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Genome integrity in eukaryotes depends on licensing mechanisms that prevent loading of the minichromosome maintenance
complex (MCM2-7) onto replicated DNA during S phase. Although the principle of licensing appears to be conserved across all
eukaryotes, the mechanisms that control it vary, and it is not clear how licensing is regulated in plants. In this work, we
demonstrate that subunits of the MCM2-7 complex are coordinately expressed during Arabidopsis (Arabidopsis thaliana)
development and are abundant in proliferating and endocycling tissues, indicative of a role in DNA replication. We show that
endogenous MCM5 and MCM7 proteins are localized in the nucleus during G1, S, and G2 phases of the cell cycle and are
released into the cytoplasmic compartment during mitosis. We also show that MCM5 and MCM7 are topologically constrained
on DNA and that the MCM complex is stable under high-salt conditions. Our results are consistent with a conserved
replicative helicase function for the MCM complex in plants but not with the idea that plants resemble budding yeast by
actively exporting the MCM complex from the nucleus to prevent unauthorized origin licensing and rereplication during S
phase. Instead, our data show that, like other higher eukaryotes, the MCM complex in plants remains in the nucleus
throughout most of the cell cycle and is only dispersed in mitotic cells.

Eukaryotic genomes can be very large (up to 1011

nucleotides; Gregory et al., 2007) and are typically
organized into multiple linear chromosomes. To rep-
licate an entire genome, DNA replication forks initiate
from hundreds to thousands of sites known as origins
of replication. This parallel processing strategy enables
efficient replication but also demands that strict reg-
ulatory mechanisms are in place to ensure that each
piece of the genome is replicated precisely once per
cell division cycle. DNA replication origins are re-
stricted to a single firing event per cell division cycle
by a “licensing” mechanism that separates initiation
into two discrete steps: origin selection and origin
activation. While the principle of licensing is con-
served across eukaryotes, the key regulatory proteins
and mechanisms that control it vary. It is not clear how
this process is regulated in plants.

A generalized eukaryotic licensing model based on
yeast and animal systems has been proposed (Dutta
and Bell, 1997; Waga and Stillman, 1998; Bell and

Dutta, 2002). In this model, origin selection occurs in
late M and early G1 phases of the cell cycle when the
six-subunit origin recognition complex (ORC1-6)
binds to origin DNA. DNA-bound ORC recruits the
CDC6 (for cell division cycle 6) and CDT1 (for cdc10-
dependent transcript 1) proteins in early G1, and
together, these proteins facilitate the loading of multi-
ple copies of the putative replicative helicase complex
(minichromosome maintenance complex [MCM2-7])
onto the origin (Randell et al., 2006; Ranjan andGossen,
2006; Bochman and Schwacha, 2008).

The MCM complex consists of six different subunits
(MCM2–MCM7) that interact to form a ring-shaped
heterohexamer with a central channel large enough to
encircle DNA (Adachi et al., 1997; Kearsey and Labib,
1998; Pape et al., 2003; Liu et al., 2008). After loading
onto DNA, the MCM complex interacts with CDC45
and GINS to unwind DNA at the replication fork
(Gambus et al., 2006; Moyer et al., 2006; Pacek et al.,
2006; Chang et al., 2007). Each of the MCM2 to MCM7
proteins contains several highly conserved sequence
features, including an ATP hydrolysis domain, an Arg
finger motif, and a zinc-binding domain (Maiorano
et al., 2006). Based on these features, putative homo-
logs of the MCM2 to MCM7 proteins have been
identified in diverse organisms including fungi, ani-
mals, archaea, and plants (Forsburg, 2004; Shultz et al.,
2007).

Once the MCM complex has been loaded, origins
are licensed to replicate and any site containing the
MCM complex has the potential to form an active
DNA replication fork (Bell and Dutta, 2002). As the
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replication fork progresses, the MCM complex is re-
leased into the nucleoplasm and must be prevented
from reloading onto nascent DNA, as unauthorized
loading can result in rereplication (Fujita et al., 1996;
Tsuruga et al., 1997; Kearsey and Labib, 1998; Namdar
and Kearsey, 2006). Distinct mechanisms have evolved
to prevent MCM reloading during S phase in budding
yeast and animals.
In budding yeast, multiple mechanisms regulate

licensing. Two ORC subunits, ORC2 and ORC6, are
inactivated by cyclin-dependent kinase-mediated phos-
phorylation in S phase (Nguyen et al., 2001; Vas et al.,
2001). ORC6 is subject to additional regulation by direct
interaction with the S phase cyclin CLB5 (Wilmes et al.,
2004). CDC6 levels are reduced by transcriptional re-
pression and ubiquitin-targeted destruction, and any
remaining CDC6 is phosphorylated and inactivated
by interaction with the mitotic cyclin CLB2 (Moll
et al., 1991; Drury et al., 1997, 2000; Mimura et al.,
2004). In addition, CDT1 and the MCM complex are
actively exported from the nucleus during S phase,
which prevents their association with replicated DNA
(Tanaka and Diffley, 2002; Liku et al., 2005). After
mitosis is complete, MCM is imported gradually back
into the nucleus and reloaded onto the DNA in prep-
aration for the next S phase. Simultaneous deregulation
of each of these mechanisms is required for detectable
rereplication (Nguyen et al., 2001; Vas et al., 2001).
In animal systems, the MCM complex remains in the

