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Kidney cancer is frequently metastatic on presentation
at which point the disease is associated with a 95%
mortality. Assessment of tumor grade on pathological
examination is the most powerful means for prognosti-
cation as well as for stratification of patients into those
who might respond to conventional or targeted therapy.
Although there exist several grading systems in com-
mon use, all suffer from significant disparity among ob-
servers. In an attempt to objectify this process as well
as to acquire grade-specific mechanistic information,
we performed LC-MS/MS-based proteomics analysis on
50 clear cell kidney cancers equally distributed among
normal tissues and Fuhrman grades 1–4. Initial experi-
ments confirmed the utility of using archived formalin-
fixed paraffin-embedded samples for LC-MS/MS-based
proteomics analysis, and the LC-MS/MS findings were
validated by extensive immunoblotting. We now show
that changes among many biochemical processes and
pathways are strongly grade-dependent with the glyco-
lytic and amino acid synthetic pathways highly repre-
sented. In addition, proteins relating to acute phase and
xenobiotic metabolism signaling are highly represented.
Self-organized mapping of proteins with similar patterns
of expression led to the creation of a heat map that will
be useful in grade characterization as well as in future
research relating to oncogenic mechanisms and tar-
geted therapies for kidney cancer. Molecular & Cellu-
lar Proteomics 8:971–985, 2009.

Kidney cancer (or renal cell carcinoma (RCC)1) is the sev-
enth most common malignancy, the 10th most common

cause of cancer death in men, and the ninth most common
cancer in women. In 2009, an estimated 13,000 deaths (8,100
men and 4,900 women) will occur in the United States. The
disease is frequently asymptomatic; a third of cases are di-
agnosed when the disease is already metastatic at which time
it has 95% mortality (1).

Assessment of tumor grade is the most powerful available
means to date of determining tumor prognosis; thus objective
criteria for assessing grade are essential such that prognos-
tication is unambiguous. In addition, grade criteria are useful
in stratifying patients into those most likely to respond to
conventional as well as new targeted therapies. There exist
several systems for assigning tumor grade in RCC, although
most pathologists utilize the Fuhrman grading system. As is
evidenced by the abundance of extant grading systems (2),
there appears to be a general lack of consensus and thus
considerable variability in assigning tumor grades. Objective
criteria for grade assignment utilizing specific protein markers
will be useful in objectifying this process and thereby allowing
for more accurate prognostication. Furthermore assessment
of the biological basis of the differences among grades, as
evidenced by diverse biochemical pathways altered in a
grade-specific fashion, will lead to the development of novel
diagnostic assays as well as therapeutic interventions.

Once objective grading criteria are put forth, molecular
mechanisms by which tumors transition among grades can be
identified and further investigated. Using this information, it
might be possible to recapitulate the grade transition in vitro
to discover novel mechanisms of oncogenesis or at least of
transition from a relatively benign to a highly malignant phe-
notype. Moreover utilizing a systems biology approach to
glean grade-specific network and pathway data has the ca-
pability to further the understanding of RCC oncogenesis.
This approach can be used to identify novel mechanisms of
tumor progression within grades and thereby can yield drug-
gable targets.

We now show that validated grade-specific, highly sensitive
proteomics analysis of RCC resulted in the identification of
proteins that vary in expression in a grade-specific fashion.
From these data, we identified pathways and networks that
are relevant, and likely critical, to grade transitions, and we
discovered markers that, either separately or in combination,
are able to assist in differentiation among grades. Further-
more our analysis yielded pathways altered in RCC that can
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ultimately be used both to stratify patients to grade-specific
treatments and to identify new therapeutic targets.

EXPERIMENTAL PROCEDURES

Materials—After appropriate Institutional Review Board approval
from University of California Davis, frozen and formalin-fixed paraffin-
embedded (FFPE) clear cell renal cell carcinoma (ccRCC) tissues
were obtained from the University of California Davis Medical Center
in Sacramento, CA. The antibodies used in the study were mouse
monoclonal anti-vimentin (VIM) (Dako), anti-SERPINH1 (Abcam), anti-
phosphoglycerate kinase 1 (PGK1) (Santa Cruz Biotechnology), and
anti-fructose-bisphosphate aldolase A (ALDOA) (Abnova) and rabbit
polyclonal anti-ALDH1A1 (Abcam) and anti-AIFM1 (Abcam).

RCC Grading—All the FFPE RCC samples were sectioned and
counterstained with hematoxylin and eosin (H&E), and all were re-
graded by an experienced oncologic pathologist (A. D. B.) to stan-
dardize the grading of all specimens. The standard Fuhrman criteria of
separation into four nuclear grades defined in order of increasing
nuclear size, irregularity, and nucleolar prominence (3) were utilized.

Protein Extraction—For comparison between frozen samples and
FFPE tissues, protein was extracted utilizing the Liquid Tissue Protein
Prep kit (Expression Pathology, Gaithersburg, MD). For protein prep-
aration from frozen tissue, RCC grading was done based on the
Fuhrman nuclear grade scale on H&E-stained slides and compared
with the frozen block. Pieces of tissue were cut off the block and
boiled at 95 °C for 90 min in 20 �l of Liquid Tissue buffer (Expression
Pathology). Subsequently 1 �g of trypsin was added, and the sam-
ples were digested overnight at 37 °C. The samples were spun at
12,000 relative centrifugal force for 10 min, and the supernatant was
transferred to a fresh tube. Protein preparation from FFPE tissues was
performed with the Liquid Tissue Protein Prep kit (Expression Pathol-
ogy) following the manufacturer’s protocol.

For the grade-dependent proteomics experiments, the following
protocol was used. Grading was done based on the FFPE sections
counterstained with H&E. Unstained slides from adjacent sections
were then deparaffinized and were used to collect regions of �0.5 cm
in diameter with an assigned nuclear grade. 10-�m RCC FFPE sec-
tions were deparaffinized and hydrated through a xylene and ethanol
series. The area corresponding to the adjacent H&E section was
dissected using a 30-gauge needle and was transferred to 60 �l of
RIPA buffer (150 mM NaCl, 10 mM Tris-HCl, pH 7.2, 2% SDS, 1%
Triton X-100, 1% sodium deoxycholate, 5 mM EDTA). The sample was
then heated at 100 °C for 20 min followed by a 3-h incubation at 80 °C
with constant agitation to extract the protein (4). The samples were
chilled on ice for 1 min, and chloroform/methanol precipitation was
then performed to remove salt and detergents (5). After the addition of
40 �l of water, 400 �l of methanol was added, and after vortexing,
100 �l of chloroform was added. After vortexing, 300 �l of water was
added. After a 1-min spin at 14,000 � g, the top aqueous layer was
removed. Another 400 �l of methanol was added and mixed. After a
2-min spin at 14,000 � g, the supernatant was discarded, and the
pellet was dried and suspended in 60 �l of 10 mM ammonium bicar-
bonate. Finally samples were trypsin-digested overnight with 1 �g of
sequencing grade trypsin (Promega). The protein concentration of the
digested frozen and FFPE RCC samples was quantified using the
microBCA Protein Assay Reagent kit (Pierce), and a total of 3 �g from
each sample was analyzed by LC-MS/MS.

