)

The marginal likelihood is (omitting hyperparameters Θ)

p(X) = p(V ,T , S,X)
p(V ,T , S | X)

. (43)

This equation holds for all points (V ,T , S). We choose
a point in the configuration space; provided that the
distribution is unimodal, a good candidate is a configuration
near the mode (T̃ , Ṽ , S̃). The numerator in (43) is easy to
evaluate. The denominator is

p
(
Ṽ , T̃ , S̃ | X) = p

(
Ṽ | T̃ , S̃,X

)
p
(
T̃ | S̃,X

)
p
(
S̃ | X)

= p
(
Ṽ | T̃ , S̃

)
p
(
T̃ | S̃)p(S̃ | X).

(44)

The first term is full conditional, so it is available for the
Gibbs sampler. The third term is

p
(
S̃ | X) =

∫
dV dT p

(
S̃ | V ,T ,X

)
p(V ,T | X)

≈ 1
N

N∑

n=1

p
(
S̃ | V (n),T(n),X

)
.

(45)
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The second term is trickier

p
(
T̃ | S̃) =

∫
dV p

(
T̃ | V , S̃

)
p
(
V | S̃ ). (46)

The first term here is full conditional. However, the original
Gibbs run gives us only samples from p(V | X), not p(V | S̃).
The idea is to run the Gibbs sampler for M further iterations
where we sample from (V (m)

S̃
,T(m)

S̃
) ∼ p(V ,T | S = S̃), that

is, with S clamped at S̃. The resulting estimate is

p
(
T̃ | S̃ ) ≈ 1

M

M∑

m=1

p
(
T̃ | V (m)

S̃
, S̃
)
. (47)

Chib’s method estimates the marginal likelihood as follows:

log p(X | Θ) = log p
(
Ṽ , T̃ , S̃,X | Θ)− log p

(
Ṽ , T̃ , S̃ | X ,Θ

)

≈ log p
(
Ṽ , T̃ , S̃,X | Θ)− log p

(
Ṽ | T̃ , S̃,Θ

)

− log
M∑

m=1

p
(
T̃ | V (m)

S̃
, S̃,Θ

)

− log
N∑

n=1

p
(
S̃ | V (n),T(n),X ,Θ

)
+ log(MN).

(48)

4. Simulations

Our goal is to illustrate our approach in a model selection
context. We first illustrate that the variational approximation
to the marginal likelihood is close to the one obtained from
the Gibbs sampler via Chib’s method. Then, we compare
the quality of solutions we obtain via Variational NMF
and compare them to the original NMF on a prediction
task. Finally, we focus on reconstruction quality in the
overcomplete case where the standard NMF is subject to
overfitting.

Model Order Determination. To test our approach, we gener-
ate synthetic data from the hierarchical model in (21) with
W = 16, K = 10, and the number of sources Itrue = 5.
The inference task is to find the correct number of sources,
given X . The hyperparameters of the true model are set to
atν,i = at = 10, btν,i = bt = 1, avi,τ = av = 1, and
bvi,τ = bv = 100. In the first experiment, the hyperparameters
are assumed to be known and in the second are jointly
estimated from data, using hyperparameter adaptation. We
evaluate the marginal likelihood for models with the number
of templates I = 1 · · · 10, with the Gibbs sampler using
Chib’s method and variational lower bound B via variational
Bayes. We run the Gibbs sampler for MAXITER = 10 000
steps following a burn-in period of 5000 steps; then we
clamp the sources S and continue the simulation for a
further 10 000 steps to estimate quantities required by Chib’s
method. We run the variational algorithm until convergence
of the bound or 10 000 iterations, whichever occurs first.
In Figure 3(a), we show a comparison of the variational
estimate with the average of 5 independent runs obtained
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Figure 3: Model selection results. (a) Comparison of model
selection by variational bound (squares) and marginal likelihood
estimated by Chib’s (circles) method. The hyperparameters are
assumed to be known. (b) Box-plot of marginal likelihood esti-
mated by Chib’s method using 5000, 10 000, and 10 000 iterations
for burn-in, free, and clamped sampling. The boxes show the lower
quartile, median, and upper quartile values. (c) Model selection by
variational bound when hyperparameters are unknown and jointly
estimated.

via Chib’s method. We observe, that both methods give
consistent results. In Figure 4, we show the lower bound
as a function of model order I , where for each I , the
bound is optimised independently by jointly optimising
hyperparameters at , bt, av, and bv using the equations derived
in the appendix. We observe, that the correct model order
can be inferred even when the hyperparameters are unknown
a priori. This is potentially useful for estimation of model
order from real data.
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Figure 4: Model selection using variational bound with adapted
hyperparameters on face data 16× 16 with I∗ = 27 (a) and 32× 32
with I∗ = 42 (b).

