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Evolution of signalling systems with multiple
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Sender–receiver games are simple, tractable models of information transmission. They provide a
basic setting for the study the evolution of meaning. It is possible to investigate not only the
equilibrium structure of these games but also the dynamics of evolution and learning—with
sometimes surprising results. Generalizations of the usual binary game to interactions with multiple
senders, multiple receivers or both provide the elements of signalling networks. These can be seen as
the loci of information processing, group decisions, and teamwork.
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1. INTRODUCTION
To coordinate action, information must be transmitted,
processed and used to make decisions. Transmission of
information requires the existence of a signalling system
in which the signals that are exchanged are coordinated
with the appropriate content. Signalling systems in
nature range from quorum signalling in bacteria
(Schauder & Bassler 2001; Taga & Bassler 2003; Kaiser
2004), through the dance of the bees (Dyer & Seeley
1991), birdcalls (Hailman et al. 1985; Gyger et al.
1987; Evans et al. 1994; Charrier & Sturdy 2005) and
alarm calls in many species (Cheney & Seyfarth 1990;
Seyfarth & Cheney 1990; Green & Maegner 1998;
Manser et al. 2002), to human language.

Information processing includes filtering—that is
discarding irrelevant information and passing along
what is important—and integration of multiple pieces of
information. Filtering systems are ubiquitous. Quorum-
sensing bacteria disregard low levels of signalling
molecules, and only respond to concentrations appro-
priate to action. The black-capped chickadee Poecile,
(Poecile atricapilla) disregards calls that lack the syntactic
structure that identifies a chickadee origin. Every sensory
processing system of a multicelled organism decides what
information to discard and what to transmit. Integration
includes computation, logical inference and voting.
Although we usually think of these operations in terms
of conscious human thought, they can also be performed
unconsciously by simple signalling networks. Finally,
information must be used to make decisions. These
decisions may have fitness consequences for the whole
group, down to the level of quorum sensing in bacteria
and up to alarm calls and signals indicating location and
quality of food sources.

From an evolutionary perspective, these three aspects
of coordination are best addressed simultaneously.
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They may sometimes be separable in human affairs,
but elsewhere in nature it is more typical that they have
coevolved. It is possible to construct simplified models
that capture essential aspects of these issues as
evolutionary games.

These models may also be viewed as modules that,
once evolved, may be put together to form more
complex interactions. Evolutionary games may be
studied from a both a static and dynamic point of
view. Static analysis of equilibria reveals a lot about the
structure of the interaction, and it can be carried out at
a level of generality that does not commit one to a
particular dynamics. But dynamic analysis sometimes
reveals complexities that are not immediately apparent
from the study of equilibria. Dynamic analyses may be
mathematically challenging. Computer simulations are
always available as a tool, but in these simple game-
theoretic models, analytic methods are also applicable.

We start with dyadic sender–receiver games—one
sender and one receiver—and then generalize the
model to multiple senders and receivers. It can be
shown that surprisingly sophisticated behaviour can
emerge from the dynamics of evolution. A full analysis,
however, is non-trivial in even the simplest dyadic
signalling games, and much remains to be done.
2. CLASSIC TWO-AGENT SENDER–RECEIVER
GAMES: EQUILIBRIUM CONSIDERATIONS
In the basic model (Lewis 1969), there are two players:
the sender and the receiver. Nature chooses a state with
some probability (each state having non-zero prob-
ability of being chosen) and the sender observes the
state. The sender then sends a signal to the receiver,
who cannot observe the state directly but does observe
the signal. The receiver then chooses an act, the
outcome of which affects them both, with the pay-off
depending on the state. We assume at the onset that the
numbers of states, signals and acts are equal. Where
this number is N, we refer to this as an N!N!N game.

There is pure common interest between sender and
receiver—they get the same pay-off. There is exactly
This journal is q 2008 The Royal Society
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one ‘correct’ act for each state. In the correct act–state
combination, they both get a pay-off of 1, otherwise
pay-off is 0. We number the states and acts, so that in a
play of the game, hstate, signal, actiZhsi , mj, aki, the pay-
off is 1 if iZk, 0 otherwise.

A sender’s strategy consists of a function from states
to signals and a receiver’s from signals to acts. Expected
pay-offs are determined by the probability with which
nature chooses states and the population proportions
of sender’s and receiver’s strategies. For the purposes of
evolution, individual senders and receivers are assumed
to have deterministic strategies.