Immunoblotting—A section of tissue corresponding to what was
used for LC-MS analysis was identified in an adjacent cut of the tissue
block. These 10-�m FFPE sections were deparaffinized through a
xylene and ethanol series, and 1 cm2 of a tissue with known nuclear
grade was harvested using a needle. The protein was decross-linked
and extracted using the QProteome FFPE protein extraction kit (Qia-
gen) according to the manufacturer’s protocol. Immunoblotting was

performed as reported previously (6). Ponceau S staining was used to
verify equal protein loading.

Immunohistochemistry—FFPE slides were deparaffinized through
a xylene and ethanol series and were treated with 3% hydrogen
peroxide, methanol prior to the antigen retrieval in sodium citrate
buffer, pH 6. Following blocking, the slides were incubated with the
primary antibodies at 4 °C overnight. After PBS washes, the slides
were incubated with biotin-conjugated secondary antibodies followed
by the avidin-biotin complex (ABC Elite kit, Vector Laboratories) ac-
cording to the manufacturer’s instructions. The avidin-biotin complex
was visualized using diaminobenzidine (Vector Laboratories). The
sections were counterstained with hematoxylin and were cover-
slipped. Photographs were taken using 20� or 10� objective lenses
on an Axiovert microscope (Carl Zeiss).

MS/MS Spectrometric Analysis—Data were acquired using a
Nano-LC-2D system (Eksigent) coupled with an LTQ (linear trap qua-
drupole) ion trap mass spectrometer (Thermo Finnigan) with separa-
tions accomplished on an in-laboratory fabricated fritless reversed
phase microcapillary column (75 � 180 mm packed with Magic
C18AQ, 3-mm beads with 100-Å pores; Michrom Bioresources) and
vented column configuration. Each digested sample was transferred
by the Eksigent autosampler to the on-line trap column (Zorbax
300SB C18, 5 � 0.3 mm; Agilent) and desalted. Peptides were then
eluted from the trap and separated by the aforementioned reversed
phase microcapillary column at a flow rate of 300 nl/min and directly
sprayed into the mass spectrometer. Buffer compositions used for
reversed phase chromatography were as follows: buffer A, 0.1%
formic acid in water; buffer B, 0.1% formic acid in 100% acetonitrile.
Peptides were separated with a 48-min gradient (2–40% buffer B for
95 min, 40–80% buffer B for 12 min, and 80% buffer B for 13 min).
MS/MS of the top 10 most intense ions was accumulated on the
Thermo LTQ during each run. Peak lists were generated using the
software Bioworks 3.3. The data were then analyzed with X!Tandem
version 2008.01.01.1 and Ensembl human database version 49.36K
(December 2006; 47,648 entries) based on human assembly NCBI 36
(October 2005). X!Tandem parameters were standard (fragment ion
mass tolerance of 0.40 Da and a parent ion tolerance of 1.8 Da;
iodoacetamide derivative of cysteine was specified as a fixed modi-
fication). Deamidation of asparagine and glutamine, oxidation of me-
thionine and tryptophan, sulfone modification of methionine, trypto-
phan oxidation to formylkynurenine of tryptophan, and acetylation of
the N terminus were specified as variable modifications. A threshold
of �log(Expect scores) � 2.0 was used as a filtering criteria for
X!Tandem; this is a standard value that is suitable for analysis with
secondary statistical filtering such as clustering and enrichment cal-
culation. Finally results were imported into the software Scaffold
(version 2_00_02; Proteome Software Inc., Portland, OR) for protein
identification validation, normalization, and comparison of spectral
count or occurrences (that is, the number of all redundant peptide hits
for a given protein). Peptide identifications were accepted if they
could be established at greater than 95.0% probability as specified by
the Peptide Prophet algorithm (7). Proteins were assigned by the
Protein Prophet algorithm (8), and identifications were accepted if
they could be established at greater than 95.0% probability and
contained at least two identified peptides. Proteins that contained
similar peptides and could not be differentiated based on MS/MS
analysis alone were grouped to satisfy the principles of parsimony.
The peptide false positive rate (FPR) was calculated using the Scaf-
fold software. For each charge state, the incorrect assignments are
tabulated to calculate the FPRi using the following formula: FPRi �
((Number assigned incorrect at 95% probability)/(Total number incor-
rect assigned)) � 100 where i is the charge state. The assignment is
called correct if it is associated with a protein that has a 95% prob-
ability according to the Protein Prophet algorithm (13) and a minimum
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of two peptides each with a 95% probability based on the Peptide
Prophet algorithm (10). The FPR is the sum of the values for each
charge state.

Statistical and Pathway Analysis—To assess accuracy of protein
quantitation, results of proteomics analysis of 10 samples per grade
were averaged, and a coefficient of variance was calculated for each
identified protein. Significant grade-dependent differentials were fil-
tered with a one-way analysis of variance (ANOVA) (9, 10) using
thresholds of F-distribution cumulative probability of 0.05 or 0.01 (two
standard filtering thresholds).

Statistically significant proteins were analyzed for molecular func-
tion, molecular process, and pathway enrichments using the Panther
tools (11) and Gene Ontology. Network and metabolic pathways were
analyzed using Ingenuity Pathways Analysis (IPA) (version 6; Ingenuity
Systems Inc., Redwood City, CA). Statistically significant proteins
were clustered using self-organizing maps (SOMs) with the software
VisualGene (version 1.01.0024; Visipoint, Kuopio, Finland). SOMs are
artificial neural networks based on an unsupervised algorithm (12).
Protein levels of clusters were visualized in a heat map across grades
using the script Pixelirator (University of California Davis Genome
Center).

RESULTS

Frozen and FFPE Tissues Yield Similar Proteomics Re-
sults—Initial experiments focused on the question of whether
analysis of FFPE samples of RCC tissue yields proteomic
profiles similar to those obtained from frozen samples. Be-
cause FFPE tissues are readily obtained and are considerably
more abundant because of the availability of archived sam-
ples from pathology departments, such a finding would result
in the ability to analyze substantially more samples. To ad-
dress this issue, FFPE samples and their frozen tissue coun-
terpart samples were both processed identically for the first
part of this study.

Frozen tissues were obtained from nephrectomy speci-
mens of three patients with confirmed (by oncologic pathol-
ogist A. D. B.) grade 2 ccRCC, and corresponding FFPE
slides were obtained from the University of California Davis
Pathology archives after appropriate Institutional Review
Board approval. For the frozen samples, tumor grading was
based on H&E slides from the corresponding frozen tumor; for
FFPE tissues, H&E-stained tumor tissue obtained from the
same block was scraped off of the slides as described under
“Experimental Procedures.” All samples were processed with
the Liquid Tissue� MS Protein Prep kit and subjected to
tryptic digestion and tandem mass spectrometric analysis.

From these samples, 185 distinct proteins with two or more
tryptic fragments were identified (supplemental Table 1).
When proteomics analyses of FFPE and frozen samples were
compared, the frozen samples yielded 168 proteins as com-
pared with 143 for the FFPE processed samples, resulting in
an overlap between the two data sets of 68% (Fig. 1). To
further examine whether using FFPE samples would introduce
bias, using the Panther libraries we analyzed the molecular
function of the proteins identified from both tissue prepara-
tions. No significant differences in Panther molecular func-
tions were observed between the two tissue sample prepa-

rations (Fig. 1). Oxidoreductases exhibited the most
differences as expected because they are the most repre-
sented molecular function. Other functions are represented
similarly in both tissue sample preparations.

