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Abstract

An analytic circuit model for slot coupling from a waveguide to a loop-gap resonator (LGR) in a
context of electron paramagnetic resonance (EPR) spectroscopy is presented. The physical
dimensions of the waveguide, iris, LGR, and aqueous sample are transformed into circuit values of
inductance, capacitance, and resistance. These values are used in a solution of circuit equations that
results in a prediction of the rf currents, magnitude and phase, frequency, and magnetic and electric
stored energies near critical coupling. The circuit geometry reflects magnetic flux conservation
between the iris and LGR as well as modification of the outer loop LGR currents by the iris. Unlike
conventional models, coupling is not explicitly based on a mutual inductance between the iris and
LGR. Instead, the conducting wall high frequency rf boundary condition is used to define surface
currents, regions, and circuit topology with lumped-circuit values of self-inductance, capacitance,
and resistance. Match is produced by a combination of self-inductive and capacitive circuit coupling.
Two conditions must be met to achieve match. First, the equivalent resistance of the LGR as seen
by the iris must be transformed into the waveguide characteristic impedance. This transformation is
met at a particular frequency relative to the natural LGR resonance frequency. The frequency shift
magnitude is largely determined by the LGR properties, weakly dependent on iris length and
placement, and independent of other iris dimensions. The second condition for match is that the iris
reactance at this frequency shift must cancel the residual reactance of the LGR. This second condition
is sensitive to the iris dimensions. If both conditions are not simultaneously satisfied, overcoupling
or undercoupling results. A slotted iris of equal length to the size of the large dimension of the
waveguide is found to have many properties opposite to a conventional iris of shorter length. Notably,
the magnetic field near the iris tends to reinforce rather than oppose the magnetic field in the resonator.
The long iris improves the LGR EPR performance by providing increased rf magnetic field
homogeneity at the sample, higher signal, and reduced total frequency shift since the shifts due to
sample and iris tend to cancel. Investigations reveal that the first match condition can be adjusted by
LGR dimensional changes and such adjustment can eliminate the frequency shift. Results are
consistent with Ansoft High Frequency Structure Simulator (Version 10.1, Ansoft Corporation,
Pittsburgh, PA) simulations and can be extended to cavity resonators.
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1 Introduction

Mett and Hyde [1] have studied the influence of round and slotted irises on microwave leakage
from magnetic field modulation slots cut perpendicular to the axis of TEg14 cavities at Q-band.
They found that a thin slotted iris has significantly less leakage than a round iris because the
slotted iris makes a smaller perturbation on the TEg;1 mode than the round iris. A similar
observation was made using the finite element computer program Ansoft High Frequency
Structure Simulator (HFSS) (Version 10.1, Ansoft Corporation, Pittsburgh, PA) in loop-gap
resonators (LGRs) of significant length. The authors were surprised at the level of mode
perturbation, even at the sample, caused by round and slotted irises in a 10-mm-long 3-loop-2-
gap resonator at Q-band (Fig. 1), despite the expected shielding effects of the gaps. The ratio
of this LGR length to free space wavelength is 114% and other dimensions are given in Table
1. Radio frequency magnetic field energy density uniformity was diminished by 8-15%
compared to eigenmode by these couplers, Fig. 2(a). Uniform magnetic field at the sample is
required to achieve uniform spin saturation. In an attempt to lower the level of mode
perturbation caused by the iris, narrower and longer irises were tried. It was found possible to
extend the iris length across the full WR-28 waveguide width as shown in Fig. 1 with iris
dimensions given in Table 2. This long iris was observed to have many properties opposite or
dual to those of a conventional slotted iris of length less than half the long waveguide dimension
and those of a round iris. These properties include the phases of the rf fields and currents in
the resonator relative to those near the iris, the stored energy type in the iris, the frequency at
match relative to the resonator natural resonance frequency (frequency shift), and the sign of
the iris reactance (inductive vs. capacitive). In addition, the rf magnetic energy density
uniformity at the sample was improved by the long iris compared to the eigenmode solution,
Fig. 2(a). This paper presents an analysis and circuit model of iris coupling of a waveguide to
an LGR. Although the analysis is done specifically for an LGR, treatment of a cavity resonator
follows with little modification. The model was developed in close conjunction with Ansoft
HFSS.

The LGR was introduced for use in EPR spectroscopy in the simplest possible cross-sectional
geometry, Fig. 3(a), [2] and later extended to numerous other cross-sections including those
shown in Figs. 3(b)-(d). The literature has been reviewed by Hyde and Froncisz [3] and by
Rinard and Eaton [4]. Iris coupling between a waveguide and a 3-loop-2-gap LGR of 1-mm
length has been done at Q-band, but there is no rationale given for the design [5, 6].

Iris coupling between waveguide and cavity is typically modeled by a mutual inductance M
between the iris and the cavity inductance [1,7-9]. After extensive investigation using Ansoft
HFSS, models with mutual inductance were found to be inadequate to explain the iris coupling
behavior between waveguide and 3-loop-2-gap LGR for irises of different sizes at Q-band. A
simple mutual inductance model following ref. 1 was found to mimic some of the observations,
including phases of rf currents and the input impedance, but not others such as frequency shift.
The addition of the distributed nature of the iris into the model, Sect. 2.2, including mutual
inductance between iris and LGR outer loop, was found to increase disparities between the
model and HFSS observations, and a rationale for choosing the sign and value of M remained
unsatisfactory.

In the present work, the metallic wall high frequency rf boundary condition, which relates

surface current to magnetic field [8], was used to define surface currents, distinct regions, and
circuit topology of the coupled iris-LGR with lumped-circuit values of capacitance, resistance,
and self-inductance with no mutual inductance. That it is possible to obtain a complete circuit
model of the coupled iris-LGR without mutual inductance is perhaps surprising. However, we
show in Appendix A that the equivalent self-inductance of a coil in the presence of a metallic
rf shield is equivalently expressible in terms of mutual inductance or self-inductance. The effect
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of the mutual inductance of the shield on the coil in the high frequency rf limit is to induce an
rf current on the outside surface of the coil. The separation of the total current on the coil into
an inner current and an outer current leads to the ability to treat the coil as two self-inductances
in parallel with no mutual inductance between them. The mutual and self inductance models
differ in the definition of the coil currents. The results are consistent with a statement by Grover
[10]: “Self-inductance is merely a special case of mutual inductance.”

In the present work, the circuit model geometry reflects flux conservation between iris and
LGR, includes capacitive and inductive circuit coupling, and accounts for the influence of the
iris on the LGR outer loop currents. In this model, the geometrical dimensions of the LGR,
iris, and waveguide are used to calculate circuit values of self-inductance, capacitance, and
resistance, including the effects of sample. These circuit values then determine the solution to
the circuit equations and predict the input impedance, rf currents, frequency shift, and magnetic
and electric stored energies. The circuit is a pi network with the bridge element an inductance
formed by the part of the LGR outer loop cut by the iris. The circuit can be cast into an equivalent
form having an effective mutual coupling between two resonant circuits described by Terman
[9]. The effective mutual coupling represents combined capacitive and self-inductive
(complex) coupling between primary (waveguide/iris) and secondary (LGR), although with
no mutual inductance.

Two conditions must be met to achieve critical coupling (match). First, the equivalent
resistance of the LGR as seen by the iris must be transformed into the waveguide characteristic
impedance. Due to the behavior of the LGR resistance with frequency, this transformation
typically occurs at a particular frequency relative to the natural LGR resonance frequency. This
frequency shift magnitude is strongly dependent on the LGR and sample dimensions, weakly
dependent on the iris length and placement, and independent of other iris dimensions. The
second condition for match is that the iris reactance at this frequency shift must cancel the
residual reactance of the LGR. This second condition is sensitive to the iris dimensions. If both
conditions are not simultaneously satisfied, overcoupling or undercoupling results. The first
match condition completely determines the frequency shift magnitude, and so LGR and iris
design can reduce or eliminate this frequency shift, or tailor it for example to the needs of the
EPR spectroscopist, who prefers no difference between the frequencies at match with and
without sample.

