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Transcription networks have an unusual structure. In both prokaryotes and eukaryotes, the number of

target genes regulated by each transcription factor, its out-degree, follows a broad tailed distribution.

By contrast, the number of transcription factors regulating a target gene, its in-degree, follows a much

narrower distribution, which has no broad tail. We constructed a model of transcription network evolution

through trans- and cis-mutations, gene duplication and deletion. The effects of these different evolutionary

processes on the network structure are enough to produce an asymmetrical in- and out-degree distribution.

However, the parameter values required to replicate known in- and out-degree distributions are unrealistic.

We then considered variation in the rate of evolution of a gene dependent upon its position in the network.

When transcription factors with many regulatory interactions are constrained to evolve more slowly than

those with few interactions, the details of the in- and out-degree distributions of transcription networks can

be fully reproduced over a range of plausible parameter values. The networks produced by our model

depend on the relative rates of the different evolutionary processes. By determining the circumstances

under which the networks with the correct degree distributions are produced, we are able to assess the

relative importance of the different evolutionary processes in our model during evolution.

Keywords: transcription network; gene duplication; degree distribution; degree dependence;

gene regulation; transcription factor
1. INTRODUCTION
Transcription regulation plays a key role in determining

cellular function, response to external stimuli and

development. Regulatory proteins orchestrate gene

expression through thousands of interactions resulting in

a system too complex to be easily understood in detail.

This makes elucidation of gene regulation from a global

perspective—that of the transcription network as a

whole—an important challenge.

Genes in a transcription network either have outgoing

edges, incoming edges or both. Outgoing edges from a

gene represent the different targets that it regulates, while

incoming edges at a gene represent the different transcrip-

tion factors that regulate it. A number of studies (Thieffry

et al. 1998; Guelzim et al. 2002; Maslov & Snepen 2005)

have established that, in both prokaryotes and eukaryotes,

the degree distributions for outgoing and incoming edges

are very different. The out-degree distribution, nout(k),

follows a broad tailed distribution that is best described

by a power-law:

noutðkÞfkKg: ð1:1Þ

The exponent g is observed to be in the range 1!g!2

(Guelzim et al. 2002; Maslov & Snepen 2005). A power-law
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distribution indicates that there are a small number of hub

transcription factors that regulate a large number of genes

(Barabási & Oltvai 2004). Interpretation of power-law

degree distributions, and the small world structure they

confer, has been the focus of a great deal of attention

(Barabási & Albert 1999; Bahn et al. 2002; Pastor-Sorras

et al. 2002; Chung et al. 2003; Wagner 2003; Barabási &

Oltvai 2004; Pagel et al. 2007). In particular, it has been

suggested that a power-law distribution may deliver an

evolutionary advantage through increased mutational

robustness and evolvability (Barabási & Oltvai 2004).

However, the in-degree distribution of transcription

networks is much narrower than a power-law and has no

broad tail (Thieffry et al. 1998; Guelzim et al. 2002;

Maslov & Snepen 2005). It is best described by an

exponential distribution

ninðkÞfeKak: ð1:2Þ

The exponential in-degree distribution reflects the fact that

only a few transcription factors combinatorially regulate

any one gene. There exist no hub target genes. For

example, in the yeast transcription network, 93 per cent

of target genes are regulated by less than five transcription

factors (Guelzim et al. 2002).

The extent to which the in- and out-degree distributions

of transcription networks are different is intriguing, and

the cause unknown. In this paper, we develop a model to

explain the evolution of the asymmetrical transcription

network degree distribution observed in yeast and other
This journal is q 2009 The Royal Society
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Figure 1. (a)(i) Duplication of a TF and all its outgoing edges, (ii) duplication of a TG and all its incoming edges. (b) Evolution via
trans-mutation: (i) gain of an interaction through trans-evolution; (ii) loss of interactions through trans-evolution. (c) Evolution
via cis-mutation: (i) gain of an interaction through cis-evolution; (ii) loss of an interaction through cis-evolution.
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organisms. We focus on the different types of mutation

through which the network evolves. Changes to the outgoing

and incoming edges at a gene may occur as the result of

mutation to a regulatory protein (trans-mutation) or as the

result of mutation to transcription factor-binding sites

(cis-mutation). These two processes change the network

structure in different ways, but both result in either the loss

or gain of regulatory interactions between existing genes.