Signals are not endowed with any intrinsic meaning.
If they are to acquire meaning, the players must
somehow find their way to an equilibrium where
information is transmitted. When transmission is
perfect, so that the act always matches the state and
the pay-off is optimal, Lewis calls the equilibrium a
signalling system. For instance, in a 3!3!3 game, the
following combination of strategies is a Lewis signalling
system equilibrium:

sender receiver

state 10signal 3 signal 30act 1

state 20signal 2 signal 20act 2

state 30signal 1 signal 10act 3

;

as is any combination of strategies that can be gotten
from this one by permutation of signals. The ‘meaning’
of the signals is thus purely conventional, depending on
the equilibrium into which the agents have settled.

There are also other equilibria in the signalling
games. There are pooling equilibria, in which the sender
ignores the state and the receiver ignores the signal. For
example, suppose that state 3 is the most probable.
Then, the following is a pooling equilibrium:

sender receiver

state 10signal 1 signal 30act 3

state 20signal 1 signal 20act 3

state 30signal 1 signal 10act 3

:

Since the sender conveys no information, the
receiver can do no better than choose the act that
pays off in the most probable state. Since the receiver
ignores the signal, the sender can do no better by
changing his signalling strategy.

In N!N!N games with NO2, there are also partial
pooling equilibria, for example,

sender receiver

state 10signal 3 signal 30act 1

state 20signal 1 signal 20act 3

state 30signal 1 signal 10act 3

:

The sender’s strategy does not discriminate between
states 2 and 3 and leaves signal 2 unused. Upon
receiving the ‘ambiguous’ signal, the receiver chooses
optimally, given the limited information that was
transmitted. For larger N, there are more kinds of
partial pooling equilibria, depending on which states
are ‘pooled’.
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Among these equilibria, the signalling systems yield
optimal pay-off, but this is no guarantee that one will
arrive at them. They also, however, have the distinction
of being strict; that is to say, any unilateral deviation
results in a strictly worse pay-off. This has the
immediate consequence that in an evolutionary setting,
a signalling system is an evolutionarily stable state of the
population. This is true both in a two-population
evolutionary model, with a population of senders and
receivers and in a one-population model in which an
individual is sometimes in a sender role and sometimes
in a position of being a receiver.

It is also easy to see that signalling systems are the
only evolutionarily stable states (Wärneryd 1993). In
the pooling example above, a mutant sender who
always sent signal 2 would do just as well as the native
population. Likewise, a mutant receiver whose strategy
responded differently to the signal 3 (which is never
sent) would not suffer for doing so. In the partial
pooling example, a mutant sender who sent signal 2 in
states 2 and 3 would elicit the same receiver response,
and thus would have the same pay-off as the natives.

In each of these cases, the mutants do not do better
than the natives. The pooling and partial pooling
equilibria are equilibria. But the mutants do no worse,
so they are not driven out. That is to say, pooling and
partial pooling equilibria fail the test for evolutionary
stability (Maynard Smith & Price 1973; Maynard
Smith 1982). Equilibrium analysis might then lead
one to suspect that evolutionary dynamics would
always (or almost always) take us to signalling
systems. It is not so (Huttegger 2007a,b, forthcoming;
Pawlowitsch 2008).
3. DYNAMICS
The simplest dynamic model of differential reproduc-
tion for a large population is the replicator dynamics
(Taylor & Jonker 1978; Hofbauer & Sigmund 1998).
Replicator dynamics has an alternative interpretation
as a model of cultural evolution by imitation of
successful strategies (Björnerstedt & Weibull 1995;
Schlag 1998). It has a third interpretation as a limiting
case of reinforcement learning (Beggs 2005; Hopkins &
Posch 2005).

We can consider a one-population model where
strategies are conditional (if the sender does this, if the
receiver does that), or a two-population model with one
population of senders and another population of
receivers. Both have biological applications. A two-
population model is clearly appropriate for inter-
species signalling. In case of same species alarm calls,
individuals are sometimes in the role of sender and
sometimes that of receiver.

For a single population, let the strategies be {Si}, let
xi be the population proportion of those who use
strategy Si and let the fitness of strategy Si played
against Sj be denoted W(SijSj). Then, assuming
random matching, the average fitness of strategy Si is

W ðSiÞZ
X

j
xjW ðSijSjÞ;

and the average fitness of the population is

W ðSÞZ
X

i
W ðSiÞxi :
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The replicator dynamics is the system of differential
equations

dxi
dt

Z xi½W ðSiÞKW ðSÞ�:

For the two-population case, let xi be the population
proportion of those who use strategy Si in the
population of senders and yi be the population of
those who use strategy Ri in the population of receivers.
We again assume random matching of senders and
receivers, so that

W ðSiÞZ
X

j
yjW ðSijRjÞ and

W ðRjÞZ
X

i
xiW ðRj jSiÞ:

The average fitnesses of the sender and receiver
populations, respectively, are

W ðS ÞZ
X

i
W ðSiÞxi and W ðRÞZ

X
j
W ðRjÞyi :

We consider the evolution of this two-population
system using bipartite replicator dynamics (Taylor &
Jonker 1978; Hofbauer & Sigmund 1998)

dxi
dt

Z xi½W ðSiÞKW ðSÞ�;

dyj

dt
Z yj½W ðRjÞKW ðRÞ�:

In both the one- and two-population models of
Lewis’ signalling games, the strong common interest
between the sender and receiver assures global conver-
gence of the replicator dynamics; all trajectories must
lead to dynamic equilibria (Hofbauer & Sigmund
1998; Huttegger 2007a,b).

In the case of a 2!2!2 Lewis signalling game, with
states equiprobable, the ‘hasty conclusion’ from
evolutionary stability equilibrium analysis is, in fact,
born out by the dynamics. Equilibria other than the
signalling systems are all dynamically unstable. In both
two- and one-population models, replicator dynamics
carries almost all possible population proportions to a
signalling system (Huttegger 2007a,b,c; Hofbauer &
Huttegger 2008).

But if states are not equiprobable, this is no longer
so. Suppose that state 2 is much more probable than
state 1. Then, the receiver might just do the act that is
the best in state 2 and ignore the signal. And since the
signal is being ignored, the sender might as well ignore
the state. Consider a population in which receivers
always do act 2, some senders always send signal 1 and
some always send signal 2. Any such population is an
equilibrium. We have described a set of polymorphic
pooling equilibria. These equilibria are dynamically
stable, even though they are not evolutionarily stable in
the sense of Maynard-Smith & Price (1973). They are
not strongly stable attractors in the dynamics. Rather,
they are ‘neutrally stable’, in that points near them stay
near them under the action of the dynamics. But they
do not attract all points near them. For instance, other
pooling equilibria near them are not moved at all by the
dynamics. The question is whether this set of pooling
equilibrium, considered as a whole, has a basin of
Phil. Trans. R. Soc. B (2009)
attraction. It has been shown analytically that it does
(Hofbauer & Huttegger 2008). Simulations show that
the size of the basin of attraction need not be negligible.
The size depends, as would be expected, on the
difference in the probabilities of the two states. If we
were to depart from the assumption that the states have
equal pay-offs, it would also depend on the magnitudes
of the pay-offs.

Even if we keep the states equiprobable and the
magnitudes of the pay-offs equal, almost sure conver-
gence to a signalling system is lost as we move from 2!
2!2 to 3!3!3. In this game, total pooling equilibria
are dynamically unstable, but there are sets of neutrally
stable partial pooling equilibria as the ones discussed in
the last section. It can be shown analytically that the set
of partial pooling equilibria has a positive basin of
attraction, and simulation shows that this basin is not
negligible (Huttegger et al. in press).

Even with the strong common interest assumptions
built into Lewis’ signalling games, the emergence of
signalling is not quite the sure thing that it may initially
have seemed on the basis of equilibrium consider-
ations. Perfect signalling systems can evolve, but it is
not guaranteed that they will do so. Dynamic analysis
has revealed unexpected subtleties.

There are more subtleties to explore, because the
sets of suboptimal equilibria are not structurally stable
(Guckenheimer & Holmes 1983; Skyrms 1999) Small
perturbations of the dynamics can make a big
difference. The natural perturbation to pure differential
reproduction that needs to be considered is the
addition of a little mutation. We can move from the
replicator dynamics to the replicator–mutator
dynamics (Hadeler 1981; Hofbauer 1985). For a
two-population model with uniform mutation, this is

dxi
dt

Z xi½ð1KeÞW ðSiÞKW ðSÞ�C ðe =nÞW ðSÞ;

dyj

dt
Z yj½ð1KeÞW ðRjKW ðRÞ�C ðe=nÞW ðRÞ;

where e is the mutation rate and n is the number of
strategies. We include all possible strategies. Evolution-
ary dynamics is now governed by a sum of selection and
mutation pressures. Mutation pressure pushes towards
all strategies being equiprobable, where mutation into a
strategy would equal mutation out. Mutation pressure
can be counterbalanced or overcome by selection
pressure. But if selection pressure is weak or non-
existent, mutation can cause dramatic changes in the
equilibrium structure of the interaction.