A mechanical drawing of the 3-loop-2-gap 10-mm-long Q-band LGR introduced by Mett,
Sidabras, and Hyde [11] with iris coupling to a WR-28 waveguide is shown in Fig. 1. The LGR
and sample dimensions are shown in Table 1. The lumped circuit model that reflects the
interaction between LGR, iris, and waveguide is developed in stages below. For simplicity, we
assume that the symmetry planes of the waveguide, iris, and LGR coincide so that two half-
circuits in parallel describe the whole. With further analysis, this symmetry can be removed.
At points in the development of the theory, predictions of the circuit model calculated with
Mathematica (Version 6, Wolfram Research, Inc., Champaign, IL) were compared with Ansoft
HFSS simulations. A Dell Precision 690 workstation with dual dual-core 3.0 GHz processors
and 16 GB of RAM with Windows XP 64-bit was used to run the program. Both eigenmode
and driven solution methods were used.

2.1 Circuit Model of LGR

Since the iris intercepts one of the outer loops of the LGR (Fig. 1), we take as a first
approximation the LGR circuit seen by the iris, Fig. 4. Accordingly, the LGR input impedance
is given by Eq. (1) assuming e/t time dependence:
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The lumped circuit values of self-inductance, capacitance, and resistance are expressed in terms
of the LGR dimensions and conductivity as shown in Appendix B. The derivation follows from
Mettetal. [11] and corresponds to the LGR at cutoff. At cutoff, the rf currents are perpendicular
to the LGR axis and the rf fields are axially uniform (except within one radius of the LGR
ends). Reference [11] also shows how an rf impedance at the ends of the LGR causes a shift
in the resonance frequency from cutoff and a corresponding rf field axial non-uniformity. That
axial full-wave analysis is shown to account for a majority of resonance frequency deviation
from cutoff and field non-uniformity. The LGR ends can be designed to have an infinite rf
impedance and the LGR then resonates with uniform fields at cutoff. Since the present work
is about the influence of a coupling iris on the LGR, for simplicity we do not include the axial
full-wave analysis, although such effects could be included with further analysis. The
frequency shifts due to coupling predicted by the circuit model are relative to cutoff. These are
compared to the frequency shifts predicted by finite element modeling of driven mode with
the iris relative to eigenmode without.

Near resonance, the magnetic flux in the inner LGR loop is shared between the outer loops.
This conservation of flux can be combined with the expression for the peak magnetic energy
of the system to derive the equivalent inductance,

L
Leg=mL, (1+m L—‘:) s

and with the expression for the dissipated power to obtain the equivalent resistance,
LY
Reg=m| Ry+m I Ri |,
i @)

looking into the outer loop, Fig. 4. These equations were written for m gaps and m outer loops;
although in Fig. 4, m = 2. It can be shown that Eq. (3) reduces to Eq. (2) with the replacement
R — L. These equations, which can also be derived from Eq. (1), reflect how flux conservation
in the LGR magnifies the resistance of the inner loop as seen from the outside. The effect is
transformer-like, although in the circuit model there is no mutual inductance. The quality factor
is given by

_wo Leq

0

’

Req (4)

where the subscript zero indicates the natural LGR resonance frequency. As shown in Appendix
B, the LGR loop resistances are caused by the rf current flow on the inner surface of the

conducting loop and part of the gap. Equations (2)-(4) and the equations of Appendix B give
Q values within 1.5% of those of the LGR at cutoff predicted by Ansoft HFSS. When a sample
is inserted to the LGR inner loop, the circuit is loaded by an effective sample resistance added
to the inner loop resistance of Eq. (B9), R; — R; + Rs. The value of Ry is calculated from Egs.
(2)-(4) using a sample-loaded LGR Q value that can be obtained either by experimental
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measurement or by finite element modeling. With such a sample resistance, it is found that the
dependence of impedance with frequency predicted by Eq. (1) near resonance is fully consistent
with the behavior of the coupled LGR reflection coefficient with frequency predicted by driven
mode Ansoft HFSS.

We can also write the equivalent capacitance as

(5)

and so the (natural) LGR resonance frequency

1

Jor———
2 \[Lequq (6)

With the lumped circuit values of Appendix B, this frequency is the LGR cutoff frequency.
Equations (2), (5), and (6) give identical results to Egs. (2)-(7) of ref. 11. (The effect of Q on
the resonance frequency is less than four parts per million at a Q of 200.)

The LGR equivalent circuit (Fig. 4) is a parallel R-L-C circuit driven by a series R-L and has
properties of both parallel and series R-L-C circuits. As is well known, the resistance of a
parallel R-L-C circuit as a function of frequency has a Lorentzian shape peaked at its natural
resonance frequency. Similarly, the admittance of a series R-L-C circuit has a Lorentzian shape
peaked at the natural resonance frequency. The corresponding reactance and susceptance of
these respective circuits have the shape of a Lorentzian derivative. For the LGR, the
conductance as a function of frequency has a Lorentzian shape peaked at the natural resonance
frequency fo, Eq. (6), where itis equal to 1/Req. The susceptance has the shape of a Lorentzian
derivative with an offset value of approximately -(wL,)™! at the natural resonance frequency
since the LGR circuit is broken at the outer loop. These can be summarized by

1 1 N 1
Zox (fo) B Req JwLy’ (7)

and follow from Eg. (1) in the limits ReqRj < ((oLi)2 and Ry < Req. The width of the Lorentzian
at half maximum is Afy, = fo/Q. The variation of the LGR admittance near fy determines the
frequency of critical coupling, as discussed further in Sect. 2.5 and the results section. The real
and imaginary parts of the LGR impedance also have Lorentzian and Lorentzian-derivative
shapes, respectively, but the Lorentzian center frequency is displaced several percent below
both fy and the frequency of critical coupling.

2.2 Circuit Model of Iris

A drawing of the rf currents flowing around the iris is shown in Fig. 5(a) and can be compared
to the mechanical drawing of Fig. 1. The iris has a capacitance largely across its center and a
self-inductance largely on each end. A naive approach suggests that we might assign a
capacitance to the center half,

2Since the resistances are neglected in the calculation, the accuracy of this predicted match frequency decreases as fy, approaches the
range of frequencies approaches the range of frequencies within the Lorentzian half width fg + fo/Q.
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C:80 I IC’

dw, (8)

and a self-inductance to the outer half,

:,U() we

L s
4. 9)

of the half-iris, where I, wc, and t; are the total length, width, and wall thickness of the coupling
iris, respectively; gg is the electric permittivity of free space; and g is the magnetic permeability
of free space. Equations (8) and (9) can be refined by considering that iris current flows oppose
one another across the iris thickness, and that the current flow is directed primarily along the
iris length dimension, Fig. 5(a). Therefore, the iris can be viewed as two parallel conducting
strips shorted at each end. The configuration is a two-conductor transmission line supporting
an electromagnetic mode transverse to the iris length (TEM). It is well known that the
electromagnetic solutions for a TEM mode consist of the electrostatic solution with the
magnetic solution derivable from the electrostatic field [8], [12]. Consequently, we can use an
analytic electrostatic solution for the capacitance per unit length of two long parallel conducting
strips given by Smythe [13] and that has been applied to the LGR gap in Appendix B and ref.
11. The solution takes the form of a factor y that multiplies the capacitance per unit length
gote/we, and thus the quarter-iris length given by Eqg. (8),

C.=vyC. (10)

This factor is a function of the ratio t./w. through elliptic integrals. Due to dimensional
definitions, we replace the ratio w/t in Egs. (B6) and (B7) of Appendix B by t./w,. In practice,
a different stray capacitance correction using Eq. (16) of ref. 11 produces similar results. These
corrections cannot be used simultaneously because the capacitance is overestimated.