nucleus during S phase but its loading is prevented by
inactivation of the MCM loading factor, CDT1 (Diffley,
2004; Blow and Dutta, 2005; Kerns et al., 2007). As
animal cells enter mitosis, the MCM complex is briefly
dispersed into the cytoplasm followed by reassociation
with chromatin in late anaphase (Todorov et al., 1994;
Coue et al., 1996; Schulte et al., 1996; Su and O’Farrell,
1997). CDT1 is the primary target for licensing control
in animals, and deregulation of CDT1 can induce
rereplication (Melixetian et al., 2004; Nishitani et al.,
2004; Thomer et al., 2004; Teer and Dutta, 2008). CDT1
activity is regulated by direct interaction with the
Geminin protein and by ubiquitin-targeted proteolysis
(Wohlschlegel et al., 2000; Fujita, 2006; Kim and
Kipreos, 2007). Geminin levels fluctuate through the
cell cycle, reaching a maximum in S, G2, and M phases
when licensing is prohibited (Wohlschlegel et al., 2000).
MCM subunits have been identified in diverse plant

genomes, including Arabidopsis (Arabidopsis thaliana;
Springer et al., 1995; Stevens et al., 2002; Masuda et al.,
2004; Dresselhaus et al., 2006; Shultz et al., 2007), rice
(Oryza sativa; Shultz et al., 2007), maize (Zea mays;
Sabelli et al., 1996, 1999; Bastida and Puigdomenech,
2002; Dresselhaus et al., 2006), and tobacco (Nicotiana
tabacum; Dambrauskas et al., 2003). Consistent with a
role in DNA replication, MCM genes from Arabidop-
sis (Springer et al., 1995, 2000; Holding and Springer,
2002; Stevens et al., 2002) and maize (Sabelli et al.,
1996; Bastida and Puigdomenech, 2002; Dresselhaus
et al., 2006) are preferentially expressed in young
tissues that contain a high number of replicating cells.

Homozygous mutants of the Arabidopsis MCM7 ho-
molog, prolifera (PRL), are embryonic lethal (Springer
et al., 2000), and heterozygous mutants display im-
proper cytokinesis that is likely related to defects in S
phase progression (Holding and Springer, 2002). Sev-
eral reports have suggested that MCM dynamics in
plants resemble those in budding yeast (Springer et al.,
2000; Dresselhaus et al., 2006; Takahashi et al., 2008). In
this report, we analyzed the expression, subcellular
location, and chromatin-binding properties of MCM
subunits to determine whether active MCM export
during S phase plays a role in regulating licensing in
plants.

RESULTS

Arabidopsis MCM Complex Subunits Are

Developmentally Regulated

Because the MCM2-7 complex is predicted to func-
tion as a heterohexamer at the replication fork, we
examined the expression profile for each of the six
subunits across various stages of Arabidopsis vegeta-
tive and floral development. Relative transcript levels
were determined by real-time quantitative reverse
transcription (RT)-PCR and normalized using the
seedling values (Fig. 1A). Seedling values were chosen
for normalization because expression levels were in
the middle of the detected range. The pattern of MCM
gene expression generally followed the pattern of
Arabidopsis Cyclin B 1;1 (CYCB1;1; Fig. 1A), which
encodes a B-type cyclin that is a marker for cell pro-
liferation (Ferreira et al., 1994). MCM and CYCB1;1
mRNAs were most abundant in cultured cells, shoot
apices, and flower buds, which contain mitotic and
endocycling cells (Galbraith et al., 1991; Barow, 2006).
The cell culture was sampled during the exponential
stage of growth and, based on CYCB1;1 expression,
contained a comparable fraction of replicating cells as
the microdissected shoot apical region. The lowest
signals were detected in mature and senescing leaves,
consistent with the absence of DNA replication in
these tissues.

Comparison of the relative transcript levels across
the various plant tissues revealed correlations ranging
from 0.99 (MCM3 versus MCM5) to 0.91 (MCM4
versus MCM6; Supplemental Table S4), indicating
that expression of theMCM2 toMCM7 genes is tightly
coordinated. The one exception wasMCM2 expression
in cultured cells, which was 20-fold higher than in
seedlings, whileMCM3 toMCM7 expression was only
3- to 6-fold higher (Fig. 1A; Supplemental Table S3).
This difference was not observed in shoot apices,
where expression of the MCM genes, including
MCM2, were 3- to 5-fold higher than in seedlings.
The high levels ofMCM2mRNA in cultured cells were
reproducibly detected in separate experiments, sug-
gesting that MCM2 expression is deregulated in the
cultured Arabidopsis cells. We do not know whether
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deregulation of MCM2 transcription has functional
implications, but there are numerous reports of MCM
overexpression in cancer cells (Lei, 2005; Honeycutt
et al., 2006; Mukherjee et al., 2007; Winnepenninckx
and Van den Oord, 2007; Scarpini et al., 2008).

We asked if MCM mRNA and protein levels change
in parallel during Arabidopsis development. For these
experiments, we generated polyclonal antibodies
against recombinant Arabidopsis MCM5 and MCM7
proteins. The antibodies specifically recognized re-
combinant MCM5 and MCM7 on immunoblots de-
spite significant sequence homology in their AAA+
domains (Supplemental Fig. S1A). The antibodies also
detected single bands of the expected sizes on immu-
noblots of total protein extracts from Arabidopsis
(Supplemental Fig. S1B, lanes 2 and 5) and tobacco
(Supplemental Fig. S1B, lanes 3 and 6) cultured cells.
The antibodies were used to examine endogenous
MCM5 and MCM7 levels in total protein extracts from
Arabidopsis tissue samples harvested at developmen-
tal stages equivalent to those used for the mRNA
studies. Consistent with the mRNA profiles, MCM5
and MCM7 proteins were most abundant in cultured
cells (Fig. 1B, lane 1), the shoot apical region (Fig. 1B,
lane 3), and flower buds (Fig. 1B, lanes 9 and 10).

They were not detected in mature tissues (Fig. 1B,
lanes 5–7).

Together, the RNA and protein data demonstrated
that components of the MCM complex are develop-
mentally regulated in Arabidopsis. The MCM genes
are expressed and their proteins are detected primarily
in proliferating tissues, consistent with a role in DNA
replication. The similarity between protein andmRNA
abundance in various tissues suggested that transcrip-
tional regulation is an important determinant of MCM
protein abundance at the tissue level.