Of the total 185 unique proteins identified in this experi-
ment, only five proteins were significantly different (pairwise
one-tailed t test p value �0.01) between FFPE and frozen
tissue. All of these proteins, HSPA8, ANXA4, TUBB2C,
YWHAB (14-3-3 �/� isoform), and TUBA1A, were found to be
present at greater abundance in the FPPE samples. In addi-
tion, all of these proteins are classified by Gene Ontology as
binding proteins. These experiments show that archived FFPE
samples are adequate for proteomics analysis and biomarker
discovery as compared with frozen tissue, and thus the
readily available FFPE samples were utilized for subsequent
analyses in this study.

Proteomics Analysis of ccRCC Yields Grade-specific Vari-
ations in Protein Quantities—On the basis of the above re-
sults, additional proteomics analyses were performed on 50
FFPE tissues, which were evenly distributed among normal
tissue and ccRCC of all Fuhrman grades (n � 10 per grade).
Tumor tissues of confirmed grade were identified on FFPE
slides in situ and removed by scraping, and proteomics anal-
ysis was performed by shotgun proteomics as described
under “Experimental Procedures.” In the cases of four pa-
tients, both normal and cancer tissue was identified on the
same slide; these tissues were analyzed separately.

A total of 1,470,313 spectra were analyzed, resulting in the
identification of 777 proteins containing two or more peptide
fragments. The rate of false positive for the filtering criteria
used (minimum of two peptides at 95% confidence) is shown
in supplemental Table 2 along with ages and genders of
patients from whom the materials were obtained, the normal-
ized spectral counts are shown in supplemental Table 3, the
raw spectral counts are shown in supplemental Table 4, the

FIG. 1. Comparison of proteomics analysis from frozen and
FFPE tissues. Proteins identified by a minimum of two peptides (95%
confidence) per sample in either class (n � 3 samples per class) are
shown by Venn diagram. The complete list of these proteins is in
supplemental Table 1. The colored circles represent pie charts of
Panther molecular functions constructed from proteins identified in
each sample source.
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TABLE I
105 grade-specific proteins that were significantly different among grades (ANOVA p value �0.01)

The average of normalized spectral counts are shown for normal renal cells (N) and RCC grades 1–4 (G1–G4) cells. ENSP, Ensembl peptide;
UpG1, highest level in grade 1 or 2; UpG3, highest level in grade 3 or 4.

Symbol Name ENSP ID Entrez
ID

SOM
cluster

ANOVA
p

value

Average

N G1 G2 G3 G4

GATM Glycine amidinotransferase ENSP00000303263 2628 Down 1.3e�9 17 2.6 1.2 0.6 0
ALDH6A1 Methylmalonate-semialdehyde dehydrogenase ENSP00000342564 4329 Down 2.8e�9 14.9 1.8 0.4 0.3 0
ALDOB Fructose-bisphosphate aldolase B ENSP00000363988 229 Down 5.4e�8 15.5 1.8 1.2 0 0
GPX3 Glutathione peroxidase 3 precursor ENSP00000373477 2878 Down 9.6e�8 6 0.7 0.2 0 0.1
ALDH2 Aldehyde dehydrogenase ENSP00000261733 217 Down 1.1e�7 7.3 0.6 1.1 0 0.2
TINAGL1 Tubulointerstitial nephritis antigen-like precursor ENSP00000271064 64129 Down 3.7e�7 3.3 1.3 0.5 0.1 0
CNDP2 Cytosolic nonspecific dipeptidase ENSP00000325548 55748 UpG1 8.0e�7 8.3 28.2 27.5 8.6 4.2
SHMT1 Serine hydroxymethyltransferase, cytosolic ENSP00000318868 6470 Down 9.7e�7 3.7 1.3 1.3 0.1 0
COL18A1 Collagen, type XVIII, �-1 ENSP00000383201 80781 Down 1.2e�6 7.2 4.3 2.5 0.7 1.2
ASS1 Argininosuccinate synthase ENSP00000253004 445 Down 1.7e�6 8.2 0.9 0 0 0
HSPG2 Heparan sulfate proteoglycan core precursor ENSP00000363827 3339 Down 1.9e�6 25.6 14.7 7.7 1.8 2.1
ANPEP Aminopeptidase N ENSP00000300060 290 Down 2.3e�6 8.6 0.5 0.1 0.1 0
PKM2 Pyruvate kinase isozymes M1 and M2 ENSP00000334983 5315 Up 2.7e�6 14.3 51.7 52.2 49.5 42.3
ALDH4A1 �1-Pyrroline-5-carboxylate dehydrogenase ENSP00000290597 8659 Down 4.8e�6 9.6 0.4 0.3 0 0
ACADM Medium chain-specific acyl-CoA dehydrogenase ENSP00000359871 34 Down 5.3e�6 5.3 0.8 1.1 0.1 0.2
FBP1 Fructose-1,6-bisphosphatase 1 ENSP00000364475 2203 Down 6.6e�6 5.7 1.3 1.3 0 0.6
SUCLG2 Succinyl-CoA ligase � chain ENSP00000307432 8801 Down 1.4e�5 2.8 0.2 0.1 0.6 0
ENO1 �-Enolase ENSP00000234590 2023 Up 1.7e�5 20.9 78 48.8 29.5 34.4
ACAA2 3-Ketoacyl-CoA thiolase, mitochondrial ENSP00000285093 10449 Down 2.0e�5 11.7 5.7 3.9 0.3 0.2
CFL1 Cofilin-1 ENSP00000309629 1072 Up 2.0e�5 1.9 2.8 4.1 5.4 6.7
AGMAT Agmatinase ENSP00000364986 79814 Down 2.9e�5 3.6 0.9 0.4 0 0
PEBP1 Phosphatidylethanolamine-binding protein 1 ENSP00000261313 5037 Down 3.5e�5 11.9 9.4 6.8 6.8 3.7
KHK Ketohexokinase ENSP00000260598 3795 Down 5.0e�5 4.2 0.8 1.2 0.3 0.1
ADH1C Alcohol dehydrogenase 1B ENSP00000306606 126 Down 5.1e�5 3.8 0.6 0 0 0.1
NDRG1 Protein NDRG1 ENSP00000319977 10397 UpG1 9.2e�5 0.3 10.2 11.3 3.8 3.3
PCK2 Phosphoenolpyruvate carboxykinase ENSP00000216780 5106 Down 9.7e�5 12 1.2 0.4 0 0
BHMT Betaine-homocysteine S-methyltransferase 1 ENSP00000274353 635 Down 0.0001 6.4 4 4.3 0 0.1
GPI Glucose-6-phosphate isomerase ENSP00000348877 2821 UpG1 0.0001 3.9 15.5 15.4 15.2 7.6
LDHA L-Lactate dehydrogenase A chain ENSP00000227157 3939 UpG1 0.0002 3.4 21.3 20.4 16.5 13.1
HRSP12 Ribonuclease UK114 ENSP00000254878 10247 Down 0.0002 3.2 0.5 0.5 0 0
ANXA4 Annexin A4 ENSP00000347164 307 UpG1 0.0002 5.5 20.2 22.4 13.9 9.6
ACY1 Aminoacylase-1 ENSP00000232907 95 Down 0.0002 9.5 2.6 0.8 0 0
HIBCH 3-Hydroxyisobutyryl-CoA hydrolase ENSP00000352706 26275 Down 0.0002 2 0.2 0.2 0 0.1
HSD17B10 3-Hydroxyacyl-CoA dehydrogenase type-2 ENSP00000168216 3028 Down 0.0003 1.4 0.3 0.1 0.2 0
ALDH9A1 4-Trimethylaminobutyraldehyde dehydrogenase ENSP00000271359 223 Down 0.0003 1.7 0.2 0.6 0.3 0.1
COL4A2 Collagen � ENSP00000257309 1284 Down 0.0003 10.6 4.3 2.3 3.7 2.5
ATP5O ATP synthase O subunit ENSP00000290299 539 Down 0.0003 3.6 0.3 0.5 0.4 0.4
PFKL 6-Phosphofructokinase, liver type ENSP00000269848 5211 UpG1 0.0003 0.6 5.5 4.1 1.3 0.2
AMBP AMBP protein precursor, �1-microglobulin ENSP00000265132 259 Down 0.0004 1.5 0.1 0.2 0 0.2
AIFM1 Apoptosis-inducing factor 1 ENSP00000287295 9131 Down 0.0005 5.5 0.6 0.7 0.6 0.1
MME Neprilysin ENSP00000353679 4311 Down 0.0006 2.4 0.1 0.1 0 0
DDC Aromatic-L-amino-acid decarboxylase ENSP00000350616 1644 Down 0.0006 4 0.4 0.6 0 0
PDIA6 Protein-disulfide isomerase A6 precursor ENSP00000272227 10130 Up 0.0006 1.9 3.3 4 3.9 8.3
ECHS1 Enoyl-CoA hydratase ENSP00000357535 1892 Down 0.0006 4.6 1 1.2 0.3 0.1
AKR1A1 Alcohol dehydrogenase ENSP00000312606 10327 Down 0.0006 9.1 4.3 3.8 1.8 1.2
COL4A1 Collagen �-1(IV) chain precursor (arresten) ENSP00000364979 1282 Down 0.0006 5.2 1.6 0 0.1 0.4
ALDOA Fructose-bisphosphate aldolase A ENSP00000336927 226 Up 0.0006 2.2 8.8 10.8 14.1 12.8
PGK1 Phosphoglycerate kinase 1 ENSP00000362413 5230 Up 0.0006 13.5 31 35 27 24
VIM Vimentin ENSP00000224237 7431 Up 0.0006 20.8 45.4 46.4 47.3 64.5
HSPA8 Heat shock cognate 71-kDa protein ENSP00000227378 3312 Up 0.0006 8.5 6.5 10.4 13.4 15.6
HSPA5 78-kDa glucose-regulated protein precursor ENSP00000324173 3309 Up 0.0007 5.2 5.2 6.7 9.6 13.5
CALR Calreticulin precursor ENSP00000320866 811 Up 0.0007 0.5 1.1 1.6 2.4 5
PTRF Polymerase I and transcript release factor ENSP00000349541 284119 UpG1 0.0007 0.1 2.5 1.1 0.1 0.4
ACTN4 �-Actinin-4 ENSP00000252699 81 Down 0.0008 26.9 17.4 13.3 13.8 15.8
GLUDP5 Glutamate dehydrogenase 1 ENSP00000277865 2746 Down 0.0008 8.3 4.2 3.9 1.3 1.3
ACAT1 Acetyl-CoA acetyltransferase ENSP00000265838 38 Down 0.0009 11.4 2.5 2.1 5.6 0.5
PFKP 6-Phosphofructokinase type C ENSP00000370517 5214 UpG1 0.0010 0.1 10.7 8.8 5.1 2.7
DAK Dihydroxyacetone kinase ENSP00000310493 26007 Down 0.0010 2.2 0.4 0.2 0 0
CRYZ Quinone oxidoreductase ENSP00000339399 1429 Down 0.0010 3.8 3.9 5.3 1.9 1.2
PBLD Phenazine biosynthesis-like domain-containing

