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Abstract
A key problem in computational proteomics is distinguishing between correct and false peptide
identifications. We argue that evaluating the error rates of peptide identifications is not unlike
computing generating functions in combinatorics. We show that the generating functions and their
derivatives (spectral energy and spectral probability) represent new features of tandem mass spectra
that, similarly to Δ-scores, significantly improve peptide identifications. Furthermore, the spectral
probability provides a rigorous solution to the problem of computing statistical significance of
spectral identifications. The spectral energy/probability approach improves the sensitivity-specificity
trade-off of existing MS/MS search tools, addresses the notoriously difficult problem of “one-hit-
wonders” in mass spectrometry, and often eliminates the need for decoy database searches. We
therefore argue that the generating function approach has the potential to increase the number of
peptide identifications in MS/MS searches.

Introduction
Tandem mass spectrometry (MS/MS) has become the leading high-throughput technology for
protein identification. These experiments often generate millions of spectra, and interpreting
them leads to challenging statistical problems (see Nesvizhskii et al., 2007 [1] and Kall et al.,
2008 [2] for recent reviews). One of the major problems in tandem mass spectrometry is the
lack of theoretical (as opposed to empirical) estimates of statistical significance of peptide
identifications. Indeed, the Proteomics Publication Guidelines [3,4] recommend searching in
decoy databases to determine the statistical significance of peptide identifications (this is in
contrast to genomics searches that do not employ decoy databases). We argue that if the error
rates reported by existing MS/MS software tools were reliable (as in the case of genomics
searches), the search in decoy databases would not be necessary. The major difference here is
that MS/MS searches are currently based on empirical database-dependent estimates of error
rates (often represented by Poisson, Gaussian, hypergeometric, or other approximations of tails
of score distributions [5,6,7]) as opposed to the analytically derived and database-independent
error rates in genomics tools like BLAST [8]. Although the target-decoy search strategy is
currently viewed as the best way to distinguish between the correct and false identifications
[9,10,11,12,13,14], this valuable approach has certain shortcomings. While the shortcomings
of such strategies are well recognized in genomics (see [15]), they are often overlooked in
proteomics. Also, decoy databases take a toll on every lab engaged in MS/MS searches
effectively doubling the search time. We argue that using decoy databases is an
acknowledgment of our inability to solve the following problem:
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Spectrum Matching Problem
Given a spectrum S and a score threshold T for a spectrum-peptide scoring function, find the
probability that a random peptide matches the spectrum S with score equal to or larger than
T.

The Spectrum Matching Problem was first posed by Fenyo and Beavis, 2003 [16] (see also
[17]).1 They acknowledged that the theoretical solution of this problem is unknown and
suggested a heuristic approach to its solution based on approximating the tail of the score
distribution. Solving the Spectrum Matching Problem is equivalent to computing the False
Positive Rates (FPR) of spectral matches. FPR is a property of an individual spectrum as
opposed to the False Discovery Rate (FDR), the property of multiple spectra (proportion of
incorrect identifications among all identifications judged correct).2

Search in a decoy database looks like an attractive approach for approximating the solution of

the Spectrum Matching Problem as , where m is the number of matches between the spectrum
and the decoy database of size n (with scores equal to or larger than the threshold T). However,
for an individual spectrum, the number of matches for typical n is usually zero thus making
this approach problematic (decoy and target databases usually have the same size). To obtain
reliable FPR for an individual spectrum, one can increase n (e.g., making giant decoy databases
1000 times larger than target databases). Since this is impractical, some existing approaches
bundle all spectra with the same score to evaluate the FDR of all spectra in the bundle and to
use FDR as a surrogate for FPR (see [1]). Figure 1 in the Supplement 1 illustrates that spectra
with the same score may have vastly different FPRs thus implying that careful analysis of all
peaks in the spectrum (rather than the scores alone) may be necessary to compute the database
matching statistics for individual spectra.

Assigning the same FPR to all identifications with identical scores [18,19,20] is a dangerous
oversimplification since the scoring functions of existing MS/MS tools are not based on
rigorous probabilistic models and are often inaccurate (see Supplement 1). Recognizing this
problem, Fenyo and Beavis, 2003 [16] pioneered computing FPR for an individual spectrum
as an empirical solution of the Spectrum Matching Problem.3 They constructed the empirical
score distribution of low-scoring (erroneous) peptide identifications and extrapolated it to
evaluate the FPR of high-scoring peptide identifications in the tail of the distribution. Such
approaches are not free of shortcomings: Waterman and Vingron, 1994 [15] wrote: “Theory
is needed because simulations rarely cover the extreme tails of a distribution.” criticizing
similar approaches in genomics. In another paper criticizing such empirical approaches,
Nagarajan et al., 2005 [21] demonstrated that all existing motif finding tools are statistically
flawed and can be off by orders of magnitude in computing P-values. This flaw remained
uncovered for 15 years and affected 1000s of studies. Needless to say, the mass spectrometry
community is not immune to similar flaws suggesting that re-examination of existing
approaches to estimation of statistical significance in MS/MS searches is timely. In this paper,
we demonstrate that the analysis of statistical significance in various MS/MS tools is often
unreliable (see Supplement 1).