MCM5 and MCM7 Display Similar Localization Patterns

To better understand the functional organization of
the MCM complex in plants, we investigated the
subcellular localization of endogenous MCM5 and
MCM7 proteins. Immunoperoxidase staining was
used to visualize MCM5 and MCM7 proteins in cul-
tured cells derived from Arabidopsis (Fig. 2, A–C) and
tobacco (Fig. 2, D–F). The localization patterns of
MCM5 and MCM7 were consistent with nuclear com-
partmentalization in the majority of cells from both
species, and the pattern was clearly different from the
diffuse background staining obtained using normal

Figure 1. Expression of the Arabidopsis MCM2-7 complex is coregulated during development. A, Quantitative RT-PCR analysis
of MCM2-7 mRNA abundance in Arabidopsis vegetative (shaded green) and floral (shaded blue) tissues and in suspension cell
culture (shaded yellow). The tissue types listed at the top are described in “Materials andMethods.” Each reaction was performed
in triplicate, and SE calculations are reported in Supplemental Table S3. All values were normalized to Ubiquitin-Conjugating
Enzyme (At5g25760), and relative levels are scaled to expression in seedlings. CYCB1;1 (At4g37490) was used as a marker for
cell proliferation. The abundance of MCM2 transcripts in cultured cells was verified in multiple experiments. B, Immunoblot
analysis of MCM5 and MCM7 protein abundance in equivalent tissues to those used in A. Total protein extract (50 mg) from
cultured cells (lane 1), seedling (2 weeks; lane 2), shoot apex (lane 3), elongating leaf (,1 cm; lane 4), mature leaf (.2 cm; lane
5), senescing leaf (lane 6), cauline leaf (.2 cm; lane 7), cauline leaf (,1 cm; lane 8), flower bud (lane 9), open flower (lane 10),
and silique (lane 11) was resolved by SDS-PAGE, and the blots were probed with polyclonal antibodies specific for Arabidopsis
MCM5 (top) and MCM7 (middle) proteins. A nonspecific band that reacted with the secondary antibody was used as a loading
control (bottom).
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rabbit control serum (Fig. 2, C and F). In a small
fraction of cells, a clear nuclear signal could not be
discerned. Because MCM dynamics are related to cell
cycle stage in yeast and animal systems, we used
immunofluorescence microscopy to visualize DNA in
conjunction with the MCMs in tobacco cells (Fig. 2,
G–N). Consistent with the immunoperoxidase results,
both MCM5 (green in Fig. 2, G and H) and MCM7
(green in Fig. 2, K and L) colocalized with 4#,6-
diamidino-phenylindole (DAPI)-stained DNA (blue)
in the majority of cells. In a small fraction of the cells,
the MCM5 and MCM7 signals were diffuse through-
out the cell and did not colocalize with DNA (marked
by arrows). In these cells, condensed chromosomes
characteristic of mitotic cells were visible. The corre-
lation between the presence of condensed chromo-
somes and the diffuse MCM5 and MCM7 signals was
observed in many cells through multiple experiments,
suggesting that MCM is dispersed during mitosis.
We then examined the subcellular localization pat-

terns of MCM5 and MCM7 in Nicotiana benthamiana
root tips, which contain proliferating cell populations
(Fig. 3). N. benthamiana was chosen because the root
tips are large enough to generate 30-mm longitudinal
vibratome sections. For these experiments, histone H1
(blue fluorescence) was used as a marker for chroma-
tin rather than DAPI staining the DNA. Because his-
tone H1 is detected using an antibody as opposed to a

small dye molecule, this strategy allowed us to con-
clude that an absence of MCM signal on condensed
chromosomes was not the result of inaccessibility to
the antibody complex. As in cultured cells, both
MCM5 (Fig. 3, A–D) and MCM7 (3, E–H) colocalized
with chromatin in most root tip cells, but not when
mitotic figures were visible (mitotic figures are marked
with arrows and asterisks). The dim H1 signal in the
central core of the root tip in Figure 3B is characteristic
of poor antibody penetration, most likely due to in-
complete vibratome sectioning. At high magnification
(Fig. 3, D and H), the two patterns of MCM5 and
MCM7 localization were easily distinguishable and
exclusion of MCM from condensed chromatin was
apparent. These results again suggested that MCM5
and MCM7 are in the nucleus throughout most of the
cell cycle and are displaced for only a brief period
during mitosis. In addition, the strong similarity be-
tween our results for root tips and suspension cells
shows that the results in Figure 2 do not arise from a
cell culture artifact.

MCM5 and MCM7 Are in G1, S, and G2/M Nuclei

To further investigate the point in the cell cycle at
which MCM5 and MCM7 shift from the nuclear to the
nonnuclear compartments, we used fluorescence-acti-
vated cell sorting (FACS) to isolate Arabidopsis nuclei