In addition, genes themselves may be lost or gained in the

network through deletion and duplication.

The rates at which a gene evolves may vary according to

its connectivity in the transcription network (Maslov et al.

2004; Wagner & Wright 2007). We investigate two types of

connectivity-dependent evolution. It is often argued

(Barabási & Oltvai 2004) that hub genes, which partici-

pate in many regulatory interactions, are particularly

important for the proper functioning of the network, and

are therefore constrained to evolve more slowly. This leads

to the expectation of a slower rate of evolution among

genes that regulate many downstream targets and a faster

rate of evolution among genes that regulate only a few

targets. It has also been suggested that a process of

preferential attachment may occur in biological networks

(Barabási & Oltvai 2004). Under preferential attachment,

new interactions are gained in proportion to the number of

interactions a node already participates in. Such a process

has been shown to occur in protein–protein interactions

networks (Wagner 2003; Pagel et al. 2007).

We construct a model incorporating evolution through

trans- and cis-mutations, gene duplication and deletion

along with variation in evolutionary rates depending

on the connectivity of a gene. We use our model to

unravel the relationship between the rates of evolution of

genes through different processes in relation to the

network structure.
2. RESULTS
(a) Model

There are four types of network mutation in out

model—gene deletion and duplication, plus cis- and

trans-mutation. The in- and out-degree distributions of

the network are determined by the rates at which these

different types of mutation become fixed in the transcription

network of a population. Since there is a clear functional

difference between genes that code for transcription factors

and those that code for other types of protein, we separate

genes into two groups. Those with regulatory functions

are labelled transcription factors (TFs) and those that
Proc. R. Soc. B (2009)
are only regulated are labelled target genes (TGs). TGs have

only incoming edges, while TFs may have either outgoing

or incoming edges.

We establish the equilibrium in- and out-degree

distributions for four different versions of our model. In

the first version, the rates of evolution are independent of a

gene’s connectivity. We then consider two types of

connectivity dependence in TF evolution. In the second

version of our model, there is connectivity dependence

such that the TFs with a large number of interactions

undergo trans-evolution more slowly than those with few

interactions. This is referred to as degree dependence in the

rate of trans-evolution. In the third version of our model,

there is connectivity dependence such that TFs gain

new targets at a rate proportional to the number of

targets they regulate. This is referred to as preferential

attachment. The final version of our model includes both

degree dependence in the rate of trans-evolution and

preferential attachment.

(b) Gene deletion and duplication

We assume that when genes are duplicated they inherit all

the regulatory interactions of their parent. Evolution

through duplication occurs at rate DC and deletion occurs

at rate DK per gene (figure 1a). A TF of out-degree k gains

outgoing edges due to duplication of its targets at rate

kDC, and loses outgoing edges due to deletion of its

targets at rate kDK. Similarly, a gene of in-degree j gains

incoming edges due to duplication of TFs at rate jDC, and

loses incoming edges due to deletion of TFs at rate jDK.

If the rates of gene deletion and duplication are different,

this will result in either growth (if the rate of duplication is

greater than the rate of deletion), or decline (if the rate of

deletion is greater than the rate of duplication) in the size

of the network. We assume that the rate of growth

(or decline) of the network is small compared to the rate

of rewiring of regulatory interactions through trans- and

cis-mutation (Gao & Innan 2004; Doniger & Fay 2007;

Ward & Thornton 2007). Thus, we consider only networks

of constant size, and therefore assume that DCZDKZD.

(c) Evolution of regulatory-binding sites and

transcription factors

A trans-mutation results in a change in the ability of TFs to

bind to the promoter region of a gene. This may occur

through a change in the binding affinity of a TF for a

regulatory site. Alternatively, it may be the result of a TF

gaining or losing an interaction with another TF,

which helps it bind to the promoter region of a target



Table 1. Model parameters.