protein
ENSP00000308466 64081 Down 0.0011 1.3 0.2 0.6 0 0

DDX17 Probable ATP-dependent RNA helicase DDX17 ENSP00000216019 10521 UpG1 0.0011 0 0.3 1 0.4 0.3
DARS Aspartyl-tRNA synthetase, cytoplasmic ENSP00000264161 1615 UpG1 0.0012 0.2 1.2 0.4 0.2 0.5
ATP5B ATP synthase subunit � ENSP00000262030 506 Down 0.0014 33.6 17.3 19.5 19.1 10.9
HADH Hydroxyacyl-coenzyme A dehydrogenase ENSP00000312288 3033 Down 0.0015 3.4 0.9 0.8 0.9 0.1
SLC9A3R1 Ezrin-radixin-moesin-binding phosphoprotein 50 ENSP00000262613 9368 Down 0.0016 3.2 0.4 0.8 0.3 0.2
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unique peptide counts are shown in supplemental Table 5, the
protein coverage is shown in supplemental Table 6, and the
protein confidence is shown in supplemental Table 7. From
the set of 777 identified proteins, 105 showed significant
differences among the four Fuhrman grades and the normal
kidney tissue using a one-way ANOVA (p value �0.01; Table
I), and 180 proteins were significantly different using a slightly
less stringent one-way ANOVA (p value �0.05; shown in
supplemental Table 3).

Protein levels were determined by spectral count (13, 14)
after normalization. Each protein spectral count (the number
of all possibly redundant peptide hits for a given protein) was
normalized across the 50 samples using the total number of
spectra for each sample. In addition, four proteins that had
the lowest inter- and intragrade variability, MYH9, tubulin �

chain (TUBB) (shown in Fig. 2A), histone H4, and peptidyl-
prolyl isomerase A, were chosen to be used as endogenous
controls. Factors using the averages in a given tumor grade of
these four proteins were used to normalize spectral count

when comparing samples among grades. By way of example,
spectral count variability is shown for three representative
proteins that have distinct patterns of expression changes
within grades (Fig. 2, B–D). In these examples, analysis by
one-way ANOVA (p value �0.01) revealed statistically signif-
icant changes in proteins levels across grades.

To confirm the validity of the protein identification and
quantitation methods used in this study, grade-specific
changes of several proteins representative of the LC-MS data
were determined by immunoblotting. To handle properly the
variability between individual samples among grades (for ex-
amples, see Fig. 2), we compared four samples of three
different grades, from normal tissue as well as grades 1 and 3,
to confirm the LC-MS data. Four representative antibodies of
proteins, whose average normalized spectral counts (n � 10)
were significantly altered across grades, were utilized from
the 10 samples. There was a high degree of consistency
between the immunoblot protein band intensities and the
normalized spectral count in all cases (Fig. 3). As further

