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SYMPOS IUM REPORT

Activity-dependent development of inhibitory synapses
and innervation pattern: role of GABA signalling
and beyond

Z. Josh Huang

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

GABA-mediated synaptic inhibition is crucial in neural circuit operations. The development
of GABAergic inhibitory synapses and innervation pattern in mammalian neocortex is a
prolonged process, extending well into the postnatal period, and is regulated by neural activity
and experience. Accumulating evidence supports the hypothesis that GABA signalling acts
beyond synaptic transmission and regulates inhibitory synapse development; in other words,
similar to glutamate signalling at developing excitatory synapses, GABA may coordinate
pre- and post-synaptic maturation at inhibitory synapses. These findings raise numerous
questions regarding the underlying mechanisms, including the role of GABA receptors and their
link to synaptic adhesion molecules. Since synapse formation is a crucial component of axon
growth, GABA signalling may also shape the axon arbor and innervation pattern of inhibitory
neurons. A mechanism unique to GABAergic neurons is activity-dependent GABA synthesis,
largely mediated through activity-regulated transcription of the rate-limiting enzyme GAD67.
Such cell-wide as well as synaptic regulation of GABA signalling may constitute a mechanism
by which input levels and patterns onto GABAergic neurons shape their innervation pattern
during circuit development.
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In many areas of the mammalian brain, such as the
neocortex, neural circuits rely on inhibition mediated
by γ-aminobutyric acid (GABA) from diverse cell types
to control the spatiotemporal patterns of electrical
signalling (Markram et al. 2004). The inhibitory output of
GABAergic neurons is distributed in the network through
their axons and synapses, which constitute elaborate
and cell-type-specific innervation patterns (Huang et al.
2007). A prominent feature of GABAergic axon arbors in
neocortex is their local exuberance: a single interneuron
often produces extensive local arbors that innervate
hundreds of neurons in its vicinity and form multiple
clustered synapses onto each target neuron (Tamas et al.
1997; Wang et al. 2002). Such an innervation pattern
probably contributes to their efficient control over the
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activity patterns in local cell populations. For example, a
single parvalbumin-containing (PV) basket interneuron
innervates hundreds of pyramidal neurons at the soma
and proximal dendrites, and controls the output and
synchrony of pyramidal neurons (Fig. 1; Cobb et al. 1995;
Miles et al. 1996; Tamas et al. 1997). Furthermore, PV
basket cells form extensive mutual innervation (Tamas
et al. 2000) and, together with their unique physiological
properties, contribute to the generation of coherent
network oscillations that might organize functional neural
ensembles (Bartos et al. 2007).

The development of a mature GABAergic innervation
pattern is often a prolonged process, extending well
into the postnatal period. In the dentate gyrus of
hippocampus, basket cell axon arbors undergo marked
maturation between the first and fourth week, and
increased connectivity among basket cells contributes
to the enhanced coherence of gamma oscillation in
local networks (Doischer et al. 2008). In primary visual
cortex, the maturation of perisomatic inhibition by basket
interneurons proceeds into the fifth postnatal week and
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may contribute to the regulation of the critical period
of plasticity (Huang et al. 1999; Morales et al. 2002).
Importantly, the maturation of inhibitory innervation
in visual and somatosensory cortex is regulated by
sensory experience (Morales et al. 2002; Chattopadhyaya
et al. 2004; Jiao et al. 2006). Such activity-dependent
development of inhibitory synapses and innervation
pattern is a major component of neural circuit assembly,
yet the underlying cellular and molecular mechanisms are
poorly understood.

GABA signalling regulates inhibitory synapse
development

As key mediators of neural activity, neurotransmitters are
particularly well suited to couple synaptic signalling with

Figure 1. Perisomatic innervation pattern of the neocortical basket interneurons
A, highly exuberant axonal arborization of a neocortical basket interneuron (blue) and one of its many postsynaptic
pyramidal cells (red). Although the basket axon overlaps with a large part of the pyramidal basal dendritic tree, all 15
electron microscopically verified synaptic junctions (bottom panel, right) are clustered around the soma or the most
proximal dendrites (bottom panel, left) (adapted from Tamas et al. 1997). B, reconstructions of the two PV basket
cells connected by both chemical and electrical synapses (presynaptic cell: soma and dendrites, red; axon, green;
postsynaptic cell: soma, dendrites, black; axon blue). Cortical layers (I−V) are indicated on the left. The electron
microscopically identified synaptic junctions (1 − 4) and gap junctions (5, 6) mediating the interaction between the
coupled cells were found nearby on the soma and a proximal dendrite (inset) (adapted from Tamas et al. 2000).
C, a schematic showing prominent features of the innervation pattern of cortical basket interneurons. A single
basket cell axon (green) innervating the many pyramidal neurons (pink) in its vicinity with clusters of perisomatic
synapses (green dots). Basket cells also innervate other basket cells via chemical and electrical (zigzaged lines)
synapses. Grey triangles represent pyramidal neurons that are not innervated by these basket cells.