We can illustrate by returning to the 2!2!2
signalling game, two-population states with unequal
probability. Suppose state 2 is more probable than
state 1. Then, as we have seen, there is a set of pooling
equilibria for the replicator dynamics. In the receiver
population, the strategy of always doing act 2 (no
matter what the state is) goes to fixation. In the sender
population, there is a polymorphism between two types
of sender. One sends signal 1, no matter what the state
is; the other sends signal 2, no matter what the state is.
Since there is no selection pressure between the
senders’ types, every such sender polymorphism is an



Table 2. Pay-offs if receiving signal is costly.

receiver 1 receiver 2 receiver 3 receiver 4

sender 1 2-0.1, 2-0.1 1-0.1, 1-0.1 1.33-0.1, 1.67-0.1,

Table 1. Pay-offs if sending signal is costly.

receiver 1 receiver 2 receiver 3 receiver 4

sender 1 2-c, 2 1-c, 1 1.5-c, 1.5 1.5-c, 1.5
sender 2 1-c, 1 2-c, 2 1.5-c, 1.5 1.5-c, 1.5
sender 3 1.5-2c, 1.5 1.5-2c, 1.5 1.5-2c, 1.5 1.5-2c, 1.5
sender 4 1.5, 1.5 1.5, 1.5 1.5, 1.5 1.5, 1.5
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equilibrium. Addition of any amount of uniform
mutation leads the set of pooling equilibria to collapse
to a single point at which ‘Always send signal 1’ and
‘Always send signal 2’ are represented with equal
probability (Hofbauer & Huttegger 2008). But all
other strategies are also present in small amounts at this
population state, due to the action of mutation.

The big question concerns the stability properties of
this perturbed pooling equilibrium. Is it dynamically stable
or unstable? There is no unequivocal answer. It
depends on the disparity in the probability between
the two states (Hofbauer & Huttegger 2008). A little
mutation can help the evolution of signalling systems,
but does not always guarantee that they evolve.
1.33 1.67
sender 2 1-0.2, 1-0.1 2-0.2, 2-0.1 1.33-0.2,

1.33
1.67-0.2,

1.67
sender 3 1.5-0.3,

1.5-0.1
1.5-0.3,

1.5-0.1
1.33-0.3,

1.33
1.67-0.3,

1.67
sender 4 1.5, 1.5-0.1 1.5, 1.5-0.1 1.33, 1.33 1.67, 1.67

Table 3. Pay-offs if costs are state specific.

receiver 1 receiver 2 receiver 3 receiver 4

sender 1 2, 2-0.1 1, 1-0.1 1.33, 1.33 1.67, 1.67
sender 2 1-0.3, 1-0.1 2-0.3, 2-0.1 1.33-0.3,

1.33
1.67-0.3,

1.67
sender 3 1.5-0.2,

1.5-0.1
1.5-0.2,

1.5-0.1
1.33-0.2,

1.33
1.67-0.2,

1.67
sender 4 1.5-0.1,

1.5-0.1
1.5-0.1,

1.5-0.1
1.33-0.1,

1.33
1.67-0.1,

1.67
4. COSTS
Let us return to the case of 2!2!2, with states
equiprobable, but assume that one of the signals costs
something to send, while the other is cost free. (We could
interpret the cost-free signal as just keeping quiet.)
Now there are pooling equilibria in which the sender
always sends the cost-free signal and there are various
proportions of receiver types.

Denoting the sender’s strategies as

sender 1 : state 10signal 1; state 20signal 2

sender 2 : state 10signal 2; state 20signal 1

sender 3 : state 10signal 1; state 20signal 1

sender 4 : state 10signal 2; state 20signal 2

and the receiver’s strategies as

receiver 1 : signal 10act 1; signal 20act 2

receiver 2 : signal 10act 2; signal 20act 1

receiver 3 : signal 10act 1; signal 20act 1

receiver 4 : signal 10act 2; signal 20act 2

:

If signal 1 is costly, costZ2c, states equiprobable
and a background fitness is 1, we have the pay-off
matrix (sender’s pay-off, receiver’s pay-off ), as shown
in table 1.

Sender’s strategies 1 and 2 pay the cost half the
time, strategy 3 all the time and strategy 4 never. Pure
Nash equilibria of the game for small c are italic-faced.
(If cO0.5, it is never worth the cost to send a signal,
and the signalling system equilibria disappear.) There
is also a large range of mixed strategies (corresponding
to the receiver polymorphisms) that are equilibria.
States when receiver types are approximately equally
represented and senders always send the costless signal
are such pooling equilibria.

It might also cost the receiver something to listen. Let us
combine this with a costly message and unequal state
probabilities. For example, let the probability of state 1
be 1/3, the cost of signal 1 0.3 and the cost of the
receiver paying attention to the signals 0.1. The
background fitness is 1. Then, the foregoing pay-off
matrix changes to that displayed in table 2.