TABLE I—continued

Symbol Name ENSP ID Entrez
ID

SOM
cluster

ANOVA
p

value

Average

N G1 G2 G3 G4

ATP5A1 ATP synthase subunit � ENSP00000282050 498 Down 0.0017 19.3 7.8 11.2 12.3 5.8
ACSM2B Acyl-CoA synthetase medium chain family

member 2B
ENSP00000327453 348158 Down 0.0017 7.7 1.8 0.2 0.3 0

FGG Fibrinogen � chain precursor ENSP00000336829 2266 Up 0.0018 6.3 3.5 10.4 23.3 24.3
DCXR L-Xylulose reductase ENSP00000303356 51181 Down 0.0021 2.1 0.4 0.3 0.2 0.1
ALDH1A1 Retinal dehydrogenase 1 ENSP00000297785 216 UpG1 0.0022 3 8.2 10.1 4.7 1.7
CRIP2 Cysteine-rich protein 2 ENSP00000328521 1397 UpG1 0.0022 0.5 1.4 0.6 0 0.2
IDH2 Isocitrate dehydrogenase ENSP00000331897 3418 UpG3 0.0024 5.6 0.7 1.1 5.6 1.3
FGB Fibrinogen � chain precursor ENSP00000306099 2244 Up 0.0025 5.6 2.5 7.4 20.5 21.6
ALDOC Fructose-bisphosphate aldolase C ENSP00000226253 230 Up 0.0026 1.3 5.1 6.3 6.6 6.6
ATP1A1 Na�- and K�-transporting ATPase subunit �-1

precursor
ENSP00000358508 476 Down 0.0027 9.3 1.8 1.3 3.3 0.5

ABAT 4-Aminobutyrate aminotransferase ENSP00000268251 18 Down 0.0031 3.9 0.6 0 0 0
VTN Vitronectin precursor ENSP00000226218 7448 0.0033 5.4 1.4 0.6 1.7 3.9
GGTLA1 �-Glutamyltransferase 5 precursor ENSP00000263112 2687 Down 0.0033 2.8 0.2 0 0 0
TF Serotransferrin precursor ENSP00000264998 7018 Down 0.0034 9.5 6.1 5.2 2.7 3.8
S100A9 Protein S100-A9 ENSP00000295382 6280 Up 0.0034 2.5 3 0.7 6.1 16.4
FN1 Fibronectin precursor ENSP00000338200 2335 Up 0.0039 1.6 7.8 5.9 18.3 25.6
LRP2 Low density lipoprotein receptor-related protein

2 precursor
ENSP00000263816 4036 Down 0.004 2.8 0.2 1.3 0 0

ALDH7A1 �-Aminoadipic semialdehyde dehydrogenase ENSP00000297542 501 Down 0.004 2.5 0.4 0.8 0.1 0
ADFP Adipophilin ENSP00000276914 123 UpG1 0.0041 0 2.2 0.7 0.1 0.2
SERPINH1 Serpin H1 precursor ENSP00000350894 871 Up 0.0042 0.6 3.9 3 4.8 8
HSP90AB1 Heat shock protein HSP 90-� ENSP00000325875 3326 Up 0.0044 8.2 8.8 11.1 15.1 15.4
LAMA5 Laminin subunit �-5 precursor ENSP00000252999 3911 Down 0.0044 5 3.8 4.2 0.3 0.4
SNORA67 Eukaryotic initiation factor 4A-I ENSP00000293831 26781 Up 0.0053 0.5 0.7 0.6 1.1 3.2
CRYL1 �-Crystallin homolog ENSP00000298248 51084 Down 0.0058 2.8 2.5 1.5 0 0.1
HINT1 Histidine triad nucleotide-binding protein 1 ENSP00000304229 3094 UpG1 0.0058 0.2 0.3 1.5 0.4 0.1
QDPR Dihydropteridine reductase ENSP00000281243 5860 Down 0.0061 1.4 0.5 0.7 0.3 0.1
ECH1 �3,5,�2,4-Dienoyl-CoA isomerase ENSP00000221418 1891 Down 0.0064 4.1 1.5 1.9 0.2 1
CORO1A Coronin-1A ENSP00000219150 11151 Up 0.0067 0.1 0.1 0.4 0.4 1.1
ENO2 �-Enolase ENSP00000229277 2026 Up 0.0071 0 12.6 6.8 4.8 6.4
DPYSL2 Dihydropyrimidinase-related protein 2 ENSP00000309539 1808 UpG1 0.0072 1.3 3.2 4.3 0.7 1.3
GLYAT Glycine N-acyltransferase ENSP00000340200 10249 Down 0.0075 2 0.1 0 0 0
LDHB L-Lactate dehydrogenase B chain ENSP00000229319 3945 0.0078 12 5.6 7 11.3 4.9
UGT2B7 UDP-glucuronosyltransferase 2B7 precursor ENSP00000304811 7364 Down 0.0079 1 0.1 0 0 0
YWHAZ 14-3-3 protein � and � ENSP00000309503 7534 Up 0.0081 2.3 4.7 3.9 5.7 6.1
TUFM Elongation factor Tu ENSP00000322439 7284 Down 0.0084 3.3 0.3 1.2 1.9 0.8
COX2 Cytochrome c oxidase subunit 2 ENSP00000354876 4513 0.0086 3.6 0.2 0.3 0.9 0.2
EHHADH Peroxisomal bifunctional enzyme ENSP00000231887 1962 Down 0.0089 4.4 1.1 0.3 0 0
PCK1 Phosphoenolpyruvate carboxykinase ENSP00000319814 5105 Down 0.0090 2.2 0 0 0 0
HADHA Trifunctional enzyme subunit � ENSP00000370023 3030 Down 0.0091 6 3 3.9 2.4 0.6
AGRN Agrin precursor ENSP00000368678 375790 UpG1 0.0097 0.3 1.7 1 0 0
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validation of the veracity of the spectral count method, each
of the 18 proteins that were shown to be statistically differ-
ential in our previous work based on 2D gel electrophoresis
and spot optical density (15) showed consistent quantitative
results in the current study. Finally our cluster analysis
showed striking cluster examples (see below) that could not
have been achieved if the relative quantitation was inaccurate.

Immunohistochemistry using selected antibodies was also
performed (Fig. 4), but the use of this technique was not
applicable for validation due to protein compartmentalization
(see Figs. 2 and 3). The MS and immunoblot protocols are
based on a fairly crude sample collection where cells within
the sample are mixed together, whereas the immunohisto-
chemistry shows protein levels within specific cellular
compartments.

As discussed above, the Fuhrman grading system for RCC
utilizes the appearance of the nucleolus for stratification (3).
Thus, the level of the nucleolar protein nucleophosmin was
analyzed, and statistical significance was assessed utilizing a
pairwise t test between normal tissue and grade 1 samples on
one hand and samples of grades 2, 3, and 4 on the second hand
(Fig. 5). Consistent with criteria for classification in the Fuhrman
grading system and as further confirmation of the accuracy of
the grading in this study, nucleophosmin appeared to be sig-
nificantly increased in grade 2, 3, and 4 tumors as compared
with normal tissue and grade 1 (p value � 0.0025).

Proteomics Analysis Shows Biochemical Processes and
Pathways Enhanced in RCC—Comparison of the proteins in

all 50 samples that are statistically differential among all
grades and normal tissue (supplemental Table 2) resulted in
the identification of enriched functions (Table II), molecular
processes (Table III), and metabolic pathways (Table IV) with
a p value �0.01 after multiple testing correction. Pie charts
with the molecular functions, the biological processes, and
the metabolic and signaling pathways are shown in supple-
mental Figs. 1–3.

We note the abundance of dehydrogenases, such as
ALDH4A1, ALDH1A1, ALDH6A1, ALDH9A1, and ALDH7A1, in
the 105 RCC grade-dependent proteins corresponding to a
significant enrichment of dehydrogenases in RCC biology (p
value � 6.6e�22). These proteins, among others, are known
to be involved in xenobiotic metabolism signaling, which itself
exhibits an enrichment p value of 1.15e�4. Xenobiotic me-
tabolism is associated with apoptosis and tumorigenesis and
thus may be playing a critical role in RCC oncogenesis and
response to therapy (see “Discussion”). Another set of iden-
tified proteins (TF, AMBP, fibronectin (FN1), FGB, FGG, and
FGA) is part of the acute phase response signaling pathway,
which is also enriched in this data set (p value � 1.33e�5). TF
and AMBP have decreased levels in higher RCC grades, and
FN1 has increased levels in higher RCC grades. FN1 has been
associated with cell migration and could be involved in the
metastatic process. Fibrin, the proteolytic product of fibrino-
gen, has been associated with positive regulation of cell pro-
liferation, and an increased expression of this protein has
been shown in various malignancies (see “Discussion”).