1The Spectrum Matching Problem assumes a certain probabilistic distribution on the set of all peptides and computes the total probability
of all peptides P with score(P, S) > T.
2Different papers on statistics of MS/MS searches often use inconsistent terminology. The solution of the Spectral Matching Problem
provides E-values (the expected number of peptides with the scores equal to or larger than the observed score) or can be used for computing
p-values in the hypothesis testing framework. To avoid a confusion, we follow the terminology from the recent review [1] and use the
term FPR (and the related term Spectral Probability defined below) in the remainder of this paper.
3The approach in [16] is particularly attractive since it can be implemented without decoy databases.
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We further argue that use of decoy databases is not free from shortcomings. The intuition
behind using a decoy database is to estimate the number of spectra that match the database by
chance. If a spectrum S has probability p(S) of matching a random database, then a decoy
database is simply a time-consuming way to evaluate Σp(S) over all spectra in the dataset (this
sum represents the expected number of hits in the decoy database) but not a good way to
estimate individual probabilities p(S). The generating function approach, in difference from
the decoy database approach, accurately computes probabilities p(S) for the individual spectra,
an important advantage for addressing the problem of “one-hit-wonders” in MS/MS searches.
An ideal approach to evaluating the statistical significance of MS/MS searches would be to
use a database containing all possible peptides up to a certain length, and use the number of
identifications in this database to evaluate the error rate. However, the time required to search
this database renders this approach infeasible. Below we show that it is nevertheless possible
to compute the precise number of the identified peptides in this huge database thus computing
the solution of the Spectrum Matching Problem exactly rather than empirically. This illustrates
the advantages of (fast) analysis of scores over the huge database of all peptides as compared
to (slow) analysis of scores over the much smaller decoy databases.

Solving the Spectrum Matching Problem is not unlike computing the generating function in
combinatorics [22,23]. Given a spectrum S and a score X, define E(S, X) as the number of
peptides (among all possible peptides) that match the spectrum S with score X. To evaluate
FPRs one has to compute E(S, X) for every spectrum S and every score X (more precisely, the
sum of probabilities of all peptides contributing to E(S, X)). Figure 1(b) illustrates the notion
of the generating function in the simple case when the score X of a match between a spectrum
and a peptide is defined as the number of peaks in the spectrum explained as b or y ions. Figure
1(c) shows the generating function for a more advanced scoring described below. We show
how to compute E(S, X) and to use it for improving the sensitivity-specificity trade-off of
various database search tools. We further introduce the notion of spectral energy (Figure 1)
that represents the difference between the best de novo spectral interpretation and the best
database spectral interpretation. We show that while the Energy-score (in difference from the
Δ-score) was ignored in MS/MS searches so far, it greatly improves the separation between
the correct and false identifications. Finally, we introduce the notion of spectral probability
(the total probability of all peptides with scores exceeding a threshold) that further improves
the separation between the correct and false identifications (Figure 1).

While this paper is limited to identifications of non-modified peptides, the generating function
approach can be extended to modified peptides as well (see the Discussion section). Our MS-
GF software for computing generating function/spectral energy/spectral probability of tandem
mass spectra is available as open source from
http://www.cs.ucsd.edu/users/ppevzner/ software.html.

Methods
The generating function

To introduce the notion of the generating function of tandem mass spectra, we use the analogy
with the classical Ising model of ferromagnetism, one of the pillars of statistical mechanics
[24]. The model consists of n magnetic spins such that each spin can be in two states (up and
down). This results in 2n possible states each with its own energy defined by the elementary
interactions between neighboring spins on the lattice. The partition function represents the key
technique for analyzing the Ising model and is defined as Σall states π e−Energy(π) (in this paper
we ignore the “temperature” parameter of the Ising model).4

Interpreting a spectrum S with a peptide P is not unlike choosing a state in the Ising model.
Instead of 2n states of magnetic spins, there are 20n possible interpretations of the spectrum
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S by peptides of length n. Each of these interpretations has its own “energy” given by the score
of the match between spectrum S and peptide P. The goal is to compute the partition
(generating) function of the spectrum S and to apply it for analyzing statistics of the MS/MS
searches rather than the statistics of the Ising model. While, the generating function of tandem
mass spectra involves 20n terms, we show below how to efficiently compute it. For the sake
of simplicity, we first introduce the notion of generating function for boolean spectra that ignore
intensities, charges, inaccuracies in peak positions, and C-terminal ions. While the boolean
spectra are impractical, they proved to be useful as a stepping stone for introducing simple
scoring/algorithms and later generalizing them to real spectra and more complex algorithms
(see [25,26,27]). Later, we will illustrate how to define the generating function for real spectra.