Because of the TEM transmission line mode, the product of the capacitance per unit length and
the inductance per unit length along the iris length dimension is ggpug [8], [12]. Therefore, the
iris inductance of a quarter iris length, Eq. (9), must also be corrected by the same factor,

L.=L/y. (11)

The C; L product then remains a function only of the iris dimension of length. A further
correction to Egs. (10) and (11) can be made by further considering the iris as a transmission
line. As shown by Jackson [12] and in the LGR gap discussion of Appendix B, a capacitor
formed by two parallel metallic strips of dimensions I;/4 and t. a distance w, apart and fed
along the length has a capacitance given by Eq. (8) with a series inductance equal to one-third
of Eq. (9). Similarly, if these strips are shorted, we obtain an inductance given by Eq. (9) with
a parallel capacitance equal to one-third of Eq. (8). Since the iris is symmetric about its center,
where there is also a current null, the center capacitance is fed from the end inductance. These
results can be combined into the lumped circuit model of the isolated half-iris shown in Fig. 5
(b), where

Lee=Lc /3, (12)
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Cee=C. /3. (13)

The total input impedance

Zin=o—
" 2, (14)
of the isolated iris is therefore
7 1
iris= . B
2']wCC+—ij(~C+. ——
JjwCec+ Jole (1 5)

The same model can be obtained from the impedance of a length 1./4 of open transmission line,
-jZocot(kl/4), and shorted transmission line, jZp/cotkl /4, where the characteristic impedance

—_—

*’,’—7) / (M) and the wavenumber k =w/c, using the first two terms in the expansion cot
x=1/x-x/3 - ..., which converges for O<|x|<x. Iris resistances can be included but are typically
negligible because of the low primary Q as discussed in Sect. 2.6. An exception is the unusual
case of a strongly resonant iris discussed in Sect. 3.2. The distributed nature of the iris is largely
captured by this model. Analysis of Eq. (15) shows that the self-resonance frequency of the

isolated iris is given by

. 3(5- v21)
e 2n\C. L, ’ (16)

which is about 79.1% (=r/4) of the resonance frequency of C; and L. alone. The frequency
predicted by Eg. (16) is within 3% of the self-resonance frequency determined by Ansoft HFSS
eigenmode simulation for an isolated iris. Furthermore, Eq. (16) with (8)-(11) is consistent
with the expression for the resonance frequency of a shorted two-conductor TEM transmission

line of length ;. 7.= < to within 1%. It is possible to use exact transmission line impedances,

3l

which can be a subject of future investigation.

An alternative approach to finding the iris impedance is to use the theory of obstacles and
windows in waveguides [14]. Because the iris wall thickness t; is comparable to the iris opening
width w, the iris is considered an obstacle of finite thickness. The special case of iris length
equal to the large waveguide dimension is treated explicitly as a capacitive obstacle of large
thickness in Sect. 8-8 of ref. 14. For typical dimensions that provide match to the LGR discussed
below, the nonlimited form gives an iris capacitive reactance magnitude 14% lower (more
capacitive) than Eq. (15). The discrepancy is likely because the waveguide method treats only
the first two waveguide modes and because the method assumes that there is waveguide present
on both sides of the iris. Instead, the presence of the LGR outer loop must be accounted for to
predict the full behavior of the iris. This is the subject of the next section.

2.3 Iris Connection to LGR Outer Loop

By the geometry of Fig. 1, all the magnetic flux penetrating the top end of the iris must enter
the LGR loop, go through the central part of the LGR outer loop, and leave the LGR loop by
penetrating the bottom end of the iris. Due to the metallic wall high frequency rf boundary
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condition, which relates surface current to magnetic field [8], there can be no magnetic flux
going through one end of the iris without a corresponding current i. flowing around the iris
end, Fig. 5(b). By definition, the ratio of this magnetic flux to the current i is L¢. Similarly,
by the metallic boundary condition on the LGR outer loop, there can be no magnetic flux
penetrating the outer loop without a corresponding current in the LGR outer wall, and the ratio
of this flux to the current is the inductance of this part of the outer loop. This geometry is
reflected in the circuit of Fig. 5(c), which shows the half-circuit of the iris coupled to the part
of the LGR outer loop that extends from one end of the iris to the other. Here, the inductance
of the part of the outer loop that the iris couples to is given by

41
L,=sL, —,
I 17)

which is the total inductance of the outer loop L, scaled by 1./4 and then multiplied by an order
unity geometrical scale factor s, which quantifies the extent that the iris flux occupies the LGR
outer loop. We chose to scale the inductance by a basis of 1./4 (instead of I./2) because of how
the distributed currents from the LGR outer loop flow around the iris, the mapping of these

currents to zo and the connection to the iris center (see Figs. 5(a) and 6). However, the choice
of basis is arbitrary because scaling is ultimately determined by the value of the parameter s.
The determination of the value of s is further discussed in the Results section. Because of the
inverse scaling of the outer loop inductance to length I, Eq. (B4), s can also be viewed as a
length multiplier of L over its basis length I/4. 1t is possible to write the condition for magnetic
flux conservation between the iris and L,

D +D..=D,

as

"
Leic+Lecice=L,i,

which, by Faraday's Law, when multiplied by jo becomes a statement of Kirchhoff's Voltage
Law (KVL) as required by the circuit of Fig. 5(c). Flux conservation is thus a consequence of
the circuit geometry: the total flux from half the iris goes through the part of the LGR outer
loop defined by L. Thus, KVL implies that any two self-inductances in parallel have the same
magnetic flux, but this does not necessarily mean that the return flux from one goes into the
other, nor does this imply that there is a mutual inductance between them. Appendix A includes
a discussion of the relationship between mutual and self-inductances and rf current definitions
for the case of a shielded coil. In the present case, due to the rf current definitions and the
metallic wall boundary conditions, the magnetic flux from the iris self-inductances go into part
of the LGR outer loop. There is no mutual inductance between the iris and LGR outer loop
because each of the inductors is embedded in a metallic wall or block, which forces any flux
penetrating the inductor to be caused by a current flowing in the metallic surface that forms
the inductor.

The coupling of the iris flux to part of the LGR outer loop is indicated by the parallel
arrangement of L across the iris shown in Fig. 5(c) and alters the self-resonance frequency of
the iris. For the long iris of dimensions given in Table 2 (length 7.62 mm), the circuit of Fig.
5(c) predicts that the iris self-resonance frequency is raised from 19.8 GHz in isolation to 25.1
GHz when coupled to the LGR outer loop of dimensions of Table 1 (outer loop radius 1.029
mm), with the flux occupation factor s = 1. This is within 0.25% of the frequency predicted by
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Ansoft HFSS eigenmode simulations with shorted gap. Significantly shorter irises have
significantly higher self-resonance frequencies, which can be influenced by coupling to higher
order modes that are not accounted for in the model.

2.4 Circuit Model of Connected Iris and LGR

We build on the results of the previous three sections and construct the half-circuit model of
the combined iris and LGR, Fig. 6. Here, we separate the total LGR outer loop half-circuit
inductance 2L, into two parts,

1
2L,=

L, 1°
L (18)

3

so that their parallel combination gives the inductance of the half outer loop. Equation (18)

defines L. Similarly, since the outer loop resistance is caused by the same surface current that
produces the inductance (see Eq. (B8) discussion), we modify an outer loop resistance,

4

R.=5R,—,
I (19)

and break it into two parts to define R/,

1
1. 1°
YR (20)

2R,=

The resistance is a small correction to the total outer loop impedance. By the arguments of the
previous section, the circuit connections of Fig. 6 with KVVL imply (neglecting R,) the magnetic
flux conservation rule

DO +D =D, +D,,

or

Leic+Lecice=Lei,+L, (io - il)) : (21)

In the absence of iris flux, these equations show that the flux in Le and L is the same (the sign
is due to the current direction definition), and this flux can also be shown to be equal to the
flux in 2L, (and Ly). Since Eqg. (21) is implied by the circuit equations, it can be substituted for
any one of the circuit relations implied by Fig. 6 without changing the solution.

The circuit of Fig. 6 shows that the voltage developed across the iris drives part of the LGR
outer loop inductance Lg, which in turn drives the modified LGR impedance Z/ .. The

LGR'

inductance L, acts as the bridge element in a pi network between the impedances Zj;ijs and
Z' . The size of L, influences the coupling strength, and its value depends on the length of the

LGR"
iris. The shape of the iris determines not only the iris impedance but also the value of L, which
in turn influences the modified LGR impedance Z . This complex interaction between the

iris and the LGR is captured by the circuit of Fig. 6.
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It can be shown that the admittance of the series combination of L. and Z/_ is a simple

transformation of the LGR admittance from Eqg. (1),

GR

1 2

7'+ GwLlotR) /2

2
1 ZLO) [ .
T2 |G +iBron — = . ,
R (Le LGR =TTLGR  GiwLo+R, | jwLe+R, (22)

where Y| gr= 1/Z, gr=G_gr+iBLgRr. As shown by the circuit of Fig. 6, the admittance given
by Eqg. (22) is in parallel with the iris. Since Lg is always greater than or equal to 2L, this
transformation shows that the LGR conductance is reduced by the parallel combination of Lg
and L. The same is true for the susceptance but for the inductive offsets (see Eq. (7)). The term
in square brackets is real at the natural LGR resonance frequency.