FIG. 2. Sample variability for four representative proteins across grades. A, TUBB (ANOVA p value � 0.83), a representative of the four
proteins with the lowest intra- and intergrade variability that were used as endogenous controls, is shown. The average value per grade is
shown overlaid. A normalization factor was computed using the four endogenous controls and was used when comparing protein levels among
grades. B–D, normalized spectrum count is shown for three representative proteins that have varying protein level grade patterns.
B, aminopeptidase N (ANPEP); C, LDHA; D, CNDP2.
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From the 180 proteins with ANOVA p value �0.05 (sup-
plemental Table 3), 51 form a network using the IPA soft-
ware (Fig. 6, lower left corner). Using the 27 from the list of
105 proteins with one-way ANOVA p value �0.01, we que-
ried the IPA knowledge database to display 64 direct first-
order neighbors in the IPA network. These 64 proteins have
been associated to 85 of the 105 RCC grade one-way
ANOVA p value �0.01 proteins. Among them, the network
shows that p53, Myc, and HIF-1� are major hubs (Fig. 6,
right). These proteins have known roles in kidney cancer
oncogenesis and progression (see “Discussion”), and their
presence in this ccRCC network diagram confirms the rel-
evance of the 105-protein data set and their association to
kidney cancer.

20 of the proteins significantly different among grades lie in
the glycolysis pathway (Tables II and III). The highly significant
processes and pathways altered in RCC that were found in
this data set are consistent with what was found in previously
published work using two-dimensional gel electrophoresis on
frozen RCC samples from our (15) and other (16) laboratories.
The changes in glycolysis pathway proteins observed in the
present study converge on pyruvate (Fig. 7) demonstrating the
importance of aerobic glycometabolism (the Warburg effect
(16, 17)) in RCC. Furthermore we show (in red in Fig. 7) that
cancer cells increase many of the proteins involved in glycol-
ysis but also may use other related proteins or isoforms. For
example EC 2.7.1.11 (6-phosphofructokinase) shows an in-
crease of both PFKL and PFKP, whereas EC 3.1.3.11 (fructose

FIG. 3. Validation of proteomics MS analysis by immunoblotting. Protein was extracted from tissue samples homologous to that used for
LC-MS analysis and was subjected to immunoblotting using the antibodies described under “Experimental Procedures.” For each protein, the
upper section shows the normalized spectral count, and the lower section shows the corresponding sample immunoblot. a, ALDOA; b, AIFM1
(apoptosis-inducing factor 1, mitochondrial precursor); c, ALDH1A1 (aldehyde dehydrogenase family 1 member A1; retinal dehydrogenase 1);
d, PGK1. G, grade.
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bisphosphatase; FBP1), which governs the reverse reaction, is
down-regulated. Similarly EC 4.2.1.11 (phosphopyruvate hy-
dratase) shows an increase of both ENO1 and ENO2. For EC
4.1.2.13 (fructose-bisphosphate aldolase), there is an in-
crease of ALDOA and ALDOC, whereas ALDOB is reduced,
and for the anaerobic section of the glycolysis, EC 1.1.1.27
(L-lactate dehydrogenase), the LDHA level increases signifi-
cantly, whereas LDHB decreases.

Self-organizing Mapping Shows Grade-specific Trends in
Protein Levels—It can be seen from the previous data that
there exist a variety of patterns of protein levels as a function
of tumor grade such that some proteins are most highly
expressed in low grades, others are most highly expressed in
high grades, and still others are most highly expressed in
intermediate grades. Clustering using a 64-node self-organiz-
ing map algorithm as a function of the modulation of the
protein level across grades (Fig. 8) revealed that the three
chains of fibrinogen, which make up the fully assembled
protein (18), form together a cluster node (Fig. 8, inset). Indeed
FGA, FGB, and FGG are co-localized on chromosome 4
tightly in a 50-kb region, and they have been shown to be
co-regulated by the transcription factor STAT3 (19). Similarly
the � and � chain of ATP synthase clustered together,
whereas the three other chains at a ratio of 1:3 of these two
are present in neighboring cluster nodes with slightly different
level patterns. These findings are consistent with the quater-
nary structure and regulation of these two proteins: this fur-
ther demonstrates the validity of our methods and results.

From the cluster data using 180 proteins that were signifi-
cantly different among grades (p value �0.05), we generated
a Sammon graphic, representing the self-organizing map
clustering with distance and placement of the nodes based on
the similarity of the RCC grade protein level modulation (Fig.
9). This unsupervised neural network learning algorithm rep-
resentation shows varying node sizes representative of the
quantity of proteins that display the given pattern with the
length of lines that link the nodes proportional to the degree of
relatedness between groups (12). Protein levels from specific
regions of similar patterns of expression corresponding to
regions of the Sammon diagram are displayed in a heat map
format (Fig. 9, insets). These heat maps have utility for diag-
nosis using immunohistochemistry of grade-specific protein
abundance to confirm grade diagnosis in cases where path-
ological classification is ambiguous.

DISCUSSION

Kidney cancer is often discovered incidentally, a scenario
that frequently occurs when the disease is already metastatic
at which point 5-year survival is a dismal 5% (1). Given the
staggering resistance of this disease to conventional treat-
ment, the discovery of new druggable therapeutic targets has
the potential to improve these statistics. This is already evi-
denced by the clinical translation of knowledge of kinase
pathways activated in the disease, resulting in trials of the

FIG. 4. Immunohistochemistry of representative tissue across
cancer grades. Representative proteins displaying different grade-
specific patterns of expression are shown analyzed by immunohisto-
chemistry of VIM (20�) (a), AIFM1, apoptosis-inducing factor 1, mi-
tochondrial (10�) (b), and SERPINH1, Serpin H1 precursor, HSP47,
collagen-binding protein (10�) (c).
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kinase inhibitors sorafenib and sunitinib, which have vastly
improved survival of metastatic RCC. Along these lines, elu-
cidation of additional (if not all) biochemical pathways that are
altered in RCC has the likelihood of leading to new interven-
tions; this is a major strength of proteomics and was the goal
of this study.

The use of archived FFPE tissues for proteomics analysis,
as has been done in this study for the first time to our knowl-
edge in RCC, has several advantages over the use of frozen
tissue. Tumor tissue can be readily and visually identified and
separated from normal tissue on unstained slides where it can
by removed with a scalpel and used directly for shotgun
proteomics; and tissues that are in the possession of a pa-

thology department, either paraffin blocks or previously cut
slides, can be utilized for such analysis, greatly expanding the
range and variety of tissues available for proteomics analysis.
Ours is the first report on this technique for kidney cancer, and
we show here that it is entirely consistent with the use of “gold
standard” frozen tissue blocks for similar analysis.

RCC can be pathologically classified into several distinct
subtypes, for example clear cell, papillary, and chromophobe
RCC (1). To preserve the homogeneity of the samples, in this
study we examined only ccRCC. Several observations from
this study relate to the accuracy of the Fuhrman grading

FIG. 5. Levels of nucleophosmin are significantly increased in grades 2–4. Normalized spectrum count for the nucleolar protein
nucleophosmin is analyzed by pairwise test of statistical significance (Student’s t test p value � 0.0025 for normal and grade 1 versus grades
2, 3, and 4).