k number of regulatory interactions
NTG expected number of TGs
NTF expected number of TFs
N expected size of the network (NZNTFCNTG)

mCtrans rate of gain of interactions due to trans-evolution

mP
trans in preferential attachment model—the rate at which new edges produced by trans-mutation

undergo preferential attachment based on the in-degree of genes

mR
trans in preferential attachment model—the rate at which new edges produced by trans-mutation

undergo random attachment to genes
mKtrans rate of loss of interactions due to trans-evolution
m probability a TF loses an existing target immediately following a trans-mutation

mCcis rate of gain of TF-binding sites through cis-evolution

mP
cis

in preferential attachment model—the rate at which new edges produced by cis-mutation
undergo preferential attachment based on the out-degree of TFs

mR
cis

in preferential attachment model—the rate at which new edges produced by cis-mutation
undergo random attachment to TFs

mKcis rate of loss of TF-binding sites through cis-evolution
D rate of duplication and deletion
PK
k;Dk probability that a TF of out-degree k loses Dk edges as a result of a trans-mutation
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(Tuch et al. 2008). Therefore, a trans-mutation in our

model refers to a mutation affecting a transcription factor

protein only. It does not refer to mutations affecting the

cis-regulatory regions of trans-acting genes.

Following fixation of such a trans-mutation, a TF can

cease to control some of the genes it currently regulates

and can gain control over new genes. We assume that

trans-evolution resulting in a TF potentially losing targets

occurs at a constant rate mKtrans. In this process, an existing

target is lost with probability m. The probability, PK
k;Dk,

that a TF with k out-edges loses Dk of its targets following

a trans-mutation is given by

PK
k;Dk Z

k!

Dk!ðkKDkÞ!
mDkð1KmÞkKDk: ð2:1Þ

Similarly, we assume that trans-evolution resulting in the

gain of new targets by a TF occurs at a constant rate mCtrans,

which is independent of the out-degree of the TF. Overall,

trans-evolution results in a gene losing incoming edges at

rate mmKtrans (per edge) and gaining a new incoming edge

at rate mCtransð1Kðk=NÞÞ (figure 1b). The factor ð1Kðk=NÞÞ

gives the probability that the gene gaining the new

incoming edge is not one of the k genes currently regulated

by the mutated TF.

A cis-mutation results in the gain of a new binding site

or the loss of an existing binding site in the promoter

region of a gene. The rate at which binding sites are lost is

mKcis. The probability that a gene, which is regulated by k

TFs, loses an interaction through loss of a TF binding site

is kmKcis. A gene may also gain a new regulatory binding

site for any TF in the network to which it is not currently

connected, at rate mCcis (figure 1c). Therefore, a gene

currently regulated by k TFs gains an incoming edge

through cis-evolution at a rate mCcisð1Kðk=NÞÞ. Throughout,

we assume that the size of the network N is large compared

to any realistic in- or out-degree k, so that the terms k/N

may be neglected. Thus, new incoming edges are gained at

constant rates mCtrans through trans-evolution and mCcis
through cis-evolution.

We also develop a model in which degree dependence

in the rate of trans-evolution occurs. In this model, a trans-

mutation, which results in TF-losing interactions, is fixed

with a probability that depends on its out-degree. Since a
Proc. R. Soc. B (2009)
trans-mutation affects the functioning of the transcription

factor itself, it potentially alters all of the interactions in

which a TF takes part. We assume that a trans-mutation

at a TF with k targets has a deleterious effect on the

functioning of the network that is proportional to k.

Therefore, we assume that a trans-mutation resulting in the

loss of edges from the network is fixed with probability

proportional to 1/k. In this way, the rates of evolution of

TFs are degree dependent.

A summary of all the parameters used in the model is

given in table 1.