2.5 Conditions for Match

Due to symmetry, the voltage and current at the input to the iris is the same voltage and current
at the end of the waveguide. Thus, match is obtained when the input impedance determined

by this voltage to current ratio is near the characteristic impedance of the waveguide Zp. The
complete system of equations describing match according to the half-circuit of Fig. 6 is given
in Appendix C. This system is solved for the total input impedance Eq. (14) and also rf current
ratios between any two chosen currents. The input impedance and current ratios are examined
as functions of frequency and Q near match with dimensions for various irises and LGRs in

order to observe their behavior near match and to compare them to Ansoft HFSS simulations.

Insight into the system is obtained by setting the input impedance equal to the characteristic
impedance of the waveguide, Eq. (A4). From Eq. (22), we obtain

2
2L
YO:(_O) Gers

L, (23)
5 -2 (L 2 s L
T WL, L. Lok = L, | 24)

where Yo=1/Zg,Biris=i/Ziris, and we have assumed Ry2<(QL,)? and Re2<(QL)2. Equations
(23) and (24) are the two conditions needed for critical coupling. Because G| ggr(f) has the form
of a Lorentzian peaked at the natural LGR resonance frequency fq, Eq. (23) is typically satisfied
only at two particular frequencies, fo = Af. The iris length has an influence on the ratio 2L/
Le, but the other iris dimensions do not. Therefore, Eq. (23) can only be satisfied through a
shift in frequency Af relative to the natural LGR resonant frequency. It represents the required
transformation to take the LGR conductance to the waveguide characteristic admittance for
critical coupling. Iris dimensions have little influence on Af. Typically, Af is many times the
Lorentzian half-width Af,,. Once Eq. (23) is met, the iris susceptance must also be adjusted to
satisfy Eq. (24). Since B ggr(f) has the form of a Lorentzian derivative with appropriate offsets,
the iris will only meet this condition at a frequency Af above or below fy, depending on whether
the iris is capacitive or inductive, respectively. We define the match frequency fy,, to be the
frequency where the conditions of Eqgs. (23) and (24) are both met. If both conditions are not
simultaneously satisfied, overcoupling or undercoupling results.

The equivalent conditions for match expressed in terms of the impedances are given in
Appendix D. The impedance system cannot be described in a simple or intuitive way because
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the LGR impedance does not have symmetry about fy and because the impedance

transformation between Z, ggr and Z, , is more complicated than the transformation in Eq. (22).
The impedance system is further discussed in the following section and Appendix D.

2.6 Connection to Generalized Coupled Circuit Theory

The combined iris-LGR circuit of Fig. 6 can be described in terms of the equivalent coupled
circuit of Fig. 7, which is a generalization of two (mutual) inductively coupled circuits [9]. The
circuits are coupled through an effective mutual inductance Mgg;, which is a result of the
combined capacitive and direct self-inductive coupling (with no mutual inductance) reflected
in the circuit of Fig. 6.1 The primary impedance is the impedance looking into the primary

with open secondary, which, from Fig. 6, corresponds to the condition Z, , — oo,

V4 P :Ziris B

where Zj;is is given by Eq. (15). The secondary impedance is the impedance looking into the
secondary with open primary, which corresponds to the condition that the waveguide
characteristic impedance Zg—o,

Zs =Zisis+ (JwL,+R,) /2.

The iris appears in both the primary and secondary equivalent circuits. The coupling strength
between the primary and secondary depends on the impedance of the primary with shorted

secondary, which is found from setting Z,,, — 0,

1
Z,=—,

2Ziyis © jwLeAR,

and so the coupling constant

Z, 1 1
ke=y[1 - = = ,
P \/1+ju)2LZ(+R(, \/1+ wL,

iris 2Xiris

10

where jXiris=Ziris- The effective mutual coupling then reduces to the perhaps surprisingly

simple expression
Z,Z. Xirig
Mgk | 2228, s
(jwy~ w (25)

Several conclusions can be drawn from these results. When the resonance frequency of the iris
is higher than the frequency of the LGR, Zjjs is inductive. This is true for the conventional iris,
which has a typical length less than half the large waveguide dimension. The coupling constant,
which is a complex number, then in this case is nearly real and between zero and one in
magnitude. The coupling constant approaches magnitude unity and the effective mutual

1The circuit of Fig. 6 is of a different form than any of the many coupled circuits in ref. 9.
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coupling is positive real and approaches infinity as the resonance frequency of the iris
approaches that of the LGR from above. However, when the resonance frequency of the iris
is lower than the frequency of the LGR, which is true for a long iris of length comparable to
the large waveguide dimension, Zj:js is capacitive. Then, depending on the value of L, the
coupling constant can be either nearly imaginary and between zero and one in magnitude, or
nearly real and between one and infinity in magnitude. For the long iris, the coupling constant
is typically imaginary and of magnitude less than unity as discussed further below. The
coupling constant approaches magnitude unity and the effective mutual coupling is negative
real and approaches infinity as the iris resonance frequency approaches that of the LGR from
below.

At critical coupling, it is commonly understood that the effective mutual coupling reactance
®Mes is equal to the square root of the product of the primary and secondary resistances [9].
This is true when the primary reactance is negligible compared to the primary resistance. Most
of Terman's analysis carries this assumption and also the additional constraint that the
resonance frequencies of the primary and secondary are equal. Neither of these assumptions
apply in our problem. From an analysis of the circuit of Terman (Sect. 3, Fig. 16 [which is not
further analyzed there]), the effective mutual coupling is given by

1(‘;5)]

In terms of the present circuit values, this equation can be written

WM 5= J R,R

M.=-|Z0R" |1 Xiris”
WM eff = 086r +Zz :

0 (26)

The combination of Egs. (26) and (25) results in one of impedance conditions for critical
coupling, Eq. (D2). However, because R’ . is a function of frequency, Eq. (D2) can be satisfied

LGR
at almost any frequency without achieving critical coupling. As discussed in the previous
section and in Appendix D, the other condition, Eq. (D1), must simultaneously be met to

achieve critical coupling. This additional constraint is not discussed in ref. 9.

At critical coupling, it is commonly understood that the coupling constant is equal to the
reciprocal of the square root of the product of the primary and secondary Q's [9]. This is not
the case in the present problem because the primary and secondary reactances are not pure
inductances. Since the primary resistance Zg is in parallel with the resonant iris circuit, Fig. 5
(b), the primary Q is given by

27

Qp - —
nfe (L" 2Tt3‘/\2/_;_1)

where f; is the iris resonance frequency, Eq. (16), and the equivalent inductance of the primary
is given by the term in parenthesis. This equivalent inductance was derived by equating the
magnetic flux and energy at iris self-resonance to those of an equivalent parallel L-C circuit.
The secondary circuit, which consists of the circuit of Fig. 6 with open input, is more
complicated. Analysis of this circuit with zero resistances leads to an expression for the
secondary resonance frequency fs, which includes the presence of the iris. The expression was
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found using Mathematica and is a solution to a quartic in f32. The frequency can be evaluated
and is a measure of the frequency at critical coupling f:2 It is typically within 1% above or
below the natural LGR resonance frequency, Eq. (6). An analysis of the stored magnetic flux
and energy at this frequency can be used to obtain an equivalent secondary inductance Lg, and,
with the resistances added to the circuit of Fig. 6, the dissipated power at this frequency leads
to an equivalent resistance Rs. These in turn produce the secondary Q,

2rf Lg
=R

s

This Q is typically within about 5% above or below the isolated LGR Q, Eq. (4).

From the previous section, critical coupling between the LGR and waveguide is made by
meeting two conditions. The first is the transformation of the LGR equivalent conductance
from Eqg. (1) into the waveguide characteristic admittance, Eg. (23). Due to the Lorentzian
behavior of G gR (f), this condition is typically met through a frequency shift relative to the
natural LGR resonance frequency. The LGR and sample geometry also strongly influence this
condition. However, iris dimensions do not. The second condition is that the iris susceptance
cancel the LGR susceptance, Eg. (1), as seen by the iris at this frequency shift, Eq. (24). Iris
dimensions strongly influence only the second match condition.