TABLE II
RCC grade-dependent enriched molecular functions

Significantly enriched molecular functions (p value �0.01 after Bon-
ferroni multiple testing correction) using Panther libraries (13) are
shown. Numbers of hits are the numbers of genes present in the NCBI
Homo sapiens (H.s.) reference set and in the RCC significant 105-
protein set.

Molecular function
NCBI

H.s. ref.
RCC 105 p valuea

Dehydrogenase 225 22 6.59e�22
Oxidoreductase 603 25 4.97e�17
Lyase 155 15 3.66e�15
Hydratase 27 7 4.14e�9
Epimerase/racemase 47 7 1.88e�7
Isomerase 178 9 1.49e�6
Carbohydrate kinase 27 5 1.66e�5
Synthase and synthetase 213 8 7.65e�5
Aldolase 5 3 2.07e�4
Synthetase 96 6 4.60e�4
Transferase 884 12 6.67e�3
Decarboxylase 21 3 1.46e�2
Reductase 184 6 1.72e�2
Extracellular matrix 384 7 2.75e�2

a After Bonferroni multiple testing correction.

TABLE III
RCC grade-dependent enriched biological processes

Significantly enriched biological processes (p value �0.01 after
Bonferroni multiple testing correction) using Panther libraries (13)
are shown. Numbers of hits are the numbers of genes present in the
NCBI H. sapiens (H.s.) reference set and in the RCC significant
105-protein set.

Biological process
NCBI

H.s. ref.
RCC 105 p valuea

Carbohydrate metabolism 592 28 1.04e�20
Glycolysis 46 12 2.07e�16
Fatty acid �-oxidation 27 7 5.09e�9
Amino acid metabolism 230 11 8.59e�8
Fatty acid metabolism 187 10 7.71e�7
Amino acid activation 38 5 7.97e�5
Lipid, fatty acid, and steroid

metabolism
770 14 8.18e�5

Coenzyme and prosthetic
group metabolism

174 7 2.28e�4

Other metabolism 559 11 5.08e�4
Coenzyme metabolism 61 5 7.90e�4
Other carbon metabolism 82 5 3.25e�3
Gluconeogenesis 17 3 7.08e�3
Vitamin biosynthesis 21 3 1.80e�2
Extracellular matrix protein-

mediated signaling
62 4 2.50e�2

a After Bonferroni multiple testing correction.

Grade-dependent Proteomics Characterization of Kidney Cancer

Molecular & Cellular Proteomics 8.5 979



system (3), the most commonly used of the several grading
systems currently in use (2). The finding that the nucleolar
protein nucleophosmin is increased in grades 2–4 as com-
pared with control and grade 1 (Fig. 5) is consistent with the
dictates of the Fuhrman system in which nucleoli appear in
grades 2 and higher. In addition, data in this study (heat
maps in Fig. 9) suggest that the four existing Fuhrman
grades can, on a purely biochemical basis, be distilled down
to two because protein alterations appear more similar
within grades 1 and 2 and within grades 3 and 4. This
separation, as it relates to actuarial survival, has been pre-
viously noted: one report showed no statistical difference in
outcome of patients with grades 1 and 2 (20), whereas
another showed that actuarial survival segregated with
grades 1–2 and 3–4 (21). There have been several other
studies showing a similar trend of prognosis as a function of
the two-tiered grading system (for a review, see Ref. 22),
supporting our proteomics data and our approach to dis-
cover a set of biomarkers for prognosis.

There exist several techniques for non-target driven pro-
teomics analysis that are especially suited for cancer. The use
of two-dimensional gel electrophoresis and mass spectrom-
etry has proved useful in this regard, but they require large
amounts of protein, are quite labor-intensive, and require

manual removal of spots on the gel that introduces operator
error. Another technique, known as PROTEOMEX, utilizes
sera from both healthy donors as well as RCC patients and
relies on immunologic methods of protein identification; this
technique relies on the presence of a robust immunological
response of the RCC patient. Finally shotgun proteomics, the
technique utilized in this study, relies on liquid chromatogra-
phy and tandem mass spectrometry to identify trypsin-di-
gested proteins and subsequent computer analysis to recon-
struct proteins contained within the sample. The advantage of
this technique is that it can identify low abundance proteins
and membrane proteins that are poorly represented in 2D
gels, and its adaptation for use in FFPE samples is relatively
straightforward. There exist several genomics and proteomics
studies in kidney cancer, including one from our laboratory
(15). Other groups have examined RCC proteomics using the
PROTEOMEX (23) and two-dimensional gel electrophoresis/
mass spectrometry techniques (16). Although many of the
proteins discovered by these groups are consistent with the
findings reported here, neither of these groups utilized “shot-
gun” proteomics, which has yielded a greater number of
identified proteins, and neither examined RCC proteomics as
a function of tumor grade. Our results clearly demonstrate
that comparing cancer cells with normal without taking into
account cancer grades will likely not work to identify usable
biomarkers.

As for the quantitation method used in this study, it is
important to remember that spectral counting is a discrete
process, whereas immunoblotting is a continuous one. Fur-
ther, we counted peptides that may originate from the same
protein, whereas immunoblotting is proportional to protein
quantity. This can result in an accentuation of the differences
when comparing LC-MS results with immunoblots, whereas it
is not a factor when comparing samples processed with the
same technology. Every effort was made to specifically ex-
tract tumor tissue in each slide, but the tissue analyzed by
LC-MS and immunoblotting was necessarily a mixture of cell
types. This is in contrast to the immunohistochemistry that
shows discrete cell types and cellular compartments. In the
future, we intend to refine our sampling, cancer grading, and
cell collection (using for example laser capture microdissec-
tion) in an effort to reduce the observed variability between
samples. Nevertheless the sampling size (n � 10 per grade)
and the pathway and clustering analyses have allowed us to
present meaningful results as evidenced by the data in this
study and prior published work (15). We therefore conclude
that spectral counting is a reliable quantitative proteomics
method for the study of kidney cancer.

The uniqueness and importance of the current study relates
to a fine tuning of the proteomics analysis to not simply
discover pathways that are altered in RCC in general but to
examine proteomic variations as a function of tumor grade
and, by extension, of prognosis. It is important to emphasize
that the 105 proteins identified as significantly altered in RCC

TABLE IV
RCC grade-dependent enriched IPA pathways

Significantly enriched pathways (p value �0.01 after Benjamini-
Hochberg false discovery rate multiple testing correction) using IPA
software and databases are shown. Numbers of hits are the numbers
of genes present in the IPA reference database and in the RCC
significant 105-protein set.