synaptic wiring (Zhang & Poo, 2001; Hua & Smith, 2004).
Glutamate, the major excitatory transmitter in vertebrate
brain, has been implicated in regulating many aspects
of synapse formation, maturation and plasticity (Zheng
et al. 1994; Shi et al. 1999; Carroll et al. 1999; Wong
& Wong, 2001; Bonhoeffer & Yuste, 2002; Malinow &
Malenka, 2002; Tashiro et al. 2003). In addition, through
regulating synaptogenesis, glutamate receptor signalling
contributes to activity-dependent development of axonal
and dendritic arbors (Ruthazer et al. 2003; Hua & Smith,
2004; Hua et al. 2005; Cline & Haas, 2008).

Initially discovered as an inhibitory transmitter, GABA
has since been implicated in multiple processes of neural
development, from cell proliferation to circuit formation
(Owens & Kriegstein, 2002). The trophic effects of GABA
on neuronal migration and neurite growth during the
embryonic and perinatal period are largely explained by

C© 2009 The Author. Journal compilation C© 2009 The Physiological Society



J Physiol 587.9 Development of inhibitory synapses and circuits 1883

its depolarizing action in immature neurons, resulting
from chloride ion efflux through the GABAA receptor,
which triggers calcium influx and signalling (Ben-Ari
et al. 1989; Leinekugel et al. 1995). During the post-
natal period, the up-regulation of the chloride transporter
KCC2 in neurons results in increased extrusion of intra-
cellular chloride (Rivera et al. 1999), and GABA assumes
its classic role as an inhibitory transmitter (Ben-Ari et al.
2007).

Recently, several studies converge and suggest that, in
addition to mediating synaptic inhibition in more mature
circuits, GABA signalling promotes and coordinates pre-
and post- synaptic maturation during activity-dependent
development of inhibitory synapses and innervation
(Fig. 2). A main line of evidence came from studying the
effects of altering GABA synthesis on the development
of perisomatic synapses from PV basket interneurons
in the visual cortex. The maturation of many features
of basket cell axon arbors and perisomatic synapses
can be recapitulated in cortical organotypic cultures (Di
Cristo et al. 2004) and is strongly regulated by neuronal
activity (Klostermann & Wahle, 1999; Chattopadhyaya

Figure 2. GAD67 and GABA act beyond inhibitory transmission and regulate inhibitory synapse
development and innervation patterns
A, GABA signalling may regulate the morphogenesis of inhibitory synapses. B, since synapse formation is an integral
part of axon growth and branching, activity-dependent GABA signalling may further influence the development
of GABAergic axon arbor and innervation pattern. C, a hypothetical model depicting how GABA–GABA receptor
signalling and neuroligin–neurexin adhesion may interact and co-operate to regulate the development of inhibitory
synapses. Pentameric GABAARs are assembled in the endoplasmic reticulum. Most GABAARs are first delivered
to extrasynaptic locations, they then either diffuse to and become trapped at postsynaptic sites or undergo
endocytosis. NL2 and synaptic GABAARs stabilize each other, either through intracellular reciprocal interactions
aided by scaffolding proteins such as gephyrin or through extracellular cis interaction. In addition, GABA activation
of GABAARs might further stabilize synaptic GABAARs through structural changes or signalling mechanisms. Such
activity- and GABA-mediated stabilization of GABAAR might further increase the levels of NL2 at cell–cell contacts
and, in turn, stabilize presynaptic terminals through trans-synaptic interactions with neurexins.