The results are divided into four parts. First, we show details of the process of coupling between
a WR-28 waveguide and the 3-loop-2-gap 10-mm-long Q-band LGR of dimensions shown in
Table 1, made by irises of characteristically different dimensions, Table 2. It is found, for
various iris types, that increasing the iris length or width increases the coupling strength, and
increasing the thickness decreases the coupling strength in the circuit model, consistent with
Ansoft HFSS simulations. For this study, the iris dimensions for the circuit model were chosen
by first simulating the LGR, iris, and waveguide using the driven mode Ansoft HFSS. The
dimensions used in the circuit model were exactly those required to achieve critical coupling
in Ansoft HFSS. The flux occupation factor s, defined by Eq. (17), was then adjusted for critical
coupling. Values that produced critical coupling for these two irises are shown in Table 2. They
are different because of differences in the magnitude of magnetic flux from each iris relative

to the flux in the LGR outer loop. It is found that s = 0.2|de/dc|, where ®,=L,i, and &c =
Lcic (see Fig. 6). Although it is possible to obtain s strictly within the circuit model from the
circuit currents by iteration, it is more practical to treat s as a matching parameter, similar to
the adjustment of a tuning pill in a conventional iris tuning system.

From this study, we find that the magnitude of the frequency shift at match relative to the
natural LGR resonance frequency is determined by the LGR and waveguide dimensions, not
by the iris. In the remaining results, insights gained from the circuit model are used to explore
the behavior of different iris types. In Sect. 3.2, we examine an iris with a self-resonance
frequency close to the LGR and find that as the iris becomes resonant, the iris width must be
made smaller to achieve critical coupling. Types of frequency pulling are discussed in Sect.
3.3 as are the advantages of the long (capacitive) iris over the conventional (inductive) iris
because frequency shift due to sample size is opposite to the frequency shift due to iris tuning
to accommodate reduced Q value. Finally, in Sect. 3.4, the circuit model is used to design a
new LGR and coupler without frequency pulling. Results are consistent with finite element
simulations.
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3.1 Conventional vs. Long Iris

The admittance of the series combination of L and Z, , as a function of frequency near the
natural LGR resonance frequency for conventional and long irises is shown in Fig. 8. The
Lorentzian and Lorentzian-derivative variation with frequency are due to G gg and B gR,
respectively, Eq. (22). For any iris, match occurs when the LGR conductance is transformed
to the reciprocal of the waveguide characteristic impedance, Eq. (23). Since the iris properties
contribute only to the inductance ratio in Eq. (23), the transformation is largely accomplished
through a frequency shift relative to the natural LGR resonance frequency. The frequency shift
for the conventional iris, Figs. 8(a) and (b), is negative (-372 MHz, Table 2) because it has an
inductive susceptance, which exactly cancels the LGR susceptance at this frequency shift, Eq.
(24). In contrast, the long iris is capacitive, and so the frequency shift is positive (251 MHz,
Table 2). Again, the iris susceptance exactly cancels the LGR susceptance, Eq. (24), that occurs
when the LGR conductance is transformed to the reciprocal of the waveguide characteristic
impedance, Eq. (23), except now on the other side of the Lorentzian peak. The amount of
frequency shift predicted by the circuit model for both irises is within 20% of Ansoft HFSS.

For decreasing LGR Q, the Lorentzian in G| ggr becomes wider, and it is seen from Fig. 8(b)
that the conventional iris will match at progressively lower frequencies. Because the real part
of the sample dielectric constant also pulls the natural LGR resonance frequency down for
increasing sample size, the two effects are additive and cause a large negative frequency
difference between match without sample and match with sample, fqn-fms. For the long iris,
the opposite occurs: as the Lorentzian in G ggr becomes wider, match appears at higher
frequencies, Fig. 8(d), and sample presence pulls the natural resonance frequency down. The
two effects tend to cancel, reducing fqn-fms. This is consistent with Ansoft HFSS simulations.

In addition to the iris reactance type and frequency shifts, other properties of the conventional
and long irises are complementary or dual. The coupling constant at match is nearly of unity
magnitude for both irises, Table 2, but is positive real for the conventional and negative
imaginary for the long. Ansoft HFSS simulations of the LGR and iris wall surface currents for
the conventional and long irises are shown in Fig. 9. It is seen that the surface current at the
end of the iris is significantly stronger for the conventional iris, Figs. 9(a) and (b). This iris
also perturbs the LGR wall surface currents significantly more than the long iris. The magnetic
field vector plots, Figs. 9(c) and (d), indicate a phase reversal of the iris currents relative to the
inner loop LGR currents. These current properties and phase shifts are also reflected in the
circuit model as indicated by the current ratios in Table 2. The currents are defined by the
circuit of Fig. 6. The current at the inductive end of the iris relative to the intercepted outer

loop current ic/i; is five times stronger for the conventional iris than the long. This current also
has nearly 90t phase shift for the conventional iris, whereas the long iris has almost no phase
shift. Due to the definitions in Fig. 6, the absence of phase shift between the iris and LGR outer
loop current components is reflected by a negative sign in the ratio. Therefore, the numbers in
Table 2 show that the LGR wall current splits and flows around the outside of the conventional
iris with a reversal in the center and a 90t phase shift. For the long iris, the LGR wall current
comes together and flows primarily as displacement current across the middle of the iris with
some counterflow at the ends. Very small phase shift is seen. The current ic represents the
(displacement) current through the center of the iris, capacitor C, and is given by

i, =i — icc — i, The overall current magnitude is about three times stronger for the
conventional iris than the long. All of these observations are consistent with Ansoft HFSS
simulations. The peak magnetic field strength in the iris as observed by Ansoft is also a factor
of three larger for the conventional iris than the long. The observed fields are consistent with
the conventional iris being primarily magnetic (inductive) and the long iris primarily electric
(capacitive). The last three current ratios in Table 2 show the current in the LGR inner loop
relative to the two outer loops and the input current. The conventional iris is seen to perturb
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the outer loop current by about a factor of three more than the long and in the opposite way.
Perhaps, surprisingly, both irises significantly perturb the flux symmetry between the outer
loops. The last entry shows the level of flux magnification delivered by the LGR, which is the
same for both irises as expected. The phase reversal shown between the inner loop and input
current is consistent with the Ansoft HFSS magnetic field vectors shown in Figs. 9(c) and (d).
The difference in currents between the long and conventional irises produces the difference in
the rf magnetic energy density profile at the sample as shown in Fig. 2(a). The conventional
iris degrades the uniformity by 8% while the long iris improves the uniformity by about 7%.
The long iris thus gives an overall uniformity improvement of 15% over the conventional
slotted iris.

3.2 Resonant Iris

An iris that produces match near its isolated self-resonance frequency, fo = f.q of Eq. (16)

(lc =~ /_0) has no unique properties because the presence of the LGR outer loop alters the
resonance frequency of the iris due to the modification of the iris flux as described in Sect. 2.3.
However, an iris that produces match near its self-resonance frequency in the presence of the
LGR outer loop as computed from the circuit of Fig. 5(c) does have unique properties. As the
iris self-resonance frequency approaches the match frequency (I, = 4.65 mm for the LGR
dimensions of Table 1), the iris width must be reduced by over an order of magnitude (w; =
8 p) to obtain critical coupling. The primary quality factor Qp increases by an order of
magnitude from order unity. The stored energy in the iris therefore increases. Sensitivity of
match to percentage changes in the iris dimensions also increases. The amount of frequency
shift relative to the natural LGR resonance frequency stays about the same, consistent with the
first condition for match, Eq. (23). The iris reactance at match is also similar as required by
Eqg. (24).

A resonant iris has advantages, such as permitting iris location in weak field regions, but a
different approach must be taken to reduce the frequency shift.

3.3 Frequency Pulling

The circuit model permits detailed analysis of frequency pulling, which can be defined as
changes in frequency at match f,,, with respect to changes in LGR resonance frequency fy,
resonator Q, or sample size a, which typically influences both fy and Q. As discussed in Sects.
2 and 3.1, the sign of Af = f,, fg is equal to the sign of the iris susceptance. As shown in Table
2, the magnitude of Af is comparable for the conventional and long irises, with the long iris a
bit smaller due to its greater flux occupation factor, which reduces the admittance. The long
iris has a of,/0Q opposite the direction of ofp/da due to the real part of the sample and sample
holder dielectric constants, decreasing the difference in f,,, with and without sample compared
to the conventional iris. Perhaps, surprisingly, frequency shifts due to iris adjustments needed
to accommodate changes in Q value can be larger than the corresponding LGR natural
resonance frequency shifts due to sample size.