The pooling equilibrium, hsender 4, receiver 4i, where
the sender always sends signal 2 and the receiver
always does act 2, is now a strict Nash equilibrium of
the game. Either the sender or receiver who deviates
Phil. Trans. R. Soc. B (2009)
does strictly worse. Thus, in both one- and two-
population evolutionary models, it is evolutionarily
stable and a strong (attracting) equilibrium in the
replicator dynamics.

If costs are state specific, a rosier picture is possible
(Zahavi 1975). We alter the previous example so that
signal 1 is free in state 1 but costs 0.3 in state 2
and signal 2 is free in state 2 but costs 0.3 in state 1.
Sender 1 now pays no penalty; sender 2 always pays
0.3; sender 3 pays 0.3 two-thirds of the time (Z0.2)
and sender 4 pays 0.3 one-third of the time (Z0.1).
This is shown in table 3.

The pooling state, hsender 4, receiver 4i, is no longer
an equilibrium at all. Given that the receiver is ignoring
the message, the sender is better off switching to the
costless strategy, sender 1. If so, the receiver is better off
switching to receiver 1, yielding the optimal signalling
system hsender 1, receiver 1i. Optimality, however, may
not evolve. The suboptimal signalling system hsender 2,
receiver 2i, in which the sender uses the ‘wrong’ signals
and always pays a signalling cost, is also a strict
equilibrium. Both signalling systems are strong
(attracting) equilibria in both one- and two-population
replicator dynamic models.
5. SIGNALLING NETWORKS
There is no reason to limit ourselves to signalling
between just two actors: one sender and one receiver.
In fact, most signalling systems in nature involve
multiple senders, multiple receivers or both. If a



Table 4. Pay-offs with two senders and one receiver.

act 1 act 2 act 3 act 4

state 1 1,1,1 0,0,0 0,0,0 0,0,0
state 2 0,0,0 1,1,1 0,0,0 0,0,0
state 3 0,0,0 0,0,0 1,1,1 0,0,0
state 4 0,0,0 0,0,0 0,0,0 1,1,1
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receiver gets signals carrying different pieces of
information from different senders, the signalling
system is called upon to solve some problem of
information processing. Consider a toy model with
two senders and one receiver

†/†)†

Signalling complementary information. There are four
states of nature, each of which occurs with non-zero
probability. Two individuals are situated so as to make
different incomplete observations of the state. The first
sees whether it is in {S1, S2} or in {S3, S4} and the
second sees whether it is in {S1, S3} or in {S2, S4}.
Together, they have enough information to pin down
the state of nature, but separately they do not. Each
sends one of two signals to a receiver who must choose
one of four acts. Let us say the first sender chooses ‘red’
or ‘green’ and the second chooses ‘blue’ or ‘yellow’.
The pay-offs favour cooperation. Exactly one act is
‘right’ for each of the states, in that each of the
individuals is reinforced just in case the right act for
the state is chosen.

In this extended Lewis signalling game, the observa-
tional situation of sender 1 is characterized by a
partition of the states, O1Z{{S1, S2}, {S3, S4}}. Her
signalling strategy is a function from the elements of
this partition into her set of signals, {R, G}. Likewise
sender 2 in observational situation O2Z{{S1, S3},
{S2, S4}} has a signalling strategy that maps the
elements of her partition into her signal set, {B, Y}.
The receiver’s strategy maps pairs of signals {{R, B},
{R, Y}, {G, B}, {G, Y}} into her set of acts {A1, A2,
A3, A4}.

All agents get pay-off 1 just in case the receiver
correctly identifies the state and does the appropriate
act. Pay-offs are shown in table 4.

A signalling system equilibrium is a combination of
sender and receiver strategies such that pay-off is equal
to 1 in each state. As before, a signalling system is a
strict equilibrium of the game, and the signalling systems
are the only strict equilibria. There are lots of pooling
and partial pooling equilibria.

In an evolutionary setting, this three-player game
gives rise to three-, two- and one-population models. In
a one-population model, an individual’s strategy would
be of the form: if sender in observational situation O1 has
this sender’s strategy; if sender in observational situation O2

has that sender’s strategy; and if receiver has this strategy.
The most natural two-population model has a popu-
lation of senders with different observational roles and
a population of receivers. In all three evolutionary
settings, signalling systems are the unique evolution-
arily stable states. It is no longer certain that a signalling
system must evolve, but it is certain that a signalling
Phil. Trans. R. Soc. B (2009)
system can evolve. In each of these settings, a signalling
system is a strongly stable (attracting) equilibrium in
the replicator dynamics.