We represent a boolean spectrum S with parent mass k as 0-1 vector s1 … sk, where si = 1 if
there is a peak at mass i in the spectrum, and si = 0, otherwise. This representation assumes
that the spectra are discretized and all masses are integers (Figure 2). For example, for ion-trap
spectra this can be approximated by multiplying all masses by 10 and taking integer parts (see
Kim et al., 2008 [28] for details). The match score between spectra s1 … sk and  is
defined as .

Given a peptide P = p1 … pn, we define its theoretical spectrum Spectrum(P) as a 0-1 spectrum
s1 … sk with (n − 1) 1s, such that si = 1 iff i is the mass of the peptide p1 … pi. The score
(denoted as Score(P, S)) between a peptide P and a spectrum S (with the same parent mass) is
defined as the match score between spectra Spectrum(P) and S. For convenience, we assume
that Score(P, S) = −∞ if peptide P and spectrum S have different parent masses. Let SCORE =
SCORE(S) = maxall peptides P Score(P, S) be the maximum value of Score(P, S) among all
possible peptides P. SCORE can be estimated using de novo peptide sequencing algorithms
[29,30,31,32,33,34,35,36,37,38,39,40]. We define energy of a peptide-spectrum pair as Energy
(P, S) = SCORE − Score(P, S) and define the generating function of the spectrum S as Σtx(t) ·
e−t, where x(t) is the number of peptides with energy t.5

Given the probabilities of individual amino acids (e.g., computed empirically from a set of
protein sequences), we define the probability prob(P) of a peptide P = a1 … am as the product
of probabilities of its amino acids . We will also consider the weighted generating
function: Σall peptides P prop(P) · e−Energy(P,S) = Σt y(t) · e−t, where y(t) is the overall probability
of all peptides with energy t.

Computing the generating function for boolean spectra
Given a spectrum S, we introduce a variable x(i, t) equal to the number of peptides of mass i
that have t peaks in common with spectrum S, i.e, the number of peptides P such that Score
(P, Si) = t (Si stands for “i-prefix” s1 … si of the spectrum S). In the case S has a peak at position
i (si = 1), the variable x(i, t) can be computed as follows (|a| denotes the mass of an amino acid
a):

Otherwise (si = 0):

4Partition functions in statistical mechanics represent a special class of generating functions and we use them below only to illustrate
this notion in application to tandem mass spectra.
5This expression represents the exponential generating function [22] of the vector x = (x(0), x(1), …). Similarly to many applications of
generating functions outside physics, we follow Herbert Wilf's interpretation of generating functions (“a clothesline on which we hang
up a sequence of numbers” as defined in [23]) rather than using it as a model of a physical process. As some other applications of
generating functions in bioinformatics [41], we do not analyze the analytical behavior of the MS/MS generating functions in this paper.
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Below we provide an equivalent and more compact representation of these recurrencies:

We initialize x(0, 0) = 1, x(0, t) = 0 for t > 0, and assume that x(i, t) = 0 for negative i. The
maximum value SCORE of Score(P, S) among all possible peptides P is simply the maximum
value of t with non-zero x(k, t). See Figure 2.

The recurrence for computing the weighted generating function is very similar. In this case the
variable y(i, t) equals to the overall probability of peptides of mass i that have t peaks in common
with spectrum S. The variable y(i, t) is initialized in the same way as x(i, t)6 and is computed
using the following recurrence:

The above algorithm for computing the generating function has complexity O(|S|·|SCORE|
·Mult · PeptideLength · A), where A = 20 is the number of amino acids, PeptideLength is the
maximum length of a peptide with the mass equal to |S|, and Mult is the multiplication co-
efficient that was applied to all masses in the spectrum to satisfy the assumption that they are
integers (typically, Mult = 10 for ion-traps). In practice, it requires 0.1-0.2 seconds to compute
the generating function on a desktop machine with 2.16 Ghz Intel processor.

Computing the generating function for real spectra
MS-GF transforms tandem mass spectra into its integer-valued scored version s1 … sk (rather
than boolean spectra) using the probabilistic model similar to [30,32,40]. This transformation
takes into account peptide length, peak intensities, neutral losses, dependencies between ion
types, noise, etc. Most de novo and database search algorithms use such representation
(explicitly or implicitly) by assigning intensity-dependent scores to peaks, further adjusting
for imprecisions in mass-measurements, and applying dot-product for scoring spectra against
peptides. However, these scores are typically attached to the positions of peaks in the spectrum
s1 … sk and will not enable a computation of the generating function in the low-accuracy setting
with accuracy threshold δ. However, as long as we redefine the spectrum s1 … sk as 

with , the generating function (in case of imprecise mass measurements) can be
easily computed as described below.