Differences in match frequency fp,, at different LGR Q can be reduced by adjusting the LGR
dimensions so that G| ggr meets Eq. (23) closer to the natural LGR resonance frequency fg. This
condition is where the normalized conductance is unity, Fig. 8. In the case of the 3-loop-2-gap
LGR (Table 1 dimensions), fm can be put closer to fy by increasing the outer loop diameter
relative to the inner loop diameter. Analysis of the crossings of the conductance curves for the
Q values from 871 to 229 in Fig. 8(a) or (c) shows that the variation in match frequency over
the range of these Q values can be reduced to 8.5 MHz, compared with the excursion of —180
MHZz for the conventional iris and +115 MHz for the long iris as shown in Figs. 8(b) and (d),
respectively. If the LGR geometry is designed so that G| gg satisfies Eq. (23) where the
conductance curves for two particular Q values cross, then the match frequency is identical for
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these two Q values. Similarly, the LGR geometry can be designed so that G grmeets Eq. (23)
where ofm 6Q is nulled for changes in Q about any particular Q value. Then, the match
frequency is invariant for small changes in Q about that particular Q value. These predictions
have been validated by Ansoft HFSS simulations. Practical resonator design must also
accommodate changes in fy due to sample. This is discussed further in the next section.

The circuit model also shows that the match frequency can be made fixed over large Q
variations by the adjustment of an element that changes the natural LGR resonance frequency
fo in addition to the adjustment of the iris dimensions. However, a more attractive and novel
alternative is to match at precisely fy, which, from Fig. 8(a) or (c), requires a constant iris
susceptance and an adjustment of the LGR conductance G| gr. Changing the LGR conductance
is not possible through a typical reactive iris, and, therefore, another form is needed, for
example, something that varies the LGR magnetic flux near the iris or changes the transmission
line characteristic impedance. There could be an EPR signal-to-noise ratio benefit with this
coupling method.

3.4 LGR Design for Reduced Frequency Pulling

The predictions of the circuit model were used to design a new LGR in Ansoft HFSS. Starting
from the 10-mm-long 3-loop-2-gap LGR and a sample of the dimensions shown in Table 1,
the inner loop radius was decreased to 0.234 mm and the outer loop radius was increased to
1.905 mm. This should increase the equivalent resistance as seen by the iris and place match
closer to the natural resonance frequency. As predicted by the circuit model, the width of the
long iris increased to 2.16 mm to produce match. This is a surprisingly large iris opening, more
than half the waveguide width. The Q of the LGR decreased to 125. The match frequency was
140 MHz above fp. The magnetic field energy density profiles on the LGR axis for eigenmode
and driven solutions are shown in Fig. 2(b). The eigenmode uniformity is significantly
improved over the unmodified LGR due to the smaller inner loop. The iris further improves
the uniformity, like the previous long iris; however, the difference is much smaller, consistent
with a smaller iris perturbation. The lower the Af = f,, - fg, the lower the perturbation of the
mode by the iris relative to the eigenmode solution. The difference in flux between the coupled
outer loop and the uncoupled outer loop is reduced. Magnetic field uniformity can be further
trimmed using the techniques of ref. 11. These techniques are more easily applied when the
iris has a smaller perturbation on the resonator.

A thin metallic baffle of 0.1-mm thickness, 1.72-mm width, and 7.22-mm length was inserted
into the iris opening to reduce coupling when the sample was removed. Consistent with the

circuit model, the difference in f, with and without sample was only 20 MHz. Thus, frequency
pulling relative to changes in sample can be eliminated with an appropriate LGR and iris design.

4 Summary

In electrical engineering, lumped R-L-C models work well when characteristic dimensions of
the structure to be modeled are much less than a wavelength. Similarly, distributed circuit
models based on analytical solutions to Maxwell's equations are useful when characteristic
dimensions are similar or greater than a wavelength. In this latter situation, lumped circuit
models can also be selectively used [8,12,14]. Computer-based finite element modeling
provides rigorous solutions but can be criticized because the insight provided by analytic
solutions is lost. In this paper, we have developed an R-L-C model for a problem that falls in
an intermediate wavelength range. Finite element modeling was used not only in the
development but also for validation of the R-L-C model.

The rationale for this paper is the physical insight that the R-L-C model provides in describing
microwave coupling from a waveguide to an LGR. Q-values of the primary (waveguide and
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iris) and secondary (iris and LGR) are low and resonance frequencies disparate, so
approximations customarily made in the analysis of coupling to high-Q cavities are no longer
appropriate. The analysis has been carried out with and without an aqueous sample. Adjustment
between these states was modeled by changing the iris dimensions or by placement of a metallic
baffle in the iris (Sect. 3.4). More typically, a secondary circuit is introduced between the iris
and waveguide and often takes the shape of a moveable metallic pill. If the iris and LGR are
properly designed, this secondary circuit introduces a straightforward transformation of the
complex impedance. It has not been explicitly considered in the present analysis and is the
subject for a future investigation. Preliminary observations using Ansoft HFSS suggest that
the movement of a given-size pill across the waveguide width can accommodate a larger LGR
Q variation when used with the long iris than the conventional iris. The R-L-C model was
valuable, and perhaps essential in providing insight into the design of the coupler.

The iris produces critical coupling in an analogous way to a basic single-stub or slide-screw
tuner [15]. Critical coupling is accomplished in two parts. First, the length of transmission line
between the mismatched load and the stub provides a rotation on the admittance chart from
the normalized load admittance to the normalized G = 1 circle. The rotation is about the center
of the chart. Second, the normalized susceptance component of the load admittance at this point
is canceled by the pure susceptance of the stub, producing critical coupling. It is necessary to
place the stub at G = 1 so that the stub can have a pure susceptance. (A stub conductance will
cause power loss.) The stub tuner theoretically produces critical coupling with no frequency
shift, f,, = f.3. In the case of the iris, critical coupling is also a two-part process. However, the
rotation from the normalized load admittance to the normalized G = 1 circle, Eq. (23), is
accomplished by a frequency shift relative to the LGR natural resonance frequency through
the Lorentzian behavior of G gr(f). The rotation is about a point other than the center of the
Smith chart and is related to the LGR outer loop inductance, Eq. (24). The rotation to the
normalized G = 1 circle determines the frequency at which critical coupling occurs. The second
part of critical coupling, the cancellation of the normalized susceptance component of the LGR
admittance at this point by the pure susceptance of the iris, Eq. (24), is accomplished by the
iris in the same way as the stub tuner.

The long iris has benefits over the conventional iris for the EPR spectroscopist. These include
improved rf magnetic field uniformity at the sample and reduced frequency pulling. The long
iris has also been used to match cavities. Other shapes of irises can be modeled using the circuit
model with appropriate modification of the reactive elements with the iris dimensions. The
model led to the design of an LGR with unusually large outer loops and an unusually large iris,
which are critically coupled close to the natural LGR resonance frequency. The circuit model
can be used to explore a wide range of parameter space outside the range of conventional
thinking. Typically, the circuit model would be used to guide, and not replace, the use of a
finite element code. For the cases presented here, when the dimensions predicted by the circuit
model were used in the finite element code, critical coupling was sufficiently close that
reasonably small changes in iris dimensions were required to obtain critical coupling. Exact
iris and LGR dimensions, typically produced using electric discharge machining (EDM) or
laser milling, would be determined by finite element modeling at the final stages of design.
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3However, in practice, a transition is needed to provide a connection between the resonator and the transmission line. This transition will

act like an iris.

Appl Magn Reson. Author manuscript; available in PMC 2009 June 3.



1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Mett et al.

Page 18

Appendix A: Relationship between self and mutual inductance example

The cross-section of a long solenoid inside a metallic shield is shown in Fig. 10. Figure 10(a)
represents a low-frequency limit where the coil thickness is much less than the skin depth, and
Fig. 10(b) shows a high frequency limit where the coil thickness is much larger than the skin
depth. We present three treatments leading to the same analytic expression for the self-
inductance of the inner coil in the presence of the shield. The first closely follows Bogle [16]
and is a low frequency treatment involving magnetic flux conservation in the shield without
consideration of mutual inductance. The accuracy of the self-inductance expression in various
limits is extensively discussed by Bogle. The second is also a low frequency treatment but
explicitly treats the mutual inductance between the shield and the coil. The third is a high
frequency limit that permits the separation of the total current on the inner coil into an inner
surface current and an outer surface current. This leads to the total self-inductance of the coil
expressed by two self inductances connected in parallel with no mutual coupling. The results
are consistent with a statement by Grover [10]: “Self-inductance is merely a special case of
mutual inductance.” The presentation shows, for this particular case, that the metallic wall rf
boundary condition can be used to define surface currents and distinct regions, which permits
the shielded coil to be separated into two self-inductances connected in parallel. In this paper,
this approach includes capacitances and resistances and is applied to the coupled iris-LGR.