As real data, we use a version of the Olivetti face image
database (K = 400 images of 64 × 64 pixels available at
http://www.cs.toronto.edu/∼roweis/data/olivettifaces.mat).
We further downsampled to 16× 16 or 32× 32 pixels, hence
our data matrix X is 162 × 400 or 322 × 400. We use a model
with tied hyperparameters as atν,i = at, btν,i = bt, avi,τ = av, and
bvi,τ = bv, where all hyperparameters are jointly estimated.
In Figure 4, bottom, we show results of model order
determination for this dataset with joint hyperparameter
adaptation. Here, we run the variational algorithm for each
model order I = 1 · · · 100 independently and evaluate the
lower bound after optimising the hyperparameters. The
Gibbs sampler is not found practical and is omitted here.
The lower bound behaves as is expected from marginal
likelihood, reflecting the tradeoff between too many and too
few templates. Higher resolution implies more templates,
consistent with our intuition that detail requires more
templates for accurate representation.

We also investigate the nature of the representations
(see Figure 5). Here, for each independent run, we fix
the values of shape parameters to (at, av) = [(10, 10),
(0.1, 0.1), (10, 0.2), (10, 0.5)] and only estimate bt and bv.
This corresponds to enforcing sparse or nonsparse t and
v. Each column shows I = 36 templates estimated from
the dataset conditioned on hyperparameters. The middle
image is the same template image above weighted with
the excitations corresponding to the reconstruction (the
expected value of the predictive distribution) below. Here,
we clearly see the effect of the hyperparameters. In the
first condition (at, av) = (10, 10), the prior does not
enforces sparsity to the templates and excitations. Hence,

for the representation of a given image, there are many
active templates. In the second condition, we try to force
both matrices to be sparse with (at , av) = (0.1, 0.1).
Here, the result is not satisfactory as isolated components
of the templates are zeroed, giving a representation that
looks like one contaminated by “salt-and-pepper” noise.
The third condition ((at, av) = (10, 0.2)) forces only the
excitations to be sparse. Here, we observe that the templates
correspond to some average face images. Qualitatively, each
image is reconstructed using a superposition of a few of
these templates. In the final representation, we enforce
sparsity in the templates but not in the excitations. Here,
our estimate finds templates that correspond to parts of
individual face images (eyebrows, lips, etc.). This solution,
intuitively corresponding to a parsimonious representation,
also is the best in terms of the marginal likelihood. With
proper initialisation, our variational procedure is able to find
such solutions.

Prediction. We now compare variational Bayesian NMF with
the maximum likelihood NMF on a missing data prediction
task.

To illustrate the self regularisation effect, we set up an
experiment in which we select a subset of the face data
consisting of 50 images. From half of the images, we remove
the same patch (Figure 6) and predict the missing pixels.
This is a rather small dataset for this task, as we have only
10 images for each of the 5 different persons, and half of
these images have missing data at the same spot. We measure
the quality of the prediction in terms of signal-to-noise ratio
(SNR). The missing values are reconstructed using the mean
of the predictive distribution Xpred ≡ 〈X〉PO(X ;T∗V∗) =
T∗V∗, where T∗ and V∗ are point estimates of the template
and excitation matrix. We compare our variational algorithm
with the classical NMF. For each algorithm, we test two
different versions. The variational algorithms differ in how
we estimate T∗ and V∗. In the first variational algorithm,
we use a crude estimate of T∗ and V∗ as the mean of the
approximating q distribution. In the second condition, after
convergence of hyperparameters via VB, we reinitialise T and
V randomly and switch to an ICM algorithm (see (38)). This
strategy finds a local mode (T∗,V∗) of the exact posterior
distribution. In NMF, we test two initialisation strategies: in
the first condition, we initialise the templates randomly; in
the second, we set them equal to the images in the dataset
with random perturbations.