The score Score(P, S) between a peptide P and a spectrum S (with the same parent mass) is
defined as the dot-product between the theoretical spectrum Spectrum(P ) and S (now S is
defined as an arbitrary integer-valued vector and Spectrum(P ) is defined to allow for both N-
terminal and C-terminal ions as in [27]). Let SCORE be the maximum value of Score(P, S) and
Energy(P, S) = SCORE − Score(P, S). Given a spectrum S, we define x(i, t) as the number of
peptides of mass i with score t, i.e, the number of peptides P such that Score(P, Si) = t. The
variable x(i, t) can be computed as in the case of boolean spectra.

6We initialize x(0, 0) = 1 since the “empty” peptide is the only peptide with mass 0 that has 0 peaks in common with the spectrum S. We
initialize y(0, 0) = 1 since the probability of the empty peptide is defined as 1.
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We emphasize that MS-GF can handle scored spectra generated by any MS/MS tool with
additive scoring functions. The scoring function chosen in this paper can be viewed as a
variation of Sherenga and PepNovo [30,42] with improved analysis of peak intensities and
doubly charged ions (the details are described in [28]). Some MS/MS analysis tools (e.g.,
SEQUEST or tools using sequence-specific peak intensities [43,44,45]) have non-additive
scoring components and thus cannot be modeled by this generating function framework.
However, MS-GF still can be used to re-score their results (Supplement 4 illustrates how such
additive re-scoring improves non-additive SEQUEST scoring).

Let  be a peptide identification algorithm that accepts a peptide P as an interpretation of a
spectrum S as long as the peptide-spectrum score Score(P, S) is larger or equal to the threshold
T. Given the allowed (integer) parent mass error ∊, the weighted generating function allows
one to compute the overall probability of peptides with scores equal to or larger than T (spectral
probability) as

For example, the spectral probability Prob60(S) = 2.76 · 10−10 represents the total probability
of all 306 peptides with scores larger or equal to the score of the correct peptide in Figure 1
(c). The probability that the algorithm  identifies the spectrum S in a random database of
size n is computed as 1 − (1 − ProbT(S))n. Since the parameter T is usually chosen in such a

way that ProbT(S) is much smaller than , one can assume that 1 − (1 − ProbT(S))n ≈
ProbT(S) · n. If a user attempts to identify peptides with a fixed F P R in a database of size n
(e.g., F P R = 0.01 is commonly used in MS/MS searches), then the parameter T is chosen in

such a way that . The corresponding value of T can be derived from the
generating function (see the last column in Figure 1(c)).

Results
Datasets

The Shewanella oneidensis MR-1 dataset used here (14.5 million spectra) and peptide
identifications based on this dataset are described in [46]. 28,377 unmodified peptides were
identified in this dataset by InsPecT with an error rate of 5% (1% spectrum-level error rate) as
measured using a decoy database [20].

Due to its large size, searching the entire Shewanella dataset with tools like SEQUEST is rather
time-consuming. To make it easier to benchmark our approach against other tools and to
summarize the results, we constructed two smaller datasets (geared to peptides of length 10)
that are used in this study. The Supplement 4 describes benchmarking for other peptide lengths
(the results are similar).

• Shewanella-1784: From 28,377 peptides identified in Shewanella oneidensis MR-1,
we selected all doubly-charged tryptic peptides of length 10. It resulted in 1745 and
39 peptides identified in the target and decoy databases (2.2% error rate). For each of
these 1745 + 39 = 1784 peptides, we retained one spectrum (chosen randomly if the
peptide is identified from multiple spectra) to construct the final dataset of 1784
spectra.

• Shewanella-50000: From all 14.5 million Shewanella spectra, we randomly selected
50,000 doubly-charged spectra with parent masses ranging from 1100 to 1200 Da
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(these spectra typically correspond to peptides of length ≈ 10 aa). Each spectrum in
this dataset was searched against all Shewanel la proteins (1.47 million of amino acids)
and against the randomized decoy database (of same size) with SEQUEST
(TurboSEQUEST v.27, rev. 12), InsPecT (20060907), and X!Tandem
(2007.01.01.2), as well as analyzed with MS-GF and PeptideProphet (v3.0).

Using generating functions to estimate the statistical significance of peptide identifications
We found that the error rates reported by existing database search tools do not provide accurate
estimates of the statistical significance of individual peptide identifications (they are often off
by an order of magnitude) while the error rates evaluated by MS-GF are very accurate (see
Supplements 1 and 2).

To evaluate whether MS-GF accurately estimates the number of hits in decoy database (thus
eliminating the need for the decoy database search) we conducted the following experiment.
For each spectrum in the Shewanella-50000 dataset, we generated top-scoring peptides whose
total probability sums up to the parameter SpectralProbability. A spectrum is considered
identified in a database if any of the generated reconstructions is present in the database. We
varied the value of SpectralP robability, and computed the number of spectra that were
identified in the Shewanella database and the decoy database of the same size. Table 1 shows
the distribution of these numbers, compares them against SpectralProbability · n · 50000 (the
expected number of matches in the database of size n) and shows that the number of matches
in the decoy database is very close to the expected number of matches computed by MS-GF.