et al. 2004). Genetic knockdown of GABA synthesis
implicates GABA signalling itself in the development of
perisomatic synapses (Chattopadhyaya et al. 2007). GABA
is synthesized by two glutamate decarboxylases, GAD67
and GAD65 (Soghomonian & Martin, 1998). Of these
two enzymes, GAD67 is the rate-limiting enzyme and
influences cellular GABA contents in a dosage-dependent
manner (Asada et al. 1997; Ji et al. 1999). Knockdown
of GAD67 in single GABAergic interneurons, which
should have minimum impact on circuit activity levels,
results in profound cell autonomous deficits in synapse
formation, axon branching and innervation field in
cortical organotypic cultures; such deficits were partially
rescued by blocking GABA re-uptake or enhancing
GABAA or GABAB receptor function (Chattopadhyaya
et al. 2007). Similar deficits were found in visual cortex
of Gad67 germline heterozygotes, which show ∼40%
reduction of GABA levels (Chattopadhyaya et al. 2007).
Conversely, overexpression of Gad67 in single basket
interneurons promotes the maturation of perisomatic
synapses (Chattopadhyaya et al. 2007). These results
demonstrate that GABA acts beyond inhibitory
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transmission in juvenile and adolescent brain, and
regulates the maturation of inhibitory synapses and
innervation patterns (Fig. 2), thus revealing a new facet
of GABA function distinct from its early tropic action in
neonatal brain.

Structural role of GABAA receptors: coupling
transmission to synapse maturation
and stability

Another line of evidence supporting a role of GABA
on the development of inhibitory synapses came from
studying the effects of manipulating GABAA receptor
(GABAAR) subunits. GABAARs are heteropentameric
chloride channels composed of several classes of subunits
(Michels & Moss, 2007). Although over 19 subunits have
been identified, giving rise to a large number of possible
subunit combinations, the vast majority of GABAARs
consist of α, β and γ2 subunits in a 2 : 2 : 1 stoichiometry.
In the mature brain, GABAARs are primarily localized
at postsynaptic and extrasynaptic membranes where they
mediate phasic and tonic inhibition, respectively.

The γ2 subunit is essential for accumulation of
cell surface GABAARs at postsynaptic sites (Essrich
et al. 1998; Schweizer et al. 2003). Acute suppression
of γ2 expression in cultured hippocampal neurons
not only disrupts GABAAR clustering but also results
in a profound reduction of GABAergic innervation
of γ2-deficient neurons (Li et al. 2005; Fang et al.
2006). Moreover, when palmitoylation of the γ2
subunit was suppressed by knockdown of the
Asp-His-His-Cys (DHHC) family palmitoyltransferase
GODZ, trafficking of GABARs to postsynaptic sites
was perturbed and GABAergic innervation was reduced
(Fang et al. 2006). As both presynaptic GABA and
postsynaptic GABAA receptors influence GABAergic
synapse development, a simple hypothesis is that
activity-dependent GABA signalling promotes the
differentiation of pre- and post-synaptic sites, and
coordinates the maturation and stabilization of inhibitory
synapses.

Further evidence regarding the role of GABAARs in
synapse formation came from studies of Purkinje neurons
in the cerebellum. Purkinje cells are themselves GABAergic
neurons but also receive two types of GABAergic inputs:
the axo-somatic synapses from basket interneurons and
the axo-dendritic synapses from stellate interneurons,
both with GABAARs containing the α1 subunit. Deletion
of the α1 subunit gene results in a complete loss
of functional GABAARs in Purkinje cells by postnatal
day 18 (Fritschy et al. 2006). In these α1−/− mice,
GABAergic terminals from stellate axons are initially
formed normally onto the Purkinje dendritic shaft.
However, starting from postnatal day 11, synaptogenesis

is significantly reduced and perturbed (Fritschy et al.
2006; Patrizi et al. 2008). Instead, stellate cell terminals
form aberrant and mismatched contacts with post-
synaptic specialization on the spines of Purkinje dendrites.
These results suggest that initial steps of GABAergic
synapse formation can proceed in the absence of α1, but
GABAA receptors appear crucial for activity-dependent
regulation of synapse density, possibly through promoting
the stabilization of transient axodendritic contact into
mature synapses. The mechanism linking GABA signalling
to synapse maturation are still unclear. Activation of
GABAARs may result in the local release of trophic factors
which promote inhibitory synapse maturation, and/or act
as protective signals that prevent synapses elimination.
The failure to stabilize presynaptic terminals after post-
synaptic loss of GABAARs suggests the presence of a
retrograde signal that is regulated by synaptic activity
or by association with postsynaptic GABAARs. Amongst
the molecular mechanisms that may contribute to such
an activity-regulated trans-synaptic signal, the neuroligin
and neurexin complex represents one of the plausible
candidates.