Each sender’s signal conveys perfect information
about her observation—about the partition of the states
of the world which she can see. The combination of
signals has perfect information about the states of the
world. Exactly one state corresponds to each com-
bination of signals. And the receiver puts the signals
together. The receiver’s acts contain perfect infor-
mation about the state of the world. The signalling
system simultaneously solves problems of transmission and
integration of information.

The basic model admits of interesting variations. Of
course, there may be more senders. And depending on
the act set available to the receiver, he may draw the
appropriate logical ‘conclusion’ from the ‘premises’
supplied by the various senders (Skyrms 2000, 2004,
2008). The senders’ partitions may not be fixed by
nature, but may themselves evolve in the presence of
information bottlenecks (Barrett 2006, 2007a,b).

Error: There is another class of multiple sender
models, where the question is not one of comp-
lementary information but one of error. In the previous
example, senders observed different partitions but
there was no error in identifying the true element of
the partition. Here, we suppose that the senders
all observe the same states but with some error in
correctly identifying them. (An alternative, essentially
equivalent, interpretation of the model would locate
the errors in the transmission of the signals.)

For the simplest model, suppose that there are only
two states and two acts. States are equiprobable. Three
senders observe the states with error probability of
10 per cent, with the errors being independent
between senders and between trials. Each sender
sends a message to the receiver, who must then choose
one of the two acts. As before, we assume that act 1
pays off 1 for everyone involved in state 1 and act 2 pays
off 1 for everyone involved in state 2. Otherwise, no one
gets anything.

Nature here first flips a coin to pick a state, and then
picks apparent states to present to the three senders
according to the error probabilities. A sender’s strategy
is a function from apparent state into the set of signals,
{S1, S2}. We have a choice about how to set up the
receiver’s strategies. If we were to assume that the
receiver could distinguish between senders, we could
take the receiver’s strategy to be a function from
ordered triples of signals to acts. But here we assume
that the receiver cannot distinguish between hS1, S2,
S1i, hS1, S1, S2i and hS1, S1, S2i. The receiver here has
an observational partition and can only count signals.
This might be thought of as discrete approximation to
a situation where the receiver perceives an intensity
arising from many chemical signals, or the sound
intensity arising from many calls. A receiver’s strategy is
then a function from the frequencies of signal received
to act.

Optimal signalling in this model consists in what we
might call a Condorcet equilibrium (see List et al. 2009;
Sumpter & Pratt 2009). There is one signal that the
senders all use for apparent state 1 and another that
they all use for apparent state 2. The receiver goes with



Table 5. Pay-offs in a simple teamwork situation.

hA1, A1i hA1, A2i hA2, A1i hA2, A2i

state 1 1,1,1 0,0,0 0,0,0 0,0,0
state 2 0,0,0 1,1,1 0,0,0 0,0,0
state 3 0,0,0 0,0,0 1,1,1 0,0,0
state 4 0,0,0 0,0,0 0,0,0 1,1,1
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a majority vote. For instance, if the senders all
send signal 2 in state 1, the receiver will do act 2 if
two or more senders send signal 2 and act 1 otherwise.
In our example, individuals at a Condorcet equilibrium
reduce their error rate from 10 per cent to under 3 per
cent. This can be viewed as an example of information
filtering, as explained in §1.

Rather than thinking of evolution taking place
solely in the context of this game, we might assume
that sender’s strategies already evolved in the context of
single sender–receiver interactions. Then, receivers
usually get one signal, or multiple agreeing signals
according to the evolved signalling system, but
occasionally get disagreeing signals. Slow adaptation
for mixed signals in such an environment is a simple
problem of optimization.

Against these fixed sender strategies, receivers who
go with the majority of senders will have the greatest
fitness. Then replicator dynamics will converge to the
optimal receiver strategy (Hofbauer & Sigmund 1998).

But suppose we forego this easy route and ask
whether Condorcet signalling equilibria can evolve in
the context of the original four-person game. Both the
sender’s signals and the receiver’s voting rule must
coevolve. It is still possible for efficient signalling to
evolve. The Condorcet equilibria are strict. Conse-
quently, they are stable attractors in the evolutionary
versions of this game using replicator dynamics. In fact,
simulations show the Condorcet equilibria almost
always evolving in the foregoing model (see the
electronic supplementary material).

Variations in the parameters of the model may well
lead to the evolution of voting rules different from
majority rule. This is an area open for exploration.
Recent rational-choice literature on strategic
voting (Austen-Smith & Banks 1996; Feddersen &
Pesendorfer 1998) is a source of a rich set of models
that can be transposed to an evolutionary setting.