In Figure 6, we show the reconstruction results for a
typical run, for a model with I = 100 templates. Note
that this is an overcomplete model, with twice as many
templates as there are images. To characterise the nature of
the estimated template and excitation matrices, we use the
sparseness criteria [18] of an m × n matrix X , defined as
Sparseness (X) = (

√
mn− (

∑
i, j|Xi, j|)/(

∑
i, jX

2
i, j)

1/2)/(
√
mn−

1). This measure is 1 when the matrix X has only a
single nonzero entry and 0 when all entries are equal.
We see that the variational algorithms are superior in this
case in terms of SNR as well as the visual quality of the
reconstruction. This is perhaps not surprising, since with

http://www.cs.toronto.edu/~roweis/data/olivettifaces.mat
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B = −2051618.1672 B = −2519222.8848 B = −2081517.199 B = −1965293.3874 

at = 10 av = 10 at = 0.1 av = 0.1 at = 10 av = 0.2 at = 0.5 av = 10

Figure 5: Templates, excitations for a particular example, and the reconstructions obtained for different hyperparameter settings. B is the
lower bound for the whole dataset.

maximum likelihood estimation; if the model order is not
carefully chosen, generalisation performance is poor: the
“noise” in the observed data is fitted but the prediction
quality drops on new data. An interesting observation is that
highly sparse solutions (either in templates or excitations) do
not give the best result; the solution that balances both seems
to be the best in this setting. This example illustrates that
sparseness in itself may not be necessarily a good criteria to
optimise; for model selection, the marginal likelihood should
be used as the natural quantity.

On the same face dataset, we compare the prediction
error in terms of the SNR for varying model order I . Our goal
is to compare the prediction performance of the full Bayesian
approach with the ML-NMF for a range of conditions
(under-complete, complete, and overcomplete). The results
shown in Figure 7 are averages of several runs with hyper-
parameter adaptation and different hyperparameter tying. In
the simulations, the shape parameters are tied always as avi,τ =
av (and atν,i = at). The scale parameters are untied or tied as
(bvτ , btν) (across sources) or bvi , bti (different for each source)

and jointly optimised. Regardless of the hyperparameter
tying structure, the results were quite similar. The best SNR
values are attained with untied scale parameters for both
excitations and templates.

We observe that, due to the implicit self-regularisation
in the Bayesian approach, the prediction performance is
not very sensitive to the model order and is immune to
overfitting. In contrast, the ML-NMF with random initial-
isation is prone to overfitting, and prediction performance
drops with increasing model order. Interestingly, when we
initialise the ML-NMF algorithm to true data points with
small perturbations, the prediction performance in terms of
SNR improves. Note that this strategy would not be possible
for data where the pixels were truly missing. However, visual
inspection shows that the interpolation can still be “patchy”
(see Figure 6).

We observe that hyperparameter adaptation is crucial
for obtaining good prediction performance. In our simu-
lations, results for VB without hyperparameter adaptation
were occasionally poorer than the ML estimates. Good
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Figure 6: Results of a typical run. (a) Example images from the dataset. (b) Comparison of the reconstruction accuracy of different methods
in terms of SNR (in dB), organised according to the sparseness of the solution. (c) (from left to right). The ground truth, data with missing
pixels. The reconstructions of VB, VB + ICM, and ML-NMF with two initialisation strategies (1 = random, 2 = to image).

initialisation of the shape hyperparameters seems to be also
important. We obtain best results when initialising the shape
hyperparameters asymmetrically, for example, av < 1 and
at > 10 (see 3rd and 4th panels from left in Figure 5).
When the shape hyper-parameters are initialised to small
av, at � 1, the EM seems to get stuck in a local minima
more often. Consequently, the prediction results are poorer.
We have also carried out tests with more undercomplete
representations when the model order is low I < 10. For
these simulations, while the marginal likelihood was in
favour of the VB solutions, we have not observed statistically
significant differences between VB and ML in terms of SNR.
The SNR improvement of VB over ML was on average about
0.1 dB only.