(d) Network evolution

We allow evolution of the network by updating it at time

intervals Dt, taken so that at most one mutation occurs and

goes to fixation within each interval. Hence, the mean field

equation for the expected number of genes with in-degree

k at time t, changes in the time interval Dt by,

DninZ Pin
TGCðkK1ÞCPin

TFCðkK1Þ
� �

ninðkK1; tÞ

C Pin
TGKðkC1ÞCPin

TFKðkC1Þ
� �

ninðkC1; tÞ

K Pin
TGCðkÞCPin

TFCðkÞCPin
TGKðkÞCPin

TFKðkÞ
� �

ninðk; tÞ

ð2:2Þ

where Pin
TGCðkÞ and Pin

TGKðkÞ are the probabilities of a

gene with in-degree k gaining or losing an edge through

mutation at the regulated gene; and Pin
TFCðkÞ and Pin

TFKðkÞ are

the probabilities of a gene with in-degree k gaining or losing

an edge through mutation at a TF regulating it, in the time

interval Dt. Similarly, the expected number of genes with out-

degree k at time t changes in the time interval Dt by

Dnout Z Pout
TGCðkK1ÞCPout

TFCðkK1Þ
� �

noutðkK1; tÞ

CP
out
TGKðkC1ÞnoutðkC1; tÞK P

out
TGCðkÞCP

out
TGKðkÞ

�
CPout

TFCðkÞ
�
noutðk; tÞC

XN
jZk

Pout
TFKð j; kÞnoutð j; tÞ

K
Xk
jZ0

Pout
TFKðk; j Þnoutðk; tÞ; ð2:3Þ

where N is the number of genes (TFs and TGs) in the

network; P out
TGCðkÞ and P out

TGKðkÞ are the probabilities of a

gene with out-degree k gaining or losing an edge through

mutation at one of its targets; Pout
TFCðkÞ is the probability that a



Table 2a. Incoming edge event probabilities.

model 1 model 2 model 3 model 4

Pin
TGCðkÞ mCcis mCcis mCcis mCcis

Pin
TGKðkÞ kmKcis kmKcis kmKcis kmKcis

Pin
TFCðkÞ kDCmCtrans kDCmCtrans kDCmR

transCkmP
trans kDCmR

transCkmP
trans

Pin
TFKðkÞ kDCkmKtransm kDCkh1=kimKtransm kDCkmKtransm kDCkh1=kimKtransm

Table 2b. Outgoing edge event probabilities.

model 1 model 2 model 3 model 4

Pout
TGCðkÞ kDCmCcis kDCmCcis kDCmR

cisCkmP
cis kDCmR

cisCkmP
cis

Pout
TGKðkÞ kDCkmKcis kDCkmKcis kDCkmKcis kDCkmKcis

Pout
TFCðkÞ mCtrans mCtrans mCtrans mCtrans

Pout
TFKð j; kÞ mtransP

K
j; jKk mKtransðP

K
j; jKk=jÞ mtransP

K
j; jKk mKtransðP

K
j; jKk=jÞ

K(g, m) ð1=2ðgK1ÞÞð1Kð1KmÞgK1Þ ð1=2gÞð1Kð1KmÞgÞ ð1=2ðgK1ÞÞð1Kð1KmÞgK1Þ ð1=2gÞð1Kð1KmÞgÞ
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TF with out-degree k gains a target through mutation at the

TF; and P out
TFKð j; kÞ is the probability that a TF with out-

degree jRk loses interactions to become a TF with out-degree

k due to mutation at the TF.

The equilibrium in-and out-degree distributions for the

model can be found from equations (2.2) and (2.3), by

setting the left-hand sides of both equations to 0 (see the

electronic supplementary material). The equilibrium

in-degree distribution satisfies

P in
TFKðkC1ÞCP in

TGKðkC1Þ
� �

ninðkC1Þ

Z P in
TFCðkÞCP in

TGCðkÞ
� �

ninðkÞ: ð2:4Þ

After making a number of approximations (see the

electronic supplementary material), the equilibrium out-

degree distribution satisfies

Pout
TGKðkC1ÞCðkC1ÞmKtransKðg;mÞ

� �
noutðkC1Þ

Z Pout
TGCðkÞCPout

TFCðkÞKkmKtransK ðg;mÞ
� �

noutðkÞ; ð2:5aÞ

for the model excluding degree dependence in the rate of

trans-evolution and

Pout
TGKðkC1ÞCmKtransK ðg;mÞ

� �
noutðkC1Þ

Z P
out
TGCðkÞCP

out
TFCðkÞKm

K
transK ðg;mÞ

� �
noutðkÞ; ð2:5bÞ

for the model including degree dependence in the rate of

trans-evolution. The positive parameter g arises from the

approximations used to obtain equations (2.5a) and (2.5b)

(see the electronic supplementary material), and the

functions K(g, m) are specific to each of the models we

consider and will be described below.