Pathway IPA ref. RCC 105 p valuea

Glycolysis/gluconeogenesis 141 20 2.51e�19
Propanoate metabolism 126 17 1.00e�17
Valine, leucine, and isoleucine

degradation
107 17 3.16e�17

Butanoate metabolism 129 15 2.00e�15
�-Alanine metabolism 99 14 2.00e�14
Lysine degradation 144 13 2.51e�12
Pyruvate metabolism 145 13 5.01e�12
Fatty acid metabolism 189 15 7.94e�11
Tryptophan metabolism 239 13 1.74e�8
Fructose and mannose

metabolism
139 8 1.86e�6

Arginine and proline metabolism 178 9 4.90e�6
Pentose phosphate pathway 89 7 4.90e�6
Ascorbate and aldarate

metabolism
82 5 3.24e�5

Urea cycle and metabolism of
amino groups

80 6 3.98e�5

Histidine metabolism 129 7 7.94e�5
Inositol metabolism 25 4 9.12e�5
Glycerolipid metabolism 144 7 1.05e�4
Citrate cycle 59 4 3.47e�3
Glutamate metabolism 78 4 7.94e�3

a After Benjamini-Hochberg false discovery rate multiple testing
correction.
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(Table I) were identified by one-way analysis of variance
across normal tissues and the four tumor grades (p value
�0.01); more data of statistical significance can be mined by
examining pairwise t testing comparing specific grades as
was utilized in the nucleophosmin data (Fig. 5). Reassuringly,
data in the current study show a surprising degree of con-
cordance with our earlier study (15) despite the use of differ-
ent separation techniques (two-dimensional gel electrophore-
sis versus liquid chromatography) and the use of different
quantitation methods despite having used substantially fewer
samples in the earlier study. The current study has greater
“resolution” and utility as compared with other proteomics
studies of RCC that are blind to grade, and for this reason
data obtained here will help answer such questions as 1) what
biochemical events account for progression of RCC within
grade?, 2) what are objective criteria that distinguish among
grades?, and 3) can grade changes be recapitulated by alter-
ation of specific protein expression? The first two issues have

been addressed in this study, and the third is actively being
pursued in our laboratory.

Previous proteomics studies in our laboratory showed that
several glycolytic enzymes were up-regulated as compared
with the normal renal tissues (15); the current study corrobo-
rated these findings and demonstrated grade-dependent
changes in individual pathway proteins (Fig. 7). PGK1 is a
hypoxia-inducible gene under the regulation of p53, and
change in its level may be indicative of the increased glyco-
lytic activity that has been observed in cancer cells for de-
cades (16, 17). Alternatively this increase in PGK1 level may
indicate the hypoxic response via activated p53, a prevalent
phenomenon in cancer tissues, with the consequent up-reg-
ulation in glycolysis. Interestingly the level of this protein was
increased in grades 1 and 2 more than in higher grades,
possibly suggesting that it is a relatively early event in cancer
progression. Myc, which was found to be a hub in the network
scheme (Fig. 6) and targets nucleophosmin (Fig. 6 and Ref.

FIG. 6. Network analysis of proteins showing significant grade-specific changes. Proteins showing significant grade-specific changes
(p � 0.05) are assembled into a network showing direct (solid line) and indirect (dashed line) interactions (left) shown in dark blue. Colored
proteins (red hues) are part of the 105 significantly grade-dependent (p � 0.01) proteins and have accompanying grade-specific histograms
(normal to grade 4 from left to right). The network was grown (right) to include direct first-order neighbors of the significant proteins (p � 0.01).
Connections between a member of the 105 significantly (p � 0.01) grade-dependent proteins and a direct first-order neighbor are shown in
cyan. Connections between direct first-order neighbors are shown in gray.
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24), can also activate glycolytic genes (25). Pyruvate kinase is
a critical enzyme in the present study. Its fetal isoform, pyru-
vate kinase isoform M2 (PKM2), was found to be markedly
increased in all RCC grades, consistent with a recent finding
from another laboratory (26) suggesting that embryonic PKM2
is up-regulated in cancer tissues and may be advantageous
for tumor cell growth. This study demonstrates which grades
have higher expression of glycolysis pathway proteins, lend-
ing support to the hypothesis that the Warburg effect may be

more important at discrete points of cancer progression. It
also appears that the protein isoforms used in the glycolysis
enzymatic reactions may be different in cancer cells than in
normal tissue (Fig. 7).

Grade-dependent changes in ccRCC are also associated
with alterations in protein expression within the intrinsic
apoptosis pathway, a key mechanism by which tumor cells
attempt to evade therapy. Apoptosis-inducing factor
(AIFM1) is a mitochondrial membrane-associated protein
that was originally identified by its translocation from per-
meabilized mitochondria to the nucleus to cause DNA frag-
mentation. Data presented here indicate significant reduc-
tion in AIFM1 in cancer tissues with the magnitude of the
decrease being inversely proportional to grade. These data
provide mechanistic insight into how RCC is able by evad-
ing the extrinsic apoptotic pathway, thereby conferring the
growth advantage on cancer versus non-cancerous cells
and contributing to the high degree of chemotherapy resist-
ance seen in RCC (1).

Our finding of a high degree of significance (p value �

6.6e�22) in changes of proteins of the dehydrogenase class
that are important in xenobiotic metabolism is of considerable
interest in light of research on environmental influences on
oncogenesis (27). There are various reports of dietary factors
that may increase the risk of kidney cancer, and it is conceiv-
able that the observed increase in xenobiotic metabolism is a
marker for this process. In addition, the xenobiotic pathway
may be involved in the response of the tumor to chemother-
apeutic agents. Changes in proteins comprising the acute
phase response are also highly significant (p � 1.33e�5).
Although the acute phase response is seen in infectious and
cardiovascular diseases, its relevance in cancer, specifically
RCC, has also been demonstrated (28, 29). This acute phase
response may underlie the use of immune modulating agents
in classical therapies of RCC, but whether this finding indi-
cates that novel anti-inflammatory therapies may also be use-
ful in treatment of this disease remains to be investigated.

Biomarkers can be segregated into diagnostic and pre-
dictive (prognostic) markers. The heat maps generated (Fig.
9) have utility for confirming grade assignment when path-
ological classification is ambiguous. Although several can-
didate markers are promising, there are currently none in
regular clinical use. Proteomics analysis has the potential to
yield a profile of altered proteins that will lead to a prediction
of tumor behavior. Although the current study was not de-
signed to yield these data, subsequent analyses in our
laboratory using similar techniques and prospective patient
data are currently being undertaken; these data will lead to

FIG. 7. The glycolysis pathway is altered in a grade-specific manner. As representative of grade-specific proteomics data, elements of
the glycolysis pathway are shown as a function of tumor grade. Colors indicate significantly (p � 0.05) higher (red) or lower (green) in RCC
versus normal. Histograms of grade-specific changes are shown adjacent to significantly altered proteins. PGAM, phosphoglycerate mutase;
GPI, glucose-phosphate isomerase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; P, phosphate.

FIG. 8. Cluster analysis of proteins showing significant grade-
specific changes. 181 proteins with an RCC grade ANOVA p value
�0.05 were clustered using a 64-node SOM algorithm on the basis of
the similarity between protein levels across grades. The density of
each node is shown by the gray intensity (black � 0; white � 10). In
each node, minimum (blue), maximum (green), and average (red)
across normal kidney tissue and four RCC grade are plotted. The
nodes were then grouped based on their trend: up, pink; down, cyan;
UpG1, highest level in grade 1 or 2, green; UpG3, highest level in
grade 3, yellow). The bottom panel shows a typical cluster magnified.
It is made of three proteins: the three chains (�, �, and �) of fibrinogen,
the precursor of fibrin. The table shows the underlying spectral count
data for these three protein chains. G, grade.
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a better understanding of the source of variability between
patients and subsequently to prognostic biomarkers from
proteomics data.

In summary, we performed extensive proteomics analysis
as a function of RCC tumor grade and identified proteins and
pathways altered in specific grades. Future work in this field
will correlate outcome data with proteomics analyses and
lead to specific prognostic biomarkers for this disease.
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