5. Discussion and Conclusions

In this paper, we have investigated KL-NMF from a sta-
tistical perspective. We have shown that KL minimisation
formulation the original algorithm can be derived from a
probabilistic model where the observations are superposi-

tion of I independent Poisson-distributed latent sources.
Here, the template and excitation matrices turn out to
be latent intensity parameters. The interpretation of NMF
as a maximum likelihood method in a Poisson model is
mentioned in the original NMF paper [1] and discussed in
more detail by [5, 10], and [5] focuses on the optimisation
and gives an equivalent description using auxiliary function
maximisation. In contrast, [10] illustrates that the auxiliary
variables can be viewed as model variables (the sources s)
that are analytically integrated out. The relationship between
KL divergence and the Poisson distribution is not just a
lucky coincidence. There exists a duality between divergence
functions and exponential family distributions. If a cost
function is a Bregman divergence, there exists a regular
exponential family where minimising the cost corresponds
to maximum likelihood parameter estimation [19]; also see
[12] it in the context of matrix factorisation models.

The novel observation in the current article is the exact
characterisation of the approximating distribution q(S) or
full conditionals p(S | T ,V ,X) as a product of multinomial
distributions, leading to a richer approximation distribution
than a naive mean field or single site Gibbs (which would
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Figure 7: Average SNR results for model orders I = 1, 25, 50,
75, 100 covering undercomplete, complete, and overcomplete cases.
Comparison of VB, VB + ICM, and ML-NMF with two initialisa-
tion strategies (1 = random, 2 = to image).

freeze due to deterministic p(X | S)). This conjugate
form leads to significant simplifications in full Bayesian
integration. Apart from the conditionally Gaussian case,
NMF with KL objective seems to be unique in this respect.
For several other distance metrics D(·‖·), we find that full
Bayesian inference not as practical as p(S | T ,V ,X) is not
standard.

We have also shown that the standard KL-NMF algo-
rithm with multiplicative update rules is in fact an EM
algorithm with data augmentation. Extending upon this
observation, we have developed an hierarchical model with
conjugate Gamma priors. We have developed a variational
Bayes algorithm and a Gibbs sampler for inference in this
hierarchical model. We have also developed methods for
estimating the marginal likelihood for model selection. This
is an additional feature that is lacking in existing NMF
approaches with regularisation, where only MAP estimates
are obtained, such as [13, 18, 20].

Our simulations suggest that the variational bound seems
to be a reasonable approximation to the marginal likelihood
and can guide model selection for NMF. The computational
requirements are comparable to the ML-NMF. A potentially
time-consuming step in the implementation of the varia-
tional algorithm is the evaluation of the Ψ function but this
step can also be replaced by a simple piecewise polynomial
approximation since exp(Ψ(x)) ≈ x − 0.5 for x > 5.

We first compare the variational inference with a Gibbs
sampler. In our simulations, we observe that both algorithms
give qualitatively very similar results, both for inference of
templates and excitations as well as model order selection.
We find the variational approach somewhat more practical
as it can be expressed as simple matrix operations, where
both the fixed point equations as well as the bound can
be compactly and efficiently implemented using matrix

computation software. In contrast, our Gibbs sampler is
computationally more demanding, and the calculation of
marginal likelihood is somewhat more tricky. With our
implementation of both algorithms, the variational method
is faster by a factor of around 13. Reference implementations
of both algorithms in Matlab are available from the following
url: http://www.cmpe.boun.edu.tr/∼cemgil/bnmf/.

In terms of computational requirements, the variational
procedure has several advantages. First, we circumvent
sampling from multinomial variables, which is the main
computational bottleneck with the Gibbs sampler. Whilst
efficient algorithms are developed for multinomial sampling
[21], the procedure is time consuming when the number
of latent sources I is large. In contrast, the variational
method estimates the expected sufficient statistics directly
by elementary matrix operations. Another advantage is
hyperparameter estimation. In principle, it is possible to
maximise the marginal likelihood via a Monte Carlo EM
procedure [22, 23]; yet this potentially requires many more
iterations. In contrast, the evaluation of the derivatives of
the lower bound is straightforward and can be implemented
without much additional computational cost.

The efficiency of the Gibbs sampler could be improved
by working out the distribution of the sufficient statistics
of sources directly (namely, quantities

∑
τsν,i,τ or

∑
νsν,i,τ)

to circumvent multinomial sampling. Unfortunately, for
the sum of binomial random variables with different cell
probability parameters, the sum does not have a simple form
but various approximations are possible [24].