Figure 2. Localization of endogenous
MCM5 and MCM7 proteins in cultured
plant cells. A to F, Immunoperoxidase
staining demonstrated that MCM5 (A
and D) and MCM7 (B and E) displayed
localization patterns consistent with
nuclear compartmentalization in both
Arabidopsis and tobacco cultured
cells. The discrete staining patterns for
MCM5 and MCM7 were distinct from
the diffuse background staining ob-
tained using normal rabbit (NR) control
serum (C and F). G to N, Immunofluo-
rescence microscopy revealed that
MCM5 (green in G and H) and
MCM7 (green in K and L) colocalized
with DAPI-stained DNA (blue) in most
tobacco cells but not when condensed
chromosomes were visible (arrows).
Differential interference contrast (DIC)
images are shown in J and N. The
images are typical, and these patterns
were observed in many cells over mul-
tiple experiments. Bars = 10 mm (A and
B), 100 mm (C), and 15 mm (D–N).
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with G1, S, or G2/MDNA content (Fig. 4A). The FACS
technology does not distinguish between cells in G2
and early mitosis, both of which have 4C DNA con-
tent. Nuclei were isolated from formaldehyde-cross-
linked, 4-d-old Arabidopsis suspension cells, stained
with DAPI, and sorted using a UV laser (355 nm).
After reversal of the cross-linking, the protein equiv-
alent of 200,000 nuclei was resolved by SDS-PAGE for
each sample and MCM levels were monitored by
immunoblot analysis. MCM5 and MCM7 were de-
tected in the G1 (Fig. 4B, lane 1), S (Fig. 4B, lane 2), and
G2/M (Fig. 4B, lane 3) nuclei. We used a commercial
antibody against the cytoplasmic marker, UDP-Glc
pyrophosphorylase (UGPase), to assess the purity of
the nuclear extracts. The UGPase antibody detected a
band of the expected size in whole cell extracts (Fig.
4C, lanes 1 and 3) but not in G1 (Fig. 4C, lane 2) or
G2/M (Fig. 4C, lane 4) nuclear extracts, while the
MCM5 antibody cross-reacted with a band in both
extracts. These results established that MCM5 and
MCM7 proteins are in nuclei with 4C as well as 2C
DNA content. They are also consistent with our immu-
nohistochemical experiments showing that the MCM
proteins are in the nuclei of most cells and that their
release is associated with chromosomal condensation
characteristic of mitosis. Interestingly, the MCM5 and
MCM7 signals increased from G1 through S, and the
G2 signals were nearly double those in G1 nuclei (Fig.
4B, compare lanes 1 and 3). This observation suggested
a direct relationship between MCM abundance and
DNA content, which also doubles from G1 to G2.

Association of MCM and ORC Proteins with Chromatin

The predominantly nuclear localization pattern of
MCM5 and MCM7 prompted us to examine MCM-
chromatin interactions. Whole cell extracts were pre-

pared from asynchronous Arabidopsis cultured cells
and separated into soluble (S1) and pellet (P1) frac-
tions by low-speed centrifugation (Fig. 5A). The S1
fraction includes Triton-soluble proteins from the nu-
cleoplasm and the cytoplasmic compartment, while
the P1 fraction contains proteins bound to chromatin
and the nuclear matrix. Immunoblot analysis (Fig. 5B)
indicated that the cytoplasmic marker protein UGPase
partitioned to the S1 sample, while the chromatin
marker protein HMGA (for high mobility group A)
was most abundant in the P1 sample, thereby validat-
ing the quality of the fractionation. ORC2 displayed a
similar distribution between the S1 and P1 fractions as
HMGA, while MCM5, MCM7, and ORC1 were found
primarily in the S1 fraction (Fig. 5B, lane 2). The whole
cell extract and S1 signals were of similar intensities
for MCM5, MCM7, and ORC1 (Fig. 5B, compare lanes
1 and 2), indicating that most of these proteins are not
bound to chromatin in asynchronous cells.

In other eukaryotes, the MCM2-7 complex forms a
heterohexameric ring that is topologically constrained
on the DNA (Maiorano et al., 2006). To determine
whether Arabidopsis MCM proteins are similarly
constrained, we treated the P1 fraction with DNase I
(Fig. 5, C and D). Soluble (S2) and nuclease-resistant
(P2) proteins were then separated by centrifugation
and visualized on immunoblots. DNase I treatment
resulted in limited DNA digestion (Fig. 5D, lane 2) and
did not release the chromatin protein HMGA (Fig. 5C).
The majority of ORC2 and approximately 50% of
ORC1 also remained in the nuclease-resistant P2 frac-
tion (Fig. 5C, lane 4). In contrast, MCM5 and MCM7
were nearly completely released upon DNase I treat-
ment (Fig. 5C). This result indicated that MCM is
retained in the P1 fraction by a topological interaction
with DNA rather than by binding to insoluble chro-
matin or nuclear matrix proteins.

Figure 3. Localization of endogenous
MCM5 and MCM7 proteins in N.
benthamiana root tips. Confocal
microscopy was used to visualize
immunofluorescence-labeled MCM5
(green in A, C, and D), MCM7 (green
in E, G, and H), and histone H1 (blue)
in longitudinal sections of root tips
(approximately 30 mm thick). MCM5
(C) and MCM7 (G) colocalized with
DNA in most cells. When condensed
chromosomes were visible, MCM5 (ar-
rows in A–D) and MCM7 (arrows and
asterisks in E–H) did not colocalize
with DNA. At high magnification (D
and H), nuclear and nonnuclear local-
ization patterns are clearly distinct.
Bars = 20 mm (A–C), 10 mm (D), 50
mm (E–G), and 10 mm (H).
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Next, we investigated the stability of the DNA
replication initiation complex by treating the P1 frac-
tion with increasing concentrations of NaCl (Fig. 5A).
Again, soluble (S2) and salt-resistant (P2) proteins
were then separated by centrifugation and visualized
on immunoblots (Fig. 5E). Significant fractions of both
MCM5 and MCM7 were highly salt resistant, remain-
ing in the P2 fraction at 500 mM NaCl (Fig. 5E, lane 12).
Approximately 50% of MCM5 that copurified with the
P1 fraction was released at 100 mM NaCl (Fig. 5E,
compare lanes 3 and 4). Given that no additional
MCM5 was released in the 200 to 500 mM treatments
(Fig. 5E, lanes 5–12), this labile fraction likely repre-

sents nonspecific interactions that persist during the
very low-salt conditions of the initial extraction. At
high salt concentrations, MCM5 is slightly more labile
than MCM7. MCM5 was fully extracted at 1 M NaCl
(Fig. 5E, lanes 13 and 14), while a significant fraction of
MCM7 remained stably associated with the pellet in
this treatment. In contrast, nearly all of the ORC1
protein was extracted by the 100 mM NaCl treatment
(Fig. 5E, lanes 3 and 4) and ORC2 was removed at 200