Figures 3(a,b) show the distributions of InsPecT and X!Tandem scores for the peptides
identified in Shewanella-1784 dataset against the target and decoy database. Advanced peptide
identification tools are expected to have similar score distributions in target and decoy
databases (otherwise, the difference between the distributions can be used to better separate
the correct and false identifications). For InsPecT, the distributions in the target and decoy
databases are similar, with Kolmogorov-Smirnov (KS) distance of 0.28, indicating that
InsPecT scoring cannot further differentiate between the correct and the false identifications.
In case of X!Tandem E-value, there is some separation between the distributions in target and
decoy database, however the distributions still have a large overlap and it is unclear what
additional features can separate the correct and false identifications.

Figure 3(c) shows the distribution of Energy(P, S) for identifications from Shewanella-1784
dataset and demonstrates that spectral energy provides an excellent separation between the
correct and false identifications. In particular, Energy = 0 for a significant portion of correct
identifications (in these cases, the identified peptide also represents an optimal de novo
reconstruction). The false identifications, on the other hand, have no identifications with
Energy = 0. Moreover, the separation in Figure 3(c) indicates that the Energy is complementary
to many other parameters used for scoring spectra (recall that InsPecT scoring combines seven
parameters but still does not attain the separation power of Energy). Figure 4 further shows the
joint distribution of SCORE and Energy and provides an intuitive explanation why the
generating function approach improves the sensitivity/specificity ratio of existing MS/MS
search tools. Note that the target and decoy identifications are well separated in 2-D, with low
SCORE and Energy for the target database and high SCORE and Energy for the decoy database.

Let Score(P, S) be the match score of a peptide P and a spectrum S. We denote the spectral
probability ProbScore(P,S)(S) of the peptide-spectrum pair (P, S) as the sum of probabilities of
all peptides with match scores larger or equal to Score(P, S) (when compared to S). Figure 3
(d) shows the distribution of the spectral probability (as computed by MS-GF) for correct and
false peptide identifications. This parameter also provides excellent separation between the
correct and false identifications, with false identifications typically having much larger spectral
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probabilities ProbScore(P,S)(S). This is in agreement with Figure 3(c), further confirming that
most identifications on the decoy database, in spite of their high scores, actually represent poor
(sub-optimal) de novo solutions, and could be distinguished from correct solutions using MS-
GF.

Generating functions improve the sensitivity-specificity trade-off of MS/MS database
searches

Generating functions can be used to re-score the identifications obtained by various database
search tools and to improve the sensitivity-specificity trade-off. We illustrate this result using
Shewanella-50000 dataset searched against the target Shewanella database and the decoy
database using X!Tandem [47] (see Supplement 3 for similar analysis using SEQUEST and
PeptideProphet). The existing database search tools use two types of scores that we refer to as
raw and combined scores. Raw scores (used for scanning databases) are defined by a spectrum
and a peptide alone without any reference to the scores of other peptides encountered in the
database search. The database-dependent combined scores integrate raw scores with other
information like Δ-score of the second best peptide match (like in SEQUEST), or the
distribution of scores of all peptides in the database (like in X!Tandem). We emphasize that
the generating function (and the spectral probability) represents the raw score since it does not
use any additional information about other peptides in the database. Below we show that the
spectral probability improves on previously proposed raw scores and even outperforms the
combined scores of the existing database search tools.

For each spectrum in the Shewanella-50000 dataset, three different scores are used for
analyzing the peptide identifications and constructing ROC curves: (i) X!Tandem raw score
used for scanning the database, (ii) X!Tandem combined score (E-value) that integrates the
raw score with the distribution of the scores for all peptides in the database, and (iii) spectral
probability as reported by MS-GF for the X!Tandem identification. For each score, a varying
cutoff is used, and the number of spectra that have an identification with scores above the cutoff
in the Shewanella database and the corresponding error rate (ratio of the number of
identifications on a decoy database of the same size and the number of identifications in the
target database) are plotted in Figure 5(a).