In Fig. 10(a), there is a total azimuthal current i uniformly distributed along a total length I and
an induced uniformly distributed total current I in the shield. Ampere's law can be used to relate
the current to the magnetic field between coil and shield, Hy = I/l, and inside the coil, H; = (i
- 1)/1. The magnetic field inside the coil is reduced by the shield current. Then, the total magnetic

flux between shield and coil is q)o:#oﬂ("oz = r,z) I/1, and inside the coil, ®;=uorr? (i — I) /1. In
order for the total magnetic flux in the shield to be zero, these two fluxes must be equal; this
yields a relationship between the coil and shield currents,

I:ﬁi.

ro? (A1)

This equation can be substituted into the equation for ®;, and the self-inductance of the coil in
the presence of the shield L = ®j/i can be written as

o (i)
l ro?

(A2)

This equation, which is consistent with Bogle [16], indicates that the shield reduces the self-
inductance of the coil.

The same equation can be obtained by considering a mutual inductance between shield and
coil. Following the definition of mutual inductance, the total emf induced in the coil can be
written as

(A3)
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where L,-=/407rr,.2/l is the ratio of the flux in the coil produced by the coil current i to the coil

current i, and M=,u07rr,2-/l is the ratio of the flux in the coil produced by the shield current I to
the shield current I. Therefore, Eqg. (A3) can be written as

V_uonrizd(i—l)_uonriz ( \ r,-2) di
= = -5l

l dt l 72 (A4)

where the last step was obtained by substituting Eq. (Al). Therefore, the equivalent self-
inductance of the coil is given by the term in front of the last time derivative, which matches
Eq. (A2).

In the high frequency limit where the coil thickness is much larger than the skin depth, the rf
magnetic field inside the metal is equal to zero [8]. Thus, Ampere's law can be used to relate
the magnetic field just outside the metal to the surface current. Between shield and coil, Hy =
I/l. Because this magnetic field is uniform between shield and coil, there is a current on the
outside surface of the coil as shown in Fig. 10(b) and is given by H, = ig/l. Therefore, ig = 1.
On the inside surface of the coil, H; = ij/l. The metallic wall rf boundary condition permits the
separation of the coil into two parts. We can consider the self-inductance of the inner part of
the coil Lj = pgrri12/1 as the ratio of the flux inside the coil produced by the current i; to i;, and
the self-inductance of the outer part of the coil L, = pom (rio? - ro2)/1 as the ratio of the flux
outside of the coil produced by the current i to i. Because the total current of the coil is the
sum of the inner and outer currents, i = ij + iy, the emf induced by the inner self-inductance is

Vv

_porr? di; _pomr d(i— 1) porri? r?\ di
LAt a1 dr’ (A5)

2

where we have assumed rj; = rj» = rjand used Eq. (Al) to obtain the last step. This emf is the
same as that developed by the total self-inductance of Eq. (A4). Equation (A5) indicates that
the effect of the mutual inductance of the shield on the coil can be considered to be the induction
of a current flowing on the outside of the coil i, and a reduction of the current flowing on the
interior of the coil ij relative to the total. It can also be shown that the emf of Eq. (A5) is the
same as that developed by the outer self-inductance,

/ dt ! d 1 r2)dt

where again we have used Eq. (Al). That the emfs are equal indicates that a gap cut in the wall
of the coil to form a capacitor for an LGR will not disturb the current distribution between the
inside and outside of the LGR. It can also be shown that the total self-inductance L of the coil
for the total current i is the parallel combination of L and L,,

1 1 _porr? (1 "iz)

L= =
L ST S T S I r.2
L + Lo  ponr? + pon(ro2=ri%) 0

with no mutual inductance between them. Such an LGR can be viewed as a capacitor receiving
the total current i from the two inductors in parallel.
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Appendix B: LGR lumped circuit values at cutoff

In Ref. [11], Mett et al. present a lumped circuit model and the corresponding lumped circuit
values of inductance, resistance, and capacitance of an LGR at high frequencies. The values
are functions of the LGR dimensions and conductivity and do not include effects of sample.
The circuit model is for the LGR at cutoff where the fields are axially uniform. Mett et al. also
present a transmission line model that accounts for the deviation of the LGR resonance
frequency from cutoff and a corresponding axial non-uniformity of the LGR fields produced
by a loading of the LGR by an impedance at the LGR ends. Results are compared to finite
element simulations and agreement is good, for both a long LGR with a length of about one
free space wavelength and a short LGR with a length of 12% of the free space wavelength.
The impedance of the ends of the LGR is found to perturb the resonance frequency of the short
LGR more than the long (3.4% vs. 1.0% from cutoff), whereas the axial field non-uniformity
is more apparent in the long LGR. This type of non-uniformity can be eliminated by an end
design that presents an rf open impedance to the LGR ends. Then, the LGR resonates at its
cutoff frequency.

At cutoff, the LGR rf currents are transverse and can be considered to flow on the interior metal
surfaces of the LGR (see Fig. 1), penetrating to a depth of one skin depth [8],

1

Vrfuoo

6:

where the frequency f = w2, is the magnetic permeability of free space, and o is the
conductivity of the metal. We assume that the LGR has an axial length | with m equal gaps of
thickness t and width w with a single inner loop of radius rj and m equal loops of radius r (in
Fig. 1, m = 2). Similar to the configuration in Appendix A, the magnetic flux in the inner loop
returns in the outer loops. Each LGR gap is a capacitor fed by a self-inductive loop on each of
its two ends. Using the metallic wall rf boundary condition to define the current in each loop,
the self-inductance of each loop is given by

_ﬂ()ﬂrz

L
1’ (B1)

where r is the respective loop radius. However, since the rf current enters each gap end, there
is an additional self-inductance caused by the resulting magnetic flux in each gap end. Jackson
[12] shows that the self-inductance of a set of parallel plates of dimensions equal to the gap
dimensions and fed from one end is given by

_ Hotw

L ,
3] (B2)

which is one-third the self-inductance of the plates shorted at the end opposite the feed. In the
case of the LGR, the gap is fed from both ends, and there is an rf current null between them at
a location that depends on the relative sizes of the self-inductances on each end. The location
of the null can be found by using the null to separate the gap into two parts—one that feeds rf
current to the outer loop and one to the inner loop. Like the example shown in Appendix A,
the loop voltage on each side of the rf current null is the same and the two parts are in parallel.
Since the resonance frequency of each part is the same, we find (for m gaps),
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1 1
VL,C, Lijm)C; (B3)

f=

where, using Egs. (B1) and (B2),

u w
L= (w432,

L 2
Byt o],
m 1 3

with w = wo +w;, and we tentatively take ¢ =« and ¢,= . If we assume the selfinductance
of the gap is small compared to the loops, Eq (BS) results in the relationship

wi ro

wo ri2/m’

This relationship can be used to write the total self-inductance of the loop and partial gap as

L,,:lﬂ 71'r,,2+’l—ri2 i .
l 32412 /m (B4)
Ho o miw 1’02
L=—\nrift+————
/ 3 12412 /m (B5)

These equations are the same as those presented by Mett et al. [11].

As described by Mett et al. [11], the total capacitance of each gap is increased by a factor y by
the fringing field that has been quantified by an exact two-dimensional electrostatic solution
derived from conformal mapping techniques [13],

gowl
Cr=y 0 ’

where the dimensionless factor vy is given by

e tK (k)
WK(VI - Kz).

(B6)

Here, K represents the complete elliptic integral of the first kind, and the parameter « in the
arguments of the elliptic integral is a real number between zero and one determined by solving
the equation,
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W_K K E {arccos [?&; ,K} -EF {arccos [;((';; ,K}

E®K(V1 —KZ)—(IT_KZ)ZE(\/] - %) K (k)

(B7)

In this equation, E of single argument represents the complete elliptic integral of the second
kind while E of double argument represents the elliptic integral of the second kind. Also, F
represents the elliptic integral of the first kind. Equation (B7) was solved numerically and Eq.
(B6) evaluated using Mathematica.