Inference based on VB is easy to implement but at
the end of the day, the fixed point iteration is just a
gradient-based lower bound optimisation procedure, and
second order Newton methods can provide more efficient
alternatives. For NMF models, there exist many conditional
independence relations, hence the Hessian matrix has a
special block structure [12]. It is certainly interesting to
develop efficient inference methods that make use of the
special block structure of the Hessian matrix. However, as
our primary goal was a practical full Bayesian treatment,
we have not investigated this path yet. Another approach in
this direction is using alternative deterministic integration
techniques such as expectation propagation (EP) [25]. Those
techniques work directly on an approximation of the true
marginal likelihood rather than a bound. A related approach
known as expectation consistent (EC) inference is used with
success in related source separation problems [26].

From a modelling perspective, our hierarchical model
provides some attractive properties. It is easy to incorpo-
rate prior knowledge about individual latent sources via
hyperparameters, and one can easily capture variability in
the templates and excitations that is potentially useful for
developing robust techniques. The prior structure here is
qualitatively similar to an entropic prior [20, 27], and we
find qualitatively similar representations to the ones found
by NMF reported earlier by [1, 18]. However, none of
the above mentioned methods provide an estimate of the
marginal likelihood, which is useful for model selection. Our
generative model formulation can be extended in various
ways to suit the specific needs of particular applications. For

http://www.cmpe.boun.edu.tr/~cemgil/bnmf/
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example, one can enforce more structured prior models such
as chains or fields [10]. As a second possibility, the Poisson
observation model can be replaced with other models such
as clipped Gaussian, Gamma, or Gaussians which lead to
alternative source separation algorithms. For example, the
case of Gaussian sources where the excitations and templates
correspond to the variances is discussed in [28].

Our main contribution here is the development of a
principled and practical way to estimate both the optimal
sparsity criteria and model order, in terms of marginal
likelihood. By maximising the bound on marginal likelihood,
we have a method where all the hyperparameters can be esti-
mated from data, and the appropriate sparseness criteria is
found automatically. We believe that our approach provides
a practical improvement to the highly popular KL-NMF
algorithm without incurring much additional computational
cost.

Appendix

A. Standard Distributions in Exponential Form,
Their Sufficient Statistics and Entropies

(i) Gamma

G(λ; a, b) ≡ exp
(

+ (a− 1) log λ− 1
b
λ− logΓ(a)− a log b

)
,

〈λ〉G = ab 〈log λ〉G = Ψ(a) + log(b),

HG[λ] ≡ −〈log G〉G = −(a− 1)Ψ(a) + log b + a + log Γ(a).

(A.1)

Here, Ψ denotes the digamma function defined as
Ψ(a) ≡ d logΓ(a)/da.

(ii) Poisson

PO(s; λ) = exp(s log λ− λ− log Γ(s + 1)),

〈s〉PO = λ.
(A.2)

(iii) Multinomial

M(s; x, p)

= δ
(
x −

∑

i

si

)
exp

(
log Γ(x+1)+

I∑

i=1

(
si log pi−log Γ

(
si+1

)))
,

〈si〉M = xpi.
(A.3)

Here, s = {s1, s2, . . . , sI}, p = {p1, p2, . . . , pI}, and
p1 + p2 + · · · + pI = 1. Here, pi, i = 1 · · · I are the
cell probabilities, and x is the index parameter where
s1 + s2 + · · ·+ sI = x. The entropy is given as follows:

HM
[
sν,1:I ,τ

] = −log Γ
(
xν,τ + 1

)−
I∑

i=1

〈
sν,i,τ

〉
log pν,i,τ

+
I∑

i=1

〈
log Γ

(
sν,i,τ+1

)〉−
〈

log δ
(
xν,τ−

∑

i

sν,i,τ

)�
.

(A.4)

A closed form expression for the entropy is not known due
to 〈logΓ(s + 1)〉 terms but asymptotic expansions exist [29,
30]. Computationally efficient sampling from a multinomial
distribution is not trivial; see [21] for a comparison of
various methods and detailed discussion of tradeoffs.