The Supplementary Table 5 lists all identified spectra (in both target and decoy databases)
along with their X!Tandem and MS-GF scores. For example, the minimum X!Tandem E-value
is 3.8·10−14 for target database (Etarget) and 2.9·10−5 for decoy database (Edecoy). The
Supplementary table 5 illustrates that X!Tandem identifies 2689 spectra in the target database
with E-values below Edecoy (X!Tandem identifies these spectra with virtually zero FDR). MS-
GF simply rescores and ranks the same spectra using spectral probabilities instead of X!
Tandem E-values. For example, the highest scoring spectrum identified by X!Tandem is ranked
only as 234-th by MS-GF (peptide ADAVVIAAGGFAK), while the peptide ranked as 1-st by
MS-GF is only ranked as 3445-th by X!Tandem (peptide ALGGASGGFTSGK). The
Supplementary Table 5 reveals that the minimum spectral probability is 4.88 · 10−17 for target
database (SpectralProbabilitytarget) and 1.31·10−10 for decoy database
(SpectralProbabilitydecoy). There are 7887 spectra in the target database with spectral
probabilities below SpectralProbabilitydecoy (MS-GF identifies these spectra with virtually
zero FDR). It represent nearly three-fold increase compared to 2689 spectra identified by X!
Tandem with virtually zero FDR. There is a similar increase with respect to the number of
peptide identified with virtually zero FDR (1243 for MS-GF versus 493 for X!Tandem)

MS-GF results in significantly higher number of identifications in the Shewanella database for
a given error rate (number of identifications on the decoy database) when compared to the raw
X!Tandem scores. Similarly, it significantly improves on SEQUEST and PeptideProphet (see
Supplement 3). Figure 5(b) shows similar curves for the number of unique peptides instead of
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the number of spectra. For 5% error rate, X!Tandem raw/combined score identifies 1449/1613
peptides, while MS-GF identifies 1837 peptides. The advantage of MS-GF is particularly
pronounced for extremely accurate identifications. For example, for 0.3% error rate (very few
false identifications) MS-GF identified 1326 peptides while X!Tandem identified 943/1050
peptides with raw/combined scores. Such extremely accurate identifications are important for
a notoriously difficult problem of identifying proteins based on a single peptide hit (one-hit-
wonders). Indeed a single peptide hit with the error rate 0.3% may be more reliable than two
peptide hits with the error rate 3% each [48, 49, 50, 44]. The fact that MS-GF has better
sensitivity-specificity than even the combined X!Tandem score is surprising since MS-GF has
no access to the valuable information about other peptides in the database that is incorporated
into the combined X!Tandem score. We therefore argue that the spectral probability represents
a valuable addition to the various “raw” scores proposed for MS/MS searches so far.

We remark that the MS-GF+X!Tandem curve in Figure 5 was constructed using the
information about matches in the decoy database. The superior performance of MS-GF+X!
Tandem over X!Tandem raises a question whether a database search based on MS-GF (i.e.,
using SpectralProbability as a score) would be better off on its own (without using matches
identified by X!Tandem). In other words, we are interested in how a database search with MS-
GF scoring would fare in comparison with other database search tools. Figure 6 illustrates that
MS-GF alone (without using X!Tandem identifications) performs better than X!Tandem. For
each spectrum in the Shewanella-50000 dataset, we generated the top-scoring peptides whose
probabilities sum up to the parameter SpectralProbability. A spectrum is considered identified
in a database if any of the generated reconstructions is present in the database. We varied the
value of SpectralProbability, and computed the number of spectra that were identified in the
Shewanella database and the decoy database of the same size. This essentially mimics the
database search with the spectral probability as the scoring function computed by MS-GF.
Figure 6 provides a comparison between the number of identifications made by MS-GF and
X!Tandem. Despite the fact that X!Tandem combined score utilizes information that MS-GF
does not have access to, MS-GF outperforms X!Tandem. In addition, MS-GF, accurately
estimates the number of hits in decoy database thus eliminating the need for the decoy database
search altogether (see Supplement 2). This observation illustrates that computing scores over
all possible peptides is better than observing scores over the relatively small decoy database.

Interpreting the “one-hit-wonders” is a difficult problem that often amounts to manual
validations. The subjective nature of such inferences have resulted in the Proteomics
Publication Guidelines to virtually discard single-hit protein identifications. In a large scale
study, this inevitably results in the loss of large amounts of valuable information. For example,
there are 402 proteins with single peptide hits in Shewanella oneidensis MR-1 [46] as opposed
to 1992 proteins with multiple hits (over 20% of the expressed proteome).7 While we estimated
that nearly 75% of these “one-hit-wonders” are correct identifications (as discussed in [46,
51]), no means were available to objectively separate them from the false identifications. Below
we show how MS-GF (that provides a superior separation between correct and incorrect peptide
identifications for low error rates) can be used for reliable identification of the single-hit
proteins.

We computed SpectralProbability for the peptides identified in the decoy database in [46]8.
The lowest value of SpectralP robability among all these decoy identifications is 1.55 ×
10−8. Similarly, SpectralP robability was computed for the peptides from the single-hit proteins

7For typical bacterial MS/MS projects, the percentage of one-hit-wonders is closer to 30% (see [51]). The percentage is somewhat smaller
for the unusually large Shewanella dataset.
81417 peptides were identified in the decoy database as compared to 28,377 peptides identified in the Shewanella database as described
in [46]. From 1417 peptides we selected the Charge-2 and unmodified peptides for this analysis, giving 1065 peptides.
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and the spectral probability for 345 of them was lower than 1.55 × 10−8. These 345 peptides
represent better identifications than every identification in the decoy database, and the
corresponding proteins must be considered reliably identified with virtually zero empirical
error rate.9 We further remark that many single-hit-wonders with SpectralP robability below
1.55 × 10−8 are actually more statistically significant than some proteins with multiple peptide
hits but larger SpectralP robability values (see [48,49,50,44] for combining peptide
significance scores into protein significance scores).