From GABAA receptors to synaptic adhesion
and activity-dependent retrograde
signalling

Neuroligins and neurexins are heterophilic synaptic
adhesion molecules broadly expressed in the central
nervous system (Brose, 1999; Sudhof, 2008). Cell
biological studies have revealed potent ‘synaptogenic’ or
synapse-organizing activities for these proteins (recently
reviewed in (Levinson & El-Husseini, 2005; Craig &
Kang, 2007). Postsynaptic neuroligins promote assembly
of functional presynaptic specializations in axons,
while presynaptic neurexins – through interaction with
neuroligins – recruit postsynaptic scaffolding proteins and
transmitter receptors in dendrites.

While neuroligin–neurexin complexes are common
building blocks of glutamatergic and GABAergic synapses,
analysis of mutant mice so far support their particularly
critical roles in the organization of GABAergic synapses.
Triple knockout mice lacking the three alpha-neurexin
transcripts, although they die at birth, show a 50%
reduction in the density of GABAergic synapses in the
brainstem (Missler et al. 2003). In double knockout
mice, some of which reach adulthood, GABAergic
synapse density is reduced by 30% whereas glutamatergic
synapse density is apparently unchanged (Dudanova et al.
2007). As for neuroligins, mice lacking the three major
isoforms (NL1, 2 and 3), also perinatal lethal, show only
a relatively small (15–20%) reduction in the number of
synapses in the brainstem, but a severe loss of GABAARs
and the scaffolding protein gephyrin from postsynaptic
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sites (Varoqueaux et al. 2006). Among the different
isoforms, NL2 is exclusively localized to GABAergic
synapses. NL2−/− mice display a selective decrease in
the number of inhibitory synapses in the postnatal
neocortex (Chubykin et al. 2007). In addition, layer 2/3
neurons in acute cortical slices from NL2−/− mice show a
selective impairment of GABAergic transmission whereas
glutamatergic transmission is normal. Overexpression
of NL2 in cultured neurons increases the density
GABAergic terminals (Chih et al. 2005) and the amplitude
of inhibitory postsynaptic currents (Chubykin et al.
2007). Notably, this overexpression-induced increase in
GABAergic transmission is blocked by pharmacologically
reducing network activity in the culture. Therefore,
neuronal and synaptic activity might either regulate the
presynaptic response to NL2 or postsynaptic stabilization
induced by NL2.

As both neuroligins and GABAA receptors play
important roles in the maturation of postsynaptic
specializations and the differentiation and stabilization
of presynaptic terminals at inhibitory synapses, an
obvious question is: how do GABA/GABAAR-mediated
synaptic signalling and neuroligin/neurexin-mediated
synaptic adhesion interact and cooperate to regulate
activity-dependent development of inhibitory synapse?
It is currently unknown at what stage of their
biosynthetic pathway GABAARs first interact with NLs,
and how such interactions might be regulated. One
possibility is that NL2 and synaptic GABAARs would
stabilize each other, either through intracellular reciprocal
interactions aided by scaffolding proteins such as

Figure 3.
A scheme showing that the level and pattern of neuronal activity may regulate inhibitory synaptic morphogenesis
and innervation patterns through GAD67-mediated GABA synthesis and signalling.

gephyrin or through extracellular cis interactions (Fig. 2).
In addition, GABA activation of GABAARs might
further stabilize GABAARs at synapses through as
yet unknown structural or signalling mechanisms.
Such activity- and GABA-mediated stabilization of
GABAARs might further increase the levels of NL2
at postsynaptic sites; this, in turn, would stabilize the
presynaptic terminals through trans-synaptic interactions
with neurexins. Evidence consistent with this model
include: (1) in vitro studies demonstrated a co-aggregation
of NL2 and the GABAARα2 subunit in heterologous cells
(Dong et al. 2007); (2) the residence time of GABAARs
on the plasma membrane and their targeting to synapses
is regulated by synaptic activity (Saliba et al. 2007); (3)
pharmacological blockade of neuronal activity in cultured
neurons diminishes the synaptogenic activity of NL2
(Chubykin et al. 2007); (4) reduced GABA synthesis
and release result in a reduction of inhibitory synapses
(Chattopadhyaya et al. 2007). Moreover, there is precedent
for such mechanisms in activity-dependent recruitment
of glutamate receptor and trans-synaptic signalling at
glutamatergic synapses. Local spontaneous activity and
glutamate release reduce diffusion exchange of GluR1
between synaptic and extrasynaptic domains, resulting in
postsynaptic accumulation of GluR1 (Ehlers et al. 2007).
In addition, PSD-95 and NL1 retrogradely modulate
presynaptic release probability and may coordinate post-
and pre-synaptic morphological changes (Ehrlich et al.
2007; Futai et al. 2007). It remains to be seen whether
analogous mechanisms for GABA and NL2 signalling exist
at inhibitory synapses.
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In an alternative model, the expression and/or
localization of NL2 might be regulated by GABA
signalling, either through regulating NL2 protein levels
or NL2-interacting proteins involved in its synaptic
localization. It is also possible that GABA binding to
GABAARs might modulate their coupling to NL2, thereby
increasing the potency and affinity of NL2 towards
neurexin in the presynaptic terminals.