A.1. Summary of the Generative Model. We have the follow-
ing. Indices:

i = 1 · · · I , source index;

ν = 1 · · ·W , Row (frequency bin) index;

τ = 1 · · ·K , Column (time frame) index;

tν,i: template variable at νth row of the ith source

tν,i ∼ G
(
tν,i; atν,i,

btν,i

atν,i

)
; (A.5)

vi,τ : excitation variable of the ith source at τth column

vi,τ ∼ G
(
vi,τ ; avi,τ ,

bvi,τ
avi,τ

)
; (A.6)

sν,i,τ : source variable of ith source at νth row (frequency bin)
and τth column (time frame)

sν,i,τ ∼ PO
(
sν,i,τ ; tν,ivi,τ

)
; (A.7)

xν,τ : observation at νth row (frequency bin) and τth column
(time frame)

xν,τ ∼
∑

i

sν,i,τ . (A.8)

A.2. Expression of the Full Joint Distribution. Here, φ ≡
p(X , S,T ,V | Θ) = p(X | S)p(S | T ,V)p(V | Θv)p(V | Θt),

log φ =
∑

ν

∑

i

∑

τ

(−tν,ivi,τ+sν,i,τ log
(
tν,ivi,τ

)−log Γ
(
sν,i,τ+1

))

+
∑

ν

∑

τ

log δ
(
xν,τ −

∑

i

sν,i,τ

)

+
∑

ν

∑

i

+
(
atν,i − 1

)
log tν,i −

atν,i

btν,i
tν,i − log Γ

(
atν,i

)

− atν,i log
(
btν,i

atν,i

)

+
∑

τ

∑

i

+
(
avi,τ − 1

)
log vi,τ −

avi,τ
bvi,τ

vi,τ − log Γ
(
avi,τ
)

− avi,τ log
(
bvi,τ
avi,τ

)
.

(A.9)

A.3. The Variational Bound. The variational bound in (27)
can be written as

LX(Θ) ≡ log p(X | Θ) ≥ 〈logφ〉q +H[q] = BVB,

(A.10)
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where the energy term is given by the expectation of the
expression in Appendix A.2, and H[q] denotes the entropy
of the variational approximation distribution q where the
individual entropies are defined in Appendix A:

H[q] = −〈log q〉

=
∑

ν

∑

τ

HM
[
sν,1:I ,τ

]
+
∑

ν

∑

i

HG
[
tν,i
]

+
∑

i

∑

τ

HG
[
vi,τ
]
.

(A.11)

One potential problem is that this expression requires the
entropy of a multinomial distribution for which there is
no known simple expression. This is due to terms of form
〈logΓ(s + 1)〉 where only asymptotic expansions are known.
Fortunately, the difficult terms in the energy term can be
canceled by the corresponding terms in the entropy term,
and one obtains the following expression that only depends
on known sufficient statistics:

B = −
∑

ν

∑

τ

∑

i

〈
tν,i
〉〈
vi,τ
〉

+
∑

ν

∑

i

〈
log tν,i

〉(
atν,i − 1 +

∑

τ

〈
sν,i,τ

〉)

+
∑

τ

∑

i

〈
log vi,τ

〉(
avi,τ − 1 +

∑

ν

〈
sν,i,τ

〉)

+
∑

ν

∑

i

− atν,i

bν,i

〈
tν,i
〉− log Γ

(
atν,i

)− atν,i log
(
bν,i

atν,i

)

+
∑

τ

∑

i

− avi,τ
bvi,τ

〈
vi,τ
〉− log Γ

(
avi,τ
)− avi,τ log

(
bvi,τ
avi,τ

)

+
∑

ν

∑

τ

(
− log Γ

(
xν,τ + 1

)−
I∑

i=1

〈
sν,i,τ

〉
log pν,i,τ

)

+
∑

ν

∑

i

(−(αtν,i−1
)
Ψ
(
αtν,i

)
+ log βtν,i + αtν,i + log Γ

(
αtν,i

)
)

+
∑

i

∑

τ

(−(αvi,τ− 1
)
Ψ
(
αvi,τ
)

+log βvi,τ+αvi,τ+log Γ
(
αvi,τ
))
.

(A.12)

After some careful manipulations, the following expression
is obtained where log L denotes here elementwise logarithm
of matrix L:

B =
∑

ν

∑

τ

(− EtEv − log Γ(X + 1)
)

+
∑

ν

∑

τ

−X .∗(((Lt .∗ log
(
Lt
))
Lv+Lt

(
Lv .∗ log

(
Lv
)))

./
(
LtLv

)− log
(
LtLv

))

+
∑

ν

∑

i

−(At./Bt
)
.∗ Et − log Γ

(
At
)

+At .∗ log
(
At./Bt

)

+
∑

ν

∑

i

αt .∗
(
log βt + 1

)
+ log Γ

(
αt
)

+
∑

i

∑

τ

− (Av./Bv
)
.∗Ev−log Γ

(
Av
)

+Av .∗log
(
Av./Bv

)

+
∑

i

∑

τ

αv .∗
(

log βv + 1
)

+ log Γ
(
αv
)
.