Teamwork: It is sometimes the case that a well-placed
sender knows what needs to be done, and can send
messages to receivers who can act, but that no one
receiver can do everything that needs to be done. The
sender may be the foreman, the commander or the
brain of an organism—the team leader. Success for all
requires teamwork.

There may be one sender and multiple receivers

†)†/†

For a simple teamwork problem, we suppose that
there are two receivers and one sender. The sender
observes one of four equiprobable states of the world
and sends one of two signals to each receiver. The
receivers must each choose between two acts, and
the acts must be coordinated in a way determined
by the state for all to get a pay-off. We take pay-offs to
be as shown in table 5.

We assume that the sender can distinguish the
members of the team; so the sender’s strategy maps
states into ordered pairs of signals and a receiver’s
strategy maps her signal into her space of acts. Here,
the problem to be solved is a combination of one of
communication and one of coordination. It is solved in
a signalling system equilibrium, in which everyone
Phil. Trans. R. Soc. B (2009)
always gets pay-off of 1. A signalling system equilibrium
is again a strict equilibrium, and the unique strict
equilibrium in the game. It is a strongly stable attractor
in the replicator dynamics.

The example can be varied in many ways, some
more interesting than others. The two receivers can be
thought of as playing a rather trivial two-person game,
but the game is different in every state of the world.
In a signalling system, the sender can be thought of
either as conveying information about the game or the
optimal act to be done. In these trivial games, these are
equivalent. The example could be varied by changing
the four embedded two-person games and their effect
on the pay-offs to the sender.

Chains: Information can flow further than that
shown in the models given so far. Signallers can form
chains, so that information is passed along until it
reaches an endpoint at which it can be used. Consider a
little signalling chain

†/†/†

There is a sender, an intermediary and a receiver.
Nature chooses one of two states with equal probability.
The sender observes the state, chooses one of two
signals and sends it to the intermediary, the inter-
mediary observes the sender’s signal, chooses one of
her own two signals and sends it to the receiver. The
receiver observes the intermediary’s signal and chooses
one of two acts. If the act matches the state, sender,
intermediary and receiver all get a pay-off of 1,
otherwise a pay-off of 0.

Suppose that the set of potential signals available to
the sender is {R, B}, and that available to the receiver is
{G, Y}. A sender’s strategy is a function from {S1, S2}
into {R, B}, an intermediary’s from {R, B} into {G, Y}
and a receiver’s from {G, Y} into {A1, A2}. A signalling
system here is a triple of strategies such that the
composition of sender’s, intermediary’s and receiver’s
strategies maps state 1 to act 1 and state 2 to act 2.
Signalling systems are the unique strict equilibria in this
game and the unique evolutionarily stable states in the
corresponding one-, two- and three-population signal-
ling games. They are attractors in the replicator
dynamics. In principle, signalling chains can evolve
out of nothing.

However, simulations show that in this case
evolution is very slow when compared with the other
signalling games discussed so far. This may simply be a
consequence of the multiplicity of coordination pro-
blems that need to be solved simultaneously. The speed
with which the chain signalling system can evolve is
much improved if the sender and receiver have pre-
existing signalling systems. They could be the same
signalling system, which would be plausible if the
sender and receiver were the members of the same



Table 6. Pay-offs in a dialogue situation.

decision 1 decision 1 decision 2 decision 2

act 1 act 2 act 3 act 4

state 1 1 0 1 0
state 2 1 0 0 1
state 3 0 1 1 0
state 4 0 1 0 1
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population, but the signalling systems need not be the
same. The sender and receiver can have different
‘languages’, so that the intermediary has to act as a
‘translator’ or signal transducer. Suppose that the
sender sends red or blue and the ultimate receiver
reacts to green or yellow as follows:

sender receiver

state 10R G0act 2

state 20B Y0act 1

:

A successful translator must learn to receive one
signal and send another, so that the chain leads to a
successful outcome.

sender translator receiver

state 10R see R0send Y Y0act 1

state 20B see B0send G G0act 2

:

The translator’s learning problem is now really quite
simple. The requisite strategy strictly dominates all
alternatives. It pays off all the time, while the strategies
always send Y and always send G pay off half the time,
and the remaining possibility always leads to failure.
The dominated strategies are eliminated (Hofbauer &
Sigmund 1998), and the correct strategy evolves.