Figure 4. Arabidopsis MCM5 and MCM7 proteins are nuclear in G1, S,
and G2/M cells. A, Nuclei were isolated from formaldehyde-cross-
linked Arabidopsis suspension cells and sorted into G1, S, and G2/M
populations based on DNA content by FACS. B, After cross-link
reversal, proteins from 200,000 nuclei in G1 (lane 1), S (lane 2), and
G2/M (lane 3) phases of the cell cycle were resolved by SDS-PAGE, and
the blots were probed with anti-MCM5 (top) and anti-MCM7 (bottom)
antibodies. C, Cytoplasmic contamination did not account for the
presence of MCM5 and MCM7 in G2/M phase nuclei. Proteins from
FACS-sorted G1 (lane 2) and G2/M (lane 4) nuclei and from whole cell
extract (WCE; lanes 1 and 3) were resolved by SDS-PAGE. Blots were
probed with anti-MCM5 (top) and anti-UGPase (bottom) antibodies.

Figure 5. Chromatin binding of DNA replication initiation proteins in
asynchronous Arabidopsis cultured cells. A, Scheme of the biochem-
ical fractionation methods. B, An asynchronous culture of Arabidopsis
cells was subjected to the fractionation described in A. Proteins (50 mg)
from the whole cell extract (WCE) and volume equivalents from the
non-chromatin-associated (S1) and chromatin-bound (P1) fractions
were resolved by SDS-PAGE, and the blots were probed with the
indicated antibodies. C, The purified chromatin fraction (P1) was
incubated with or without 1 unit of DNase I for 30 min at 25�C and
fractionated as in A. Volume equivalents from the soluble (S2) and
pellet (P2) fractions were resolved by SDS-PAGE, and blots were probed
with the indicated antibodies. D, DNA was extracted from samples
processed as in C, resolved on a 1% agarose gel, and visualized with
ethidium bromide staining. E, The purified chromatin fraction (P1) was
treated with the indicated concentrations of NaCl for 10 min at 4�C and
fractionated as in A. Volume equivalents from the soluble (S2) and
pellet (P2) fractions were resolved by SDS-PAGE, and blots were probed
with the indicated antibodies.
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to 300 mM NaCl (Fig. 5E, lanes 5–8). Together, these
results demonstrated that the stabilities of the Arabi-
dopsis MCM and ORC chromatin complexes differ
significantly. The very tight association of MCM5 and
MCM7 proteins is indicative of the formation of a
topologically constrained MCM/DNA complex in
Arabidopsis, as has been observed in other eukaryotes.

DISCUSSION

In previous work, we demonstrated that the core
eukaryotic DNA replication machinery is conserved in
plants (Shultz et al., 2007). In this study, we character-
ized the expression profile, localization pattern, and
chromatin-binding properties of the putative replica-
tive helicase complex, MCM2-7. Our results show that
the Arabidopsis MCM2-7 complex is preferentially
expressed in proliferating tissues and that two sub-
units, MCM5 and MCM7, are topologically loaded
onto DNA. This behavior supports a conserved role
for the MCM complex in licensing and DNA replica-
tion in plants. Our experiments also demonstrate that
the MCM5 and MCM7 proteins are located in the
nucleus throughout the plant cell division cycle except
during chromosome condensation in mitosis, when
they are dispersed throughout the cell. These results
strongly suggest that, unlike budding yeast, plants do
not regulate origin licensing by actively exporting the
MCM complex from the nucleus during S phase.
Instead, the plant MCM localization patterns resemble
those in animals, which rely on other mechanisms to
control licensing.

In yeast and animals, the MCM2 to MCM7 proteins
function as a heterohexameric complex at the DNA
replication fork (Maiorano et al., 2006; Bochman and
Schwacha, 2008; Kanter et al., 2008), and each subunit
is present in approximately stoichiometric quantities
(Crevel et al., 2001; Forsburg, 2004; Namdar and
Kearsey, 2006). Previous studies in Arabidopsis and
maize showed that MCM3 (Sabelli et al., 1996; Stevens
et al., 2002), MCM6 (Dresselhaus et al., 2006), and
MCM7 (Springer et al., 1995, 2000; Bastida and
Puigdomenech, 2002; Holding and Springer, 2002)
are expressed in young tissues that contain actively
replicating cells, but it has not been clear whether the
entire complex is coordinately expressed. We showed
that the relative mRNA abundance for each of the six
MCM subunits was highly correlated with replication
potential and that the entire complex was coordinately
expressed across 11 tissue types representing various
stages of Arabidopsis vegetative and floral develop-
ment (Fig. 1; Supplemental Table S4). Furthermore, we
have demonstrated that MCM5 and MCM7 protein
accumulation patterns mirror their steady-state mRNA
levels. Together, these results suggest that MCM2-7
expression is coordinated during plant development,
possibly at the level of transcription.

The E2F/DP transcription factor family regulates
many genes involved in DNA replication and cell

cycle control (De Veylder et al., 2002; Ramirez-Parra
et al., 2003). Arabidopsis MCM2 to MCM5 and MCM7
genes contain E2F consensus sites in their promoters,
and their transcripts are elevated in plants ectopi-
cally expressing E2FA/DPA (Stevens et al., 2002;
Vandepoele et al., 2005). We found an E2F consensus
motif in the Arabidopsis MCM6 promoter (R.W.
Shultz, unpublished data), suggesting that it is also
regulated by the E2F/DP pathway. Interestingly, our
data indicated that MCM2, but not the other MCM
genes, is overexpressed in cultured cells. We validated
this result with multiple experiments and by mining
an independently conducted microarray data set that
analyzed transcript levels in the same Arabidopsis cell
line (Tanurdzic et al., 2008). MCM2 overexpression
suggested that other mechanisms may also affect the
regulation of MCM transcript abundance and under-
scored that caution must be used when cultured plant
cells are employed as models for studying plant DNA
replication.