Discussion
While the previous approaches to evaluating the statistical significance of spectral
identifications greatly improved the state of the art in peptide identification, they have not yet
eliminated the decoy databases and empirical approximations from MS/MS searches.
PeptideProphet [5] combines multiple scores into a single discriminant score, and fits its
observed distribution to a mixture model comprising of a gaussian distribution for correct
identifications and a gamma distribution for incorrect identifications. Sadygov and Yates, 2003
[6] argue that the frequencies of matches between fragment ions predicted from a random
peptide and an experimental spectrum follow a hypergeometric distribution that is used to
compute the probability that a peptide identification is correct. On the other hand, OMSSA
tools [7] consider the same to be a Poisson distribution and accordingly compute the statistical
significance of peptide identifications. These studies were taken further by Wan et al., 2006
[52] who realized the importance of generating some random peptides for estimating the
statistical significance of the individual spectra (see also [53]) but stopped short of proposing
a technique for analyzing all peptides. In an earlier work, Bafna and Edwards, 2003 [33]
proposed an algorithm for generating suboptimal de novo reconstructions and suggested to use
their score distribution for validating the optimal de novo reconstruction.

While the approaches [5,6,7,16] are very valuable, neither of them rigorously solves the
Spectral Matching Problem for individual spectra: instead they compute the error rates based
on approximate fitting the empirical distributions to a standard distribution that may not
carefully reflect the specifics of an individual spectrum. Moreover, they assume the same null
hypothesis for all spectra in the sample, the assumption that may not be adequate for mass
spectrometry searches. Our approach does not assume any “null hypothesis” or “noise model”
for spectra generation as in [16]. Also, it does not assume any particular approximation for the
tail of the score distribution. Instead, it rigorously solves the Spectrum Matching Problem, the
same problem the existing approaches attempt to solve via decoy databases and various
approximations.

MS-GF allows one to accurately estimate the statistical significance of individual spectral
interpretations. As described above, MS-GF can be used either to complement the decoy
searches or on its own. The former case illustrates the synergy between the decoy database and
the generating function approaches in cases when the generating function framework can only
be applied to the results of the decoy database searches10. The generating function approach
can be further used to generate a list of all peptides whose score exceeds a threshold and match
these peptides in the protein database, thus enabling a hybrid approach to peptide identification
[54,55,28].