Finally, based on the metallic wall rf boundary condition, which relates the magnetic field to
the surface current, the resistance of each LGR loop plus partial gap (see Egs. (B4) and (B5))
was found by scaling 1/c by the length of the current path divided by the cross-sectional area
of the current path | 5. The length of the current path is the circumference of the loop less the
gap thickness plus twice the effective gap inductance gap width w,/3 or w;/3 since the current
flows oppose across the vacuum gap,

1 2w 2 /m
Ro=— 277, — 42 L)
© (rlé( 7o 3 ry2+r2 )/ m) (B8)
1 2 2
R=— 27rr,-—m1+ﬂr; .
ol 3 r2+r%/m (B9)

These equations differ from those presented by Mett et al. in the gap thickness correction and
have been found to give Q values (through Egs. (2)-(4) of the main text) about three times more
accurate (within 1.5% instead of 5% of Ansoft HFSS values) than without this correction.

Appendix C: Circuit equations

A complete set of circuit equations for the half-circuit of Fig. 6 is derived from the defined
mesh currents and component voltage drops given by

. . S
lin —lec — 1y

joCe 7 )

Vin=

Vin = Vee=JjWLeclee,

Vee=jwLcle,
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Vin = vi= (JOLAR) i,

V,-:2 (ij()+R()) i:;s

_2(i - 1,,)
" jwCr

v = v, =2 (jwL;i+R;) i;,

2 (ip — i;)
VI=F————
JwCr

”

vi= (oL, +R,) (iy = io).

where Cg and L are given by Egs. (12) and (13). Since there are 11 voltage and current
quantities and 10 equations, the ratio between any two of these quantities is found by solving
the system of equations for one quantity in terms of the other (e.g., using Mathematica).

Match is obtained when the input impedance given by Eq. (14), with the set of circuit equations,
is near the characteristic impedance of the waveguide. The waveguide characteristic impedance
for a TE;g mode in rectangular waveguide is given by [8]

n
Zy=—,

(c2)

where 1) is the impedance of free space /uo/&p and a is the large dimension of the waveguide.

If a length of waveguide Iy exists between the iris and the input port, the input impedance is
transformed by the waveguide according to

o
1

Zy cos(klg)+jZin sin (klg)

o
S

Zin COS (klg) +jZy sin (kl )

Zinl:Z()
where the waveguide wavenumber for a TE;g mode in rectangular waveguide is
=2 - ( < )2.

¢ 2af
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These equations were used to compare the impedances predicted by the circuit model near
match to Ansoft HFSS.

Appendix D: Impedance at critical coupling

In terms of the iris-modified LGR impedance Z, , defined in Fig. 6, equating the input
impedance to the waveguide characteristic impedance yields a relationship between the bridge

element L, value, the real and imaginary parts of Z’ | and the waveguide characteristic
impedance,

I(R’

1
XZGR EwLe + RLGR (ZO RLGR) (1)

and the and a value for the iris reactance from Eq. (15) in terms of the real part of Z/ , and the
waveguide characteristic impedance,
Z
Xivis= * 0
Zo  _ 1
RiGr (D2)

The iris-modified LGR resistance and reactance can be expressed in terms of the real and
imaginary parts of the pure LGR impedance ZLGR, Eq. (1), as

(32) Ru

/

o [XL(,R tw ( ”)]2 ’ (D3)

o ewm (% 1)

o2 [XLORJ“‘“( 0)]2 | (D4)

Equations (D1) and (D2) are the two conditions needed for critical coupling, and Egs. (D3)
and (D4) relate the iris-modified LGR impedance to the pure LGR impedance. In these

equations, we have neglected terms of order £ ., and RL,, which is a good approximation.

The LGR dimensions and sample determine RLGR and XLGR, and the iris dimensions determine
Ziris and how L, is split between L and L, Egs. (17) and (18). Both the real and imaginary
parts of the LGR impedance are strongly frequency dependent and must be determined from
Eqg. (1). Very near the natural resonance frequency of the LGR, Eq. (6), X | gr is typically on
the order of an Ohm and R| g is close to the equivalent resistance given by Eqg. (3). For a fixed
LGR Q, the value of R gg increases as the ratio of the outer loop to inner loop cross-sectional
area increases. Because of this, the behavior of the iris changes with LGR dimensions. For a
given LGR and a given iris length, it is usually possible to adjust the iris width to produce
match; larger width increases coupling strength. The match is typically achieved with nonzero
LGR reactance and therefore a frequency deviation from the natural LGR frequency. The
direction and amount of frequency shift, along with other types of iris behavior, depend on the
iris dimensions as further discussed in Sect. 3.
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waveguide 111S
. sample outer
ir1s wall loop  loops

Fig. 1.

Mechanical drawing of bisected 10-mm-long Q-band 3-loop-2-gap LGR. Resonator body is
shown in gray and the sample tube in blue. Gaps face bisecting plane. Coupling iris slot appears
on nearest edge.
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d
Eigenmode — Eigenmode
— — — — Long iris — — — — Long iris
----- Short iris
T T T T T T T T
0 2 B 6 0 2 4
Distance (mm) Distance (mm)
Fig. 2.

Radio frequency magnetic field energy density profile at sample center and LGR axis as
predicted by Ansoft HFSS. Solid line indicates eigenmode (no iris) solution. Short dashes
indicate conventional iris and long dashes long iris. a Iris and LGR dimensions shown in Tables
1and 2. b LGR and iris dimensions modified from those in Tables 1 and 2 to reduce differences
in match frequency with and without sample as described in Sect. 3.4. Modified dimensions:
LGR inner loop diameter 0.467 mm, outer loop diameter 3.81 mm, long iris width 1.00 mm.
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O O

LGR cross-sections. a 1-loop-1-gap, no return flux loop. b 1-loop-1-gap. Sample is placed in
smaller loop and larger loop is flux return path. ¢ 3-loop-2-gap. d 5-loop-4-gap.
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Z1.GR

Fig. 4.
LGR circuit with driving point at fully broken outer loop.
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/ back front  back \ front
. -
o LGR outer loop

Fig. 5.
Iris a drawing showing qualitative current flow, b isolated iris half-circuit, ¢ half-circuit of iris
in proximity to LGR outer loop.
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Fig. 6.
Half-circuit of connected iris and LGR.
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Generalized coupled circuit equivalent form [9].
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Admittance of the series combination of L
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Eqg. (22), as a function of frequency near

the natural LGR resonance frequency and match. Also shown are the iris and outer loop
admittances. Parts a and b correspond to a conventional iris, and parts ¢ and d to a long iris,
dimensions shown in Table 2. Parts b and d are expanded views of a and c, respectively. Solid
lines are conductance and dashed lines are susceptance.
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229, matched to WR-28

yrvrrey
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Wall surface current magnitude a, b and magnetic field vectors at symmetry plane c,d of 3-

loop-2-gap LGR of dimensions and sample size given in Table 1, Q

VYV <<<=
v\\‘\ﬂ
M M '.7"'"'”” | Lo

waveguide by conventional a,c and long b,d irises of dimensions shown in Table 2. Red to
blue indicates maximum to minimum intensity.

Fig. 9.

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Appl Magn Reson. Author manuscript; available in PMC 2009 June 3.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Mett et al. Page 35

shield
coil

Fig. 10.

Shielded coil. Dots represent rf magnetic field directed out of page, and plusses represent rf
magnetic field going into page. a Low frequency limit where rf skin depth is much greater than
coil thickness. b High frequency limit where rf skin depth is much smaller than coil thickness.
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LGR properties and sample dimensions (mm).
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sample radius r
sample tube outer radius r,
inner loop radius r;
outer loop radius r,
length |
gap width w
gap thickness t

natural resonance frequency f, (GHz)
quality factor, no sample Q.

quality factor with sample Q

0.127
0.165
0.330
1.030
10.03
1.156
0.165
33.869
871
229
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Table 2

Coupled LGR-iris properties.
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conventional long
iris wall thickness t.,(mm) 0.305 0.305
iris opening width w, (mm) 0.533 0.276
iris length I, (mm) 4.06 7.62
iris outer loop flux occupation factor s 0.25 0.66
iris resonance frequency in presence of LGR outer loop f,, 37.2 27.4
(GHz)
match frequency relative to f;, Af(MHz) -372 251
primary quality factor Qp 2.8 5.6
secondary quality factor Qg 225 245
iris reactance X5 (€2) 808 -71.1
coupling constant k; 0.94 -0.92j
i/ 10 14-24] 0.57-0.089
i/ ,;' 1.1-2.0] 0.22-0.034]
i/ 10 -0.88+16] -1.2-019j
iifig -39-18 -9.7-095j
i/ i -14+0.005 | -15-0.005 j
iy -17- 88 25+85]
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