In budding yeast, MCM activity is modulated in
part by active export from the nucleus during S phase
(Sherman and Forsburg, 1998; Forsburg, 2004), while
in animals it is dispersed only upon nuclear envelope
breakdown in mitosis (Forsburg, 2004). We generated
several lines of evidence indicating that MCM dy-
namics in plants are more similar to those in animals.
First, immunofluorescence microscopy of endogenous
MCM5 and MCM7 proteins in both Arabidopsis and
Nicotiana tissues revealed that the vast majority of cells
display an exclusively nuclear localization pattern
(Figs. 2 and 3). The amount of time spent in each
phase of the cell cycle is remarkably constant across
different tissues and plant species, with G2 and M
constituting approximately one-third of the entire
cycle (Kidd et al., 1987; Baskin, 2000; Menges et al.,
2005). If the MCM complex were exported during S
phase and excluded from the nucleus in G2 and M, at
least one-third of the cell population should show
dispersed localization, which is inconsistent with our
results. Second, we observed a high correlation be-
tween mitotic figures and nonnuclear localization of
MCM, as would be predicted for passive release
during mitosis. Finally, immunoblot analysis of Arab-
idopsis nuclei sorted into G1, S, and G2/M popula-
tions demonstrated that MCM5 and MCM7 are
present in G2/M nuclei at levels comparable to those
in G1 nuclei (Fig. 4). It is difficult to reconcile these
findings with a model where MCM subunits are
exported during S phase.

Several reports have suggested that MCM dynamics
in plants resemble those in budding yeast. However,
most of these studies are based on ectopic expression
of MCM proteins using strong promoters (Dresselhaus
et al., 2006; Takahashi et al., 2008). Nuclear import of
the MCM2-7 complex in other eukaryotes is mediated
by a bipartite nuclear localization signal that is split
between the MCM2 and MCM3 subunits (Kimura
et al., 1996; Liku et al., 2005), so overexpression of a
single subunit without a nuclear localization signal
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may result in its artifactual accumulation in the cyto-
plasm. Hence, it is essential to study MCM dynamics
without perturbing the stoichiometry of the complex.
Indeed, when the endogenous MCM7 promoter was
used to drive the expression of a MCM7-GFP fusion in
Arabidopsis, the majority of cells showed nucleus-
localized GFP (Springer et al., 2000). When these
cells were followed with time-lapse photography, the
MCM7-GFP signal dispersed from the nucleus within
a single 4-min interval (Springer et al., 2000). This
rapid transition from the nucleus to the cytoplasm is
consistent with passive release rather than active ex-
port. Patterns of endogenous MCM3 localization in
maize root tips are also consistent with the patterns we
observed for MCM5 and MCM7 in dicots, suggesting
that MCM dynamics are conserved across higher
plants (Sabelli et al., 1999). However, an analysis of
endogenous MCM6 localization in maize Black Mex-
ican Sweet (BMS) cells revealed that maize MCM6 was
present in the nucleus during G1 and early S and
absent in G2, similar to the pattern of MCM localiza-
tion in budding yeast (Dresselhaus et al., 2006). This
raises the intriguing possibility that export of the
MCM6 subunit during S phase may serve a regulatory
role in preventing licensing during S and G2. It is also
possible that MCM regulation has been altered in the
cultured BMS cells. Additional experiments will be
required to distinguish between these possibilities and
determine MCM6 dynamics in intact plants.
Current models based on data from yeast and ani-

mal systems propose that the MCM complex is loaded
onto origin DNA prior to the onset of DNA replication
and is progressively released as DNA replication forks
proceed during S phase. Thus, in an asynchronous
population of cells, there are two MCM populations:
one that is topologically constrained on DNA and one
that is not. Our analysis of the chromatin-binding
properties of MCM5 and MCM7 in asynchronous
Arabidopsis cells also showed two distinct MCM
populations. The majority of total cellular MCM5
and MCM7 are not bound to chromatin (Fig. 5B).
However, a significant fraction of MCM5 and MCM7
copurify with chromatin and are released by limited
DNase I digestion, indicative of a complex that is
topologically bound to DNA (Fig. 5C). Both MCM5
and MCM7 remained stably associated with chroma-
tin at 500 mM NaCl, but MCM7 was more resistant to
high-salt extraction than MCM5 (Fig. 5E). Similar
results have been reported in yeast, mouse, and frog,
where MCM4, MCM6, and MCM7 form a “core”
complex that is more tightly associatedwith chromatin
than the remaining subunits (Ishimi et al., 1996; Coue
et al., 1998; Holthoff et al., 1998; Sherman and Forsburg,
1998; Sherman et al., 1998; Lee and Hurwitz, 2000;
Prokhorova and Blow, 2000; Davey et al., 2003).
It is intriguing that we detected nearly all of the

total cellular MCM5 and MCM7 proteins in the non-
chromatin-bound fraction (Fig. 5B). In parallel assays,
the majority of the chromatin marker HMGA remained
associated with the pellet fraction, establishing that our

extraction protocol does not result in widespread
dissociation of chromatin and cannot account for the
bulk of MCM5 and MCM7 in the soluble fraction. In
asynchronous, immortalized human cells, the non-
chromatin-bound fraction of MCM ranges from
slightly more than half (Holthoff et al., 1998; Mendez
and Stillman, 2000) to approximately 90% of the total
cellular protein (Burkhart et al., 1995). A significant
fraction of the non-chromatin-bound MCM in the
Arabidopsis culture may have originated from cells
that have exited the cell cycle. In human and mouse
cell lines, MCM subunits remain abundant but are
displaced from chromatin in early quiescent cells
(Madine et al., 2000; Kingsbury et al., 2005). In spite
of the parallels with animal systems, it is possible that
the very large fraction of non-chromatin-bound MCM
has biological relevance in plants, which needs to be
addressed in future experiments.