9See [28] for detection of sequencing errors and programmed frameshifts using a similar approach.
10This is particularly relevant for estimating the error rates of protein identifications, re-scoring of complex non-additive scoring
functions, or projects that can tolerate higher error rates (MS-GF in the database search mode becomes rather slow when high error rates
are acceptable)
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While the generating function described here evaluates the statistical significance over the set
of all unmodified peptides, it can be extended to analyze modified peptides in both restricted
and blind [56,57,25] modes. The former case amounts to adding “modification edges” of fixed
length while the latter case amounts to adding modification edges of arbitrary length to the
amino acid graph. The dynamic programming in the resulting graph should take into account
the maximum allowed number of modifications per peptide.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Illustration of the generating function
(a) A spectrum S of peptide GAIDKAEEIR (top 43 peaks after removal of low-intensity peaks).
(b) The number of peptides (E(S, X)) that explain X b/y peaks in this spectrum. For example,
there are 360 peptides with 13 b/y ions explained (E(S, 16) = 360), 12940 peptides with 12 b/
y ions explained, and so on. The score of the top-scoring database peptide GAIDKAEEIR is
11, the optimal score among all possible peptides is 13 (such as for the peptide QP
MGAEAELR), thus Energy-score is 2. The second top-scoring peptide in the database
(DQELLSEIR) has score 5, therefore Δ-score is 6. For simplicity, a peak that explains both a
b-ion and a y-ion in a particular peptide is counted as explaining two b and y peaks. (c) The
(uniformly weighted) generating function of the same spectrum. The table shows the number
of peptides with score X, the overall probability of peptides with score X and the total probability
of all peptides with scores equal to or larger than X (spectral probability). The peptides
QIDKAEEIR and QIDGAAEEIR represent better spectral interpretations (score 64) than the
correct peptide GAIDKAEEIR identified by InsPecT (score 60) resulting in Energy-score 4.
There are 24 optimal de novo reconstructions that are all derived from QIDKAEEIR and
QIDGAAEEIR via I/L and Q/K substitutions (16 for QIDKAEEIR and 8 for QIDGAAEEIR).
The total probability of these 24 peptides is 16 · 20−9 + 8 · 20−10 = 3.20 · 10−11. The second
best peptide in the database (IRSIESQLR) has score 27, therefore Δ-score is 33.
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Figure 2. Illustration of the dynamic programming algorithm for computing the generating
function
The MS-GF dynamic programming algorithm is illustrated with the help of a simplified amino
acid model (only two amino acids A and B with masses 2 and 3 Daltons respectively) and a
simplified discretized spectrum (only 4 peaks at 2,3, 5, and 7 Da). The scoring function used
for this illustration is the number of matching prefix ions. The spectrum is converted into its
boolean representation 011010100 with 1s at positions 2,3,5, and 7 (extra zero in the beginning
is added to represent the variable x(0, t)). The vertical axis in the dynamic programming table
represents scores (t). The value in each cell of the matrix represents the number of peptide
reconstructions that explain the initial part of the spectrum till that position with the
corresponding score. The first cell in the matrix (0,0) is initialized with 1, and the matrix is
filled progressively from left to right and top to bottom. The value of each cell is computed as
the sum of the values of previously filled cells which are 2 (green arrow) or 3 (orange arrows)
columns before the cell under consideration. If there is a peak at the current position of the
spectrum, sum is taken over the cells in the previous row, otherwise in the same row. In this
example, the maximum achievable score (t) is 3, which can be obtained by two peptide
reconstructions. The sequences of these reconstructions can be obtained by backtracking, as
indicated by the arrows, and are found to be ABAA and BAAA. We also see that there are 2
reconstructions with score 1 and 1 reconstruction with a score of 2.
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Figure 3. Separation between correct and incorrect identifications
Distribution of (a) InsPecT MQScore and (b) X!Tandem E-Value, for the peptides identified
in Shewanella-1784 dataset against Shewanella and decoy databases. X-axes show the database
search scores, and Y-axes show the fraction of identifications with that score. The Kolmogorov-
Smirnov (KS) distance between the two distributions is 0.28 for InsPecT scores and 0.58 for
X!Tandem scores. (c) Distribution of Energy(P, S) for the same dataset (the KS distance is
0.77). (d) Distribution of −log10(SpectralP robability) (the KS distance is 0.78). Spectral P
robability of the pair (P, S) is defined as the sum of probabilities of all peptides whose score
is larger or equal to the score Score(P, S) of the match between peptide P and spectrum S.
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Figure 4. Joint distribution of SCORE and Energy
The distribution is plotted for the identifications in the Shewanella-1784 dataset, for the
peptides identified in the Shewanella database and the decoy database. The blue dots (decoy
database) are laid over the red dots (Shewanella database), so that all decoy database
identifications are visible.
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Figure 5. Sensitivity-specificity trade-offs
(a) Comparison of MS-GF with X!Tandem. The number of spectra identified in the
Shewanella database and the corresponding error rate. Three scores are compared (from top to
bottom): (i) MS-GF+X!Tandem: FPR as reported by MS-GF for the X!Tandem identifications,
(ii) X!Tandem combined score: X!Tandem E-value that uses the raw score as well as the
distribution of scores of all peptides for the given spectrum and (iii) X!Tandem raw score: X!
Tandem hypergeometric score. (b) Similar to (a), but counting the number of unique peptides
identified in the Shewanella and the decoy database instead of the number of identified spectra.
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Figure 6. Performance of MS-GF vs. X!Tandem
The plots show the number of spectra identified in the Shewanella database and the
corresponding error rate. (a) The spectral identifications in the Shewanella and decoy databases
are divided into three groups, depending on whether the peptide endpoints are consistent with
trypsin cleavage specificity: tryptic (both endpoints consistent), semi-tryptic (only one
endpoint consistent) and non-tryptic (both endpoint inconsistent). The partition into these three
groups illustrates MS-GF generates more tryptic peptides than the total number of peptides
generated by X!Tandem.(b) Same as (a), but based on the number of unique peptides identified
in each database (instead of the number of spectra). As expected, the number of peptides with
both non-tryptic endpoints is very small.
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Table 1
Number of spectra in Shewanella-50000 dataset that are identified in the Shewanella database (Column 2) and the
decoy database (Column 3) by top peptide reconstructions with probability SpectralProbability. Column 4 provides
the expected number of spectra that will match the decoy database given SpectralProbability, as computed by MS-GF
without actually doing the search.

SpectralProbability # Correct IDs
(in target DB)

# False IDs
(in decoy DB)

# False IDs
(predicted by MS-GF)

2e-9 8314 161 146

1e-9 7721 76 75

8e-10 7525 60 59

6e-10 7272 44 44

5e-10 7115 34 37

4e-10 6937 28 29

2e-10 6333 15 15

1e-10 5755 6 7

1e-11 3820 0 0.7
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