Activity-regulated Gad67 transcription as a cell-wide
mechanism for modulating GABA signalling
and innervation pattern

A mechanism unique to GABAergic neurons is
activity-dependent GABA synthesis. Unlike glutamate,
which is both the precursor and product of many essential
metabolic and signalling processes in the cell, GABA can
only be synthesized by two glutamate decarboxylases, and
the main function of GABA is intercellular signalling
(Soghomonian & Martin, 1998). In most brain regions,
GAD67 activity is rate-limiting for GABA synthesis
(Asada et al. 1996; Kash et al. 1997). Since GAD67 is
produced at a limiting level in the brain (Asada et al.
1997), alterations in GAD67 levels influence cellular and
vesicular GABA content (Murphy et al. 1998; Engel
et al. 2001). Unlike GAD65, which is relatively stable,
GAD67 protein has a rather quick turn-over rate, with
a half-life of several hours (Christgau et al. 1991; Pinal
& Tobin, 1998). The major step in the physiological
regulation of GAD67 activity is Gad1 transcription, which
is dynamically regulated during development (Kiser et al.
1998), by neural activity (Patz et al. 2003; Kinney et al.
2006) and experience (Benson et al. 1989; Benevento
et al. 1995; Liang et al. 1996; Gierdalski et al. 2001;
Kobori & Dash, 2006). Therefore, activity-dependent
transcription may result in adjustment of GAD67
levels and the intracellular GABA pool for release.
As alterations in GAD67 and GABA levels profoundly
influence interneuron axon growth and synapse
formation during the development of inhibitory circuits,
neuronal activity might shape the pattern of inhibitory
synaptic innervation through GAD67-mediated GABA
synthesis (Fig. 3). Such activity-dependent and cell-wide
regulation of a ‘transmitter resource’ implies a novel
logic for the maturation of inhibitory synapses and
innervation pattern. This hypothesis needs to be tested by
disrupting the activity regulation of GAD67 transcription
in GABAergic neurons and examining the impact on
inhibitory synapse development.

More questions than answers

The converging findings that GABA and GABA receptor
signalling regulate inhibitory synapse development

raise numerous questions regarding the underlying
mechanisms and their functional implications. The many
steps from GABA signalling to receptor trafficking/
stability and neuroligin–neurexin function remain to
be defined. In addition, it is unknown whether and
how postsynaptic activity in pyramidal neuron might
influence the action of GABA signalling on inhibitory
synapse development. Furthermore, because cortical
GABAergic neurons not only innervate pyramidal
neurons but also other GABAergic neurons, an obvious
question is whether and how GABA signalling might
regulate the development of inhibitory synapses onto
inhibitory neurons. Addressing such questions will require
methods to visualize inhibitory synapses onto inhibitory
neurons. Finally, although activity regulation of GAD67
transcription has been well demonstrated in numerous
developmental and plasticity paradigms, its impact on
GABA signalling and inhibitory synapse development and
plasticity remains to be established in vivo. Compared with
our understanding of the role of glutamate in excitatory
synapse development, we are only beginning to scratch
the surface of the role of GABA in the development
of inhibitory synapses. Progress in this area will not
only enhance our understanding of activity-dependent
development of inhibitory synapses, axon arbors and
innervation patterns, but also might have implications
in the construction of cortical subnetworks, such as
reciprocally connected groups of excitatory and inhibitory
neurons (Yoshimura & Callaway, 2005).
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