We have clearly demonstrated that plant MCM5 and
MCM7 subunits remain in the nucleus during S andG2
phases of the cell cycle, which raises the question of
how MCM activity is regulated to prevent rereplica-
tion. In animals, a CDT1-Geminin switch regulates this
process. Computational analyses of plant genomes
have so far failed to identify a candidate Geminin
homolog. A yeast two-hybrid screen for Arabidopsis
CDT1-interacting proteins identifiedGlabra2-Expression
Modulator as a candidate plant Geminin homolog
(Caro et al., 2007). The potential role of Glabra2-
ExpressionModulator in cell proliferation is interesting,
but it remains to be determinedwhether this protein has
a direct role in licensing. The yeast-like dynamics of
MCM6 reported in maize BMS cells (Dresselhaus et al.,
2006) raises the possibility that one or more MCM
subunits may contribute to licensing regulation in
plants. In addition, our result showing that, unlike
ORC2, Arabidopsis ORC1 is weakly associated with
chromatin is reminiscent of mammalian ORC1, which
serves a regulatory function and is not part of the core
origin recognition complex (Li and DePamphilis, 2002;
Ohta et al., 2003). Recent evidence suggested that plant
ORC1 proteins can activate transcription by triggering
localized histone acetylation (Sanchez and Gutierrez,
2009), and it is possible that ORC1 also triggers chro-
matin alterations that regulate DNA replication initia-
tion. Future studies are needed to delineate the precise
timing of MCM release during the cell cycle and elu-
cidate the mechanisms that prevent MCM reloading
onto replicated DNA in S and G2 phases in plants.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

An Arabidopsis (Arabidopsis thaliana ecotype Columbia-0) suspension cell

culture was maintained by subculturing 5 mL of 7-d-old cells into 50 mL of

fresh medium weekly. Cells were grown in 250-mL baffled flasks at 160 rpm

under constant fluorescent light at 21�C. Each liter of medium contained 3.2 g

of Gamborg’s B5 basal mediumwith minimal organics, 0.5 g of MES, 1.1 mg of

2,4-dichlorophenoxyacetic acid, and 30 g of Suc and was adjusted to pH 5.7
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using 1 M KOH before autoclaving. The tobacco (Nicotiana tabacum) NT-1 cell

line was maintained as described previously (Abranches et al., 2005).

For vegetative tissue samples, Arabidopsis plants were grown in soil for

5 weeks at 20�C with an 8-h/16-h light/dark cycle under a light intensity

of 15,000 lux. For floral tissue samples, plants grown as above were shifted

to a 16-h/8-h light/dark cycle to induce flowering. Seedlings were grown

on petri dishes containing 13 Murashige and Skoog salts, 13 Gamborg’s

B5 vitamins, 1% (w/v) Suc, and 0.7% (w/v) agar for 2 weeks. All tissue

samples were frozen in liquid nitrogen prior to RNA and protein extraction.

Nicotiana benthamiana plants used for immunolocalization were grown in

magenta boxes containing 13 Murashige and Skoog salts, 13 Gamborg’s B5

vitamins, 3% (w/v) Suc, and 0.7% (w/v) agar for 6 weeks under constant

light at 25�C.
The tissues analyzed in Figure 1 are as follows: cell culture, 4-d-old

suspension cells; seedling, 2-week-old whole seedlings; shoot apex, the shoot

apex was extracted from all visible leaves and leaf primordia using a

dissecting microscope; elongating leaf, leaves between 0.5 and 1 cm in length;

mature leaf, fully expanded with no signs of senescence; senescing leaf,

mostly green with some yellowing; cauline leaf (.2 cm), large cauline leaves

from the base of the inflorescence; cauline leaf (,1 cm), small cauline leaves

from the top of the inflorescence; flower bud, unopened; open flower, fully

opened; silique, fully formed but still green.

Real-Time RT-PCR

Total RNA was extracted from 100 mg of frozen tissue powder using the

NucleoSpin RNA Plant kit (Clontech). cDNAwas produced from total RNA (3

mg) using PowerScript reverse transcriptase (Clontech) and oligo(dT)15 primer

followed by RNase A (Qiagen) treatment. For quantitative RT-PCR, the cDNA

was diluted 100-fold with water and 2.5 mL was used in a 25-mL reaction

containing 400 nM each primer and 13 SYBR Green PCR master mix (Applied

Biosystems). Samples were analyzed in triplicate in a MX3000P qPCR

thermocycler (Stratagene). Relative expression levels were calculated accord-

ing to the 22DDCT method (Livak and Schmittgen, 2001) using Ubiquitin-

conjugating enzyme (At5g25760) as the internal control. Primers used for these

analyses are listed in Supplemental Table S2.

Cloning of Arabidopsis ORC and MCM Subunits

Genes were cloned using the TOPO cloning system (Invitrogen), verified

by sequencing, and transferred to expression vectors by Gateway recombi-

nation (Invitrogen). Manufacturer protocols were followed unless otherwise

noted. Clones and primers are described in Supplemental Table S1.

Recombinant Protein Purification and

Antibody Production

His6-tagged AtORC1, AtORC2, AtMCM5, and AtMCM7 polypeptides

were expressed in Escherichia coli BL21 (DE3) cells from the pDEST17- and

pET-DEST42-based vectors (Supplemental Table S1), purified by nickel-

nitrilotriacetic acid agarose chromatography (Qiagen), and used as antigens

for antibody production in rabbits (Cocalico Biologicals) The resulting poly-

clonal sera were used directly for immunoblot analysis or affinity purified for

immunolocalization studies. For affinity purification, recombinant proteins

were coupled to HiTrap NHS-activated HP columns (GE Healthcare). Poly-

clonal sera (1 mL) were passed over the column, and antibodies were eluted

with low-pH buffer (100 mM Gly, pH 2.5). The specificity of the affinity-

purified sera was validated by immunoblot analysis (Supplemental Fig. S1).