(A.13)

A.4. Handling Missing Data and MAP Estimation. When
there is missing data, that is, when some of the xν,τ are not
observed, computation is still straightforward in our frame-
work and can be accomplished by a simple modification to
the original algorithm. We first define a mask matrix M =
{mν,τ}, same size as X , where

mν,τ =
⎧
⎨
⎩

0, xν,τ is missing,

1, otherwise.
(A.14)

Using the mask variables, the observation model with
missing data can be written as follows:

p(X | S)p(S | T ,V)

=
∏

ν,τ

(
p
(
xν,τ | sν,1:I ,τ

)
p
(
sν,1:I ,τ | tν,1:I , v1:I ,τ

))mν,τ .

(A.15)

The prior is not affected. Hence, we merely replace the first
two lines of the expression for the full joint distribution
(given in the Appendix A.2) as follows:

logφ =
∑

ν

∑

τ

mν,τ

∑

i

(− tν,ivi,τ + sν,i,τ log
(
tν,ivi,τ

)

− log Γ
(
sν,i,τ + 1

))

+
∑

ν

∑

τ

mν,τ log δ
(
xν,τ −

∑

i

sν,i,τ

)
+ · · · .

(A.16)

Consequently, it is easy to see that

q(vi,τ) ∝ exp
((
avi,τ +

∑

ν

mν,τ〈sν,i,τ〉 − 1
)

log vi,τ

−
(
avi,τ
bvi,τ

+
∑

ν

mν,τ〈tν,i〉
)
vi,τ

)

∝ G
(
vi,τ ;αvi,τ ,βvi,τ

)
,

αvi,τ ≡ avi,τ +
∑

ν

mν,τ〈sν,i,τ〉,

βvi,τ ≡
(
avi,τ
bvi,τ

+
∑

ν

mν,τ〈tν,i〉
)−1

.

(A.17)
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By a derivation analogous to one detailed in Section 3.3, we
see that the excitation update equations in Algorithm 1, line
4, can be written using matrix notation as follows:

Σv = Lv .∗
(
Lt
(
(M .∗ X)./

(
LtLv

)))

αv = Av + Σv, βv = 1./
(
Av./Bv + Et M

)
.

(A.18)

The update rules for the templates are similar. Note that
when there is no missing data, we have M = 1W1K which
gives the original algorithm. The bound in (A.13) can also be
easily modified for handling missing data. We merely replace
X ← M .∗X and the first term EtEv ← M .∗ EtEv.

We conclude this subsection by noting that the standard
NMF update equations, given in (20), can be also rewritten
to handle missing data as follows:

V (n+1) = V (n) .∗ (T((M .∗ X)./(TV)
))
./
(
TM

)
,

T(n+1) = T(n) .∗ (((M .∗ X)./(TV))V)./
(

MV).
(A.19)

Here, the denominator has to be nonzero. Similarly, an
iterative conditional modes (ICM) algorithm can be derived
to compute the maximum a posteriori (MAP) solution as
follows:

V (n+1) = (Av +V (n) .∗ (T((M .∗ X)./(TV))
))

./
(
Av./Bv + TM

)
,

T(n+1) = (At + T(n) .∗ (((M .∗ X)./(TV))V))

./
(
At./Bt + MV).

(A.20)

Note that when the shape parameters go to zero, that is,
At,Av → 0, we obtain the maximum likelihood NMF
algorithm.

A.5. Hyperparameter Optimisation. The hyperparameters
Θ = (Θt,Θv) can be estimated by maximising the bound
in 13. Below, we will derive the results for the excitations;
the results for templates are similar. The solution for shape
parameters involves finding the zero of a function f (a) − c,
where

f (a) = log a−Ψ(a) + 1,

a∗ = f −1(c).
(A.21)

The solution can be found by Newton’s method by iteration
of the following fixed point equation:

a(n+1) = a(n) − f
(
a(n)

)− c
f ′
(
a(n)

)

= a(n) − log
(
a(n)

)−Ψ(a(n)
)

+ 1− c
1/a(n) −Ψ′(a(n)

) = a(n) − Δ(n).