Dialogue: The chain model showed one way in which
simple interactions could be strung together to form
more complex signalling systems. Here is another.
Suppose that a sender’s observational partition is not
fixed. The sender can choose which observation to
make. That is to say, she can choose which partition of
states to observe. Suppose also that the receiver’s
decision problem is not fixed. Nature chooses
a decision problem to present to the receiver. Different
sorts of information are relevant to different decision
problems. Knowing the actual element of partition
A (the element that contains the actual state) may
be relevant to decision problem 1, while knowing
the actual element of partition B may be relevant
to decision problem 2. This opens up the possibility
of signalling dialogue, where information flows in
two directions

†4†

In the simplest sort of example, nature flips a coin
and presents player 2 with one or another decision
problem. Player 2 sends one of two signals to player 1.
Player 1 selects one of two partitions of the state of
nature to observe. Nature flips a coin and presents
player 1 with the true state. Player 1 sends one of two
signals to player 2. Player 2 chooses one of two acts.

Suppose that there are four states, {S1, S2, S3, S4},
with alternative partitions: P1Z{{S1, S2}, {S3, S4}},
P2Z{{S1, S3}, {S2, S4}}. The two decision problems
require choices in different act sets: D1Z {A1, A2},
D2Z{A3, A4}. Pay-offs for the two decision problems
are shown in table 6.

Player 2 has a signal set {R, G} and player 1 has a
signal set {B, Y}. A strategy for player 2 now consists of
three functions: a sender strategy from {P1, P2} into
{R, G}; a receiver strategy form {B,Y} into {A1, A2};
and a receiver strategy from {B, Y} into {A3, A4}. In a
signalling system equilibrium, each player gets always a
pay-off of 1. The possibility of dialogue introduces
Phil. Trans. R. Soc. B (2009)
a plasticity of signalling that is absent in fixed sender–
receiver games. Signalling systems are strict and
evolutionarily stable as before.

Signalling systems can evolve in the dialogue
interaction in isolation, but simulations show this
process to be very slow. As in the case of chains,
evolution of a signalling system is much easier if we
assume that some of its parts have evolved in less
complicated interactions. Player 1 may already have
signalling systems in place for the two different
observational partitions as a consequence of evolution
in simple sender–receiver interactions. If so, the
evolution of dialogue only requires that the second
player signals the problem and the first chooses what to
observe. This is no more difficult than the evolution of a
signalling system in the original Lewis signalling game.
6. CONCLUSION
We have investigated the evolution of signalling in some
modest extensions of Lewis signalling games with
multiple senders and receivers. This discussion has
focused on one particular setting—a large (infinite)
population or several large populations with random
interactions between individuals. Different settings
would call for different relevant dynamics. A small
population with random encounters calls for a
stochastic model of evolution, with either a growing
population or one whose size is fixed at some carrying
capacity (Shreiber 2001; Benaim et al. 2004; Taylor
et al. 2004). Pawlowitsch (2007) has shown that in one
kind of finite population model, efficient proto-
languages are the only strategies that are protected by
selection. Individuals might interact with neighbours in
some spatial structure (Grim et al. 2002; Zollman
2005). Isolated individuals might invent signalling
systems by trial-and-error learning in repeated
interactions (Skyrms 2004, 2008; Barrett 2006,
2007a,b), which might then spread by a process of
cultural evolution (Komarova & Niyogi 2004). In fact,
urn models of reinforcement learning are very close to
those in a small, growing population (Shreiber 2001;
Benaim et al. 2004). It has been recently proved that
reinforcement dynamics in the simplest Lewis signal-
ling game—2!2!2 states equiprobable—converges
with probability 1 to a signalling system (Argiento et al.
in press). Such an analytic treatment of reinforcement
learning does not yet exist for more complicated
signalling interactions, but simulations tend to
give results parallel to the evolutionary analysis
given here. This is not entirely surprising, given
the close connections between reinforcement learning
and the replicator dynamics (Beggs 2005; Hopkins &
Posch 2005).
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Simple models such as those discussed here can be

assembled into more complex and biologically inter-

esting systems. The network topologies themselves may

evolve (Bala & Goyal 2000; Skyrms & Pemantle 2000).

There are all sorts of interesting variations. For

instance, signalling networks may allow eavesdroppers,

a case well studied in (McGregor 2005). But the main

business of signalling networks is to facilitate successful

collective action. The simple models studied here focus

on the crucial aspects of coordinated action. Infor-

mation is acquired by the units of the group. It is

transmitted to other units and processed in various

ways. Extraneous information is discarded. Various

kinds of computation and inference are performed.

The resulting information is used to guide group

decisions that lead to coordinated action. All this can

happen either with or without conscious thought.

These processes are instantiated in human organiz-

ations, in the coordination of the organs and cells of a

multicellular organism and even within the cells

themselves. Information flows through signalling net-

works at all levels of biological organization.

I would like to thank Jeffrey Barrett, Simon Huttegger, Louis
Narens, Don Saari, Rory Smead, Elliott Wagner and Kevin
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