The HMGA antiserum has been described previously (Spiker and Everett,

1987). UGPase antibodies were from Agrisera, and the histone H1 antiserum

was from Upstate.

Protein Extraction and Immunoblotting

Plant material was ground under liquid nitrogen, and proteins were

extracted by a trichloroacetic acid-acetone (TCA-A) method (Shultz et al.,

2005). Proteins (50 mg) were resolved on 10% (w/v) gels by SDS-PAGE and

transferred to nitrocellulose membranes. Membranes were blocked with 5%

(w/v) nonfat milk in Tris-buffered saline (TBS; 25 mM Tris-HCl, pH 7.4, 140

mM NaCl, and 3 mM KCl) and probed with primary antibody (1:5,000 dilution)

in blocking solution with 0.1% Tween (TBST) for 1 h at room temperature.

After washing in TBST, membranes were probed with secondary antibodies

diluted 1:10,000 in TBST blocking solution, washed in TBST, and detected

using the Li-Cor Odyssey infrared imaging system. Secondary antibodies

were Rockland IRDye 800-conjugated goat anti-rabbit antibody andMolecular

Probes Alexa 680-conjugated goat anti-rabbit antibody.

Immunohistochemical Staining and
Immunofluorescence Microscopy

Cells from 4-d-old Arabidopsis or NT-1 suspension cultures were fixed

with 1% (w/v) formaldehyde in phosphate-buffered saline (PBS; 137 mM

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 2 mM KH2PO4, pH 7.4) for 15 min at

room temperature and dried onto poly-Lys-coated slides.N. benthamiana roots

were fixed in 4% (w/v) formaldehyde for 1 h and embedded in 5% (w/v)

agarose. Longitudinal root tip sections (approximately 30 mm) were cut with a

vibratome and dried onto poly-Lys-coated slides. Cells or sections were

permeabilized with 0.5% (w/v) cellulase for 10 min and blocked with 5%

(w/v) bovine serum albumin in PBS for 1 to 4 h. Tissue was probed with

affinity-purified anti-AtMCM5 or anti-AtMCM7 antibody at 1:250 dilution

in blocking solution overnight at 4�C. Anti-histone H1 antibody (Upstate)

at 1:250 dilution was included in the root section incubations. Slides were

washed with PBS plus 0.1% (v/v) Tween 20 and probed with secondary

antibodies. The Vectastain elite ABC kit (Vector Laboratories) was used

for immunohistochemical detection. Alexa Fluor 488 goat anti-rabbit IgG

(Invitrogen) and Alexa Fluor 350 goat anti-mouse IgG (Invitrogen) were

used for immunofluorescence detection. Tissue was visualized with a

Nikon Eclipse E800 microscope and a confocal microscope system (Leica

SP; Leica).

FACS

Four-day-old asynchronous Arabidopsis suspension cells were fixed in 1%

paraformaledyde for 15 min. After washing with 13 PBS buffer three times,

the cell pellet was frozen in liquid nitrogen and chopped in lysis buffer (15 mM

Tris-HCl, pH 7.5, 2 mM EDTA, 80 mM KCl, 20 mM NaCl, 15 mM b-mercapto-

ethanol, 2 mg mL21 DAPI, and 0.1% Triton X-100) using a single-edge blade for

5 min and incubated at 4�C for 5 min. The chopped cell suspension was

filtered through a four-tiered nylonmesh (100, 50, 30, and 20 mm), stained with

DAPI (1 mg mL21), and sorted by an Influx cell sorter (Cytopeia) equipped

with a 355-nm UV laser. 13 PBS buffer (pH 7.5) was used as a sheath fluid.

FACS analysis was conducted using FlowJo (version 8.7.1).

Chromatin Purification

Arabidopsis 4-d-old cultured cells (8 g wet weight) were ground under

liquid nitrogen, added to 40 mL of buffer A (ice cold; 10 mM PIPES, pH 6.8, 10

mM KCl, 1.5 mM MgCl2, 340 mM Suc, 10% [v/v] glycerol, 1 mM dithiothreitol,

1 mM ATP, 0.5% [v/v] Triton X-100, and 13 Plant Protease Inhibitor [Sigma]),

and incubated on ice for 10 min. After removal of debris by filtration through

Miracloth, proteins from 1 mL of this whole cell extract were extracted by

TCA-A. A second aliquot of whole cell extract (1 mL) was centrifuged at

3,000g for 10 min at 4�C to separate non-chromatin-bound proteins (S1) from

chromatin-bound proteins (P1) and extracted by TCA-A. The remaining

whole cell extract (38 mL) was centrifuged as above, and the chromatin pellet

was resuspended in 5 mL of buffer A, divided into aliquots in new tubes, and

centrifuged again. The purified chromatin pellets were resuspended in 1 mL

of buffer A supplemented with the indicated concentrations of NaCl, incu-

bated on ice for 10 min or resuspended in 100 mL of buffer A supplemented

with 1 unit of DNase I (New England Biolabs), and incubated at 25�C for 30

min. Soluble (S2) and insoluble (P2) proteins were resolved by SDS-PAGE and

visualized by immunoblot. For DNA extraction, 20 mM EDTA, 0.5% (w/v)

SDS, and 10 mg of RNase A (Fermentas) were added and samples were

incubated at 37�C for 30 min. Then, 20 mg of Proteinase K (New England

Biolabs) was added, samples were incubated at 37�C for 2 h, and DNA was

purified with a PCR cleanup column (Qiagen).

Supplemental Data

The following materials are available in the online version of this article.
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Supplemental Figure S1. Validation of the MCM5, MCM7, ORC1, and

ORC2 antibodies.

Supplemental Table S1. Description of clones generated for this study.

Supplemental Table S2. List of primers used for real-time quantitative

RT-PCR.

Supplemental Table S3. Relative expression values with error calculations

for Figure 1A.

Supplemental Table S4. Correlation coefficients for MCM gene expression

values.
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