(A.22)

It is well known that Newton iterations can diverge if started
away from the root. Occasionally, we observe that a can

become negative. If this is the case, we set Δ(n) ← Δ(n)/2, and
try again. The digamma Ψ function and its derivative Ψ′ are
available in numeric computation libraries (e.g., in Matlab as
psi(0,a) and psi(1,a), resp.).

The derivation of the hyperparameter update equations
is straightforward:

∂B

∂avi,τ
= 〈log vi,τ

〉− 1
bvi,τ

〈
vi,τ
〉−Ψ(avi,τ

)

− log bvi,τ + log avi,τ + 1 = 0,

ci,τ = log avi,τ −Ψ
(
avi,τ
)

+ 1,

ci,τ ≡
〈
vi,τ
〉

bvi,τ
− (〈log vi,τ

〉− log bvi,τ
)
,

∂B

∂bvi,τ
= avi,τ
(
bvi,τ
)2 〈vi,τ〉 − avi,τ

1
bvi,τ

= 0,

bvi,τ =
〈
vi,τ
〉
.

(A.23)

Tying parameters across τ as avi = avi,τ and bvi = bvi,τ yields

∂B
∂avi

=
∑

τ

〈
log vi,τ

〉−
∑

τ

1
bvi,τ

〈
vi,τ
〉− KΨ(avi

)

−
∑

τ

log bvi,τ + K = 0,

ci = log avi −Ψ
(
avi
)

+ 1,

ci = 1
K

∑

τ

(〈
vi,τ
〉

bvi,τ
− (〈log vi,τ

〉− log bvi,τ
))

,

∂B

∂bvi
=
∑

τ

avi,τ
(
bvi
)2

〈
vi,τ
〉− 1

bvi

∑

τ

avi,τ ,

bvi =
∑

τ a
v
i,τ

〈
vi,τ
〉

∑
τ a

v
i,τ

.

(A.24)

Tying parameters across τ and i, av = avi,τ , and bv = bvi,τ yields

c = log av −Ψ(av) + 1,

c = 1
KI

∑

τ

∑

i

(〈vi,τ
〉

bvi,τ
− (〈log vi,τ〉 − log bvi,τ

))
,

∂B
∂bv

=
∑

i

∑

τ

avi,τ
(
bv
)2

〈
vi,τ
〉− 1

bvi

∑

i

∑

τ

avi,τ ,

bv =
∑

i

∑
τ a

v
i,τ

〈
vi,τ
〉

∑
i

∑
τ a

v
i,τ

.

(A.25)
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The derivation of the template parameters is exactly anal-
ogous. We can express the update equations once again in
compact matrix notation as follows:

Z ←− E(n)
v ./B(n)

v − log
(
L(n)
v ./B(n)

v

)
,

C ←−

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z, Not tied,
(
Z1K

)

K
, Tie columns (over τ),

(
1I Z

)

I
, Tie rows (over i),

(
1I Z1K

)

(KI)
, Tie all (over τ and i),

A(n+1)
v ←− SolveByNewton

(
A(n)
v ,C

)
,

B(n+1)
v ←−

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(n)
v , Not tied,
(((

A(n)
v .∗ E(n)

v
)

1K
)

./
(
A(n)
v 1K

))
1K , Tie columns (over τ),

1I
((

1I (A(n)
v .∗ E(n)

v
))

./
(

1I A
(n)
v
))

, Tie rows (over i),

1I
((

1I
(
A(n)
v .∗ E(n)

v
)

1K
)

./
(

1I A
(n)
v 1K

))
1K , Tie all (over τ and i).

(A.26)

Here, we assume SolveByNewton(A0,C) is a matrix-valued
function that finds root Ci, j = f (Ai, j) for each element of A,
starting from the initial matrix A0. If C is a scalar or vector,
it is repeated over the missing index to implement parameter
tying. For example, if C is a I × 1 vector and A0 is I × K ,
we assume Ci = ci,τ for all τ = 1 · · ·K , and the output is
the same size as A0. This is only a notational convenience;
an actual implementation can be achieved more efficiently.
Again, the implementation of the template parameters is
exactly analogous; merely replace above the subscripts as
v ← t, (i, τ) ← (ν, i) and (I ,K) ← (W , I).
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