We now solve equations (2.4), (2.5a) and (2.5b) for the

in- and out-degree distributions for four specific models of

transcription network evolution. We start using a simple

model and then investigate different models including

degree dependence in the rate of trans-evolution and

preferential attachment, to ask what conditions are

required to explain the observed difference between the

in- and out-degree distributions of transcription networks.
Proc. R. Soc. B (2009)
(e) Model 1: no connectivity dependence

In the first model, we assume there is neither any degree

dependence nor any preferential attachment in the rate of

trans-evolution. The event probabilities for the in- and

out-degree distributions in this model are given in table 2a.

Substituting these in equations (2.4) and (2.5a), we find

for the in-degree distribution (see the electronic supple-

mentary material)

ninðkÞfkKl eKak;

where

aZ ln 1C
mKcis CmmKtrans

D

0
@

1
A;

lZ1K
mCcis CmCtrans

D
:

ð2:6Þ

This is approximately an exponential distribution, charac-

terized by a, unless a is small, which occurs if

D[mKcisCmKtransm, or l is large and negative, which occurs

if D/mCcisCmCtrans.

The equilibrium out-degree distribution for this model

obtained from equation (2.5a) is

noutðkÞfkKg eKbk;

where

bZ ln
mKcis CDCmKtransK ðg;mÞ

DKmKtransK ðg;mÞ

0
@

1
A;

gZ1K
mCcis CmCtrans

DKmKtransKðg;mÞ
;

ð2:7Þ

and K(g, m) is as in table 2b. This distribution is a power-

law characterized by g only if b is 0. This occurs if

mKcisZK2mKtransK ðg;mÞ. However, as the rates, mKcis and mKtrans,

are both positive constants, and K ðg;mÞO0 (table 2b),

this condition cannot be met. Therefore, this model

cannot produce a power-law out-degree distribution.
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Figure 2. (a) Preferential attachment: (i) preferential attachment of incoming edges. A TF choosing between a TG with three
incoming edges and a TG with two incoming edges gains an interaction with the first with probability 0.6 and with the second
with probability 0.4 due to preferential attachment; (ii) preferential attachment of outgoing edges. When choosing between a
TF with three outgoing edges and a TF with one outgoing edge, a TG gains an interaction with the TF with three edges with
probability 0.75 and with the TF with one edge with probability 0.25 due to preferential attachment. (b) Rewiring: (i) network
prior to rewiring; (ii) edge ‘a’ is rewired to edge ‘a 0’. This results in a change in the in-degree of two TGs but leaves the out-degree
of the TF unchanged. Edge ‘b’ is rewired to edge ‘b 0’, changing the out-degree of two TFs but leaving the in-degree of the
TG unchanged.
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(f ) Model 2: degree dependence in the rate of

trans-evolution

In this model, we allow degree dependence in the rate of

trans-evolution. Substituting the event probabilities for

this model (table 2a) into equations (2.4) and (2.5b), we

find for the in-degree distribution

ninðkÞfkKl eKak;

where

aZ ln 1C

mKcis Cm
1

k

* +
mKtrans

D

0
BBBBB@

1
CCCCCA;

lZ 1K
mCcis CmCtrans

D
;

ð2:8Þ

and h1=kiZ
PN

jZ1 noutð j Þ=j determines the mean rate of

trans-evolution across the network. Following the same

procedure as for model 1, this distribution will be

approximately exponential unless a is small or l is large

and negative, which occurs when D[mKcisC h1=kimKtransm or

D/mCcisCmCtrans, respectively.

The equilibrium out-degree distribution for this

model is

noutðkÞfkKg eKbk;

where

bZ ln 1C
mKcis
D

0
@

1
A;

DðgK1ÞCmCcis CmCtrans ZmKtransKðg;mÞ 1C
D

DCmKcis

0
@

1
A;

ð2:9Þ

and K(g, m) is as in table 2b. This distribution is a power-

law characterized by g only if b is 0. This occurs if

D[mKcis. Under this condition, equation (2.9) has

solutions with gO1 provided mmKtransOmCcisCmCtrans.
Proc. R. Soc. B (2009)
(g) Model 3: preferential attachment

This model includes preferential attachment, but excludes

degree dependence in the rate of trans-evolution

(considered in model 2). In preferential attachment

models, the rate at which nodes gain new edges is

proportional to the number of edges already attaching to

them. Preferential attachment has been discussed

widely in the study of other biological networks (Wagner

2003; Barabási & Oltvai 2004; Pagel et al. 2007), including

in the protein–protein interaction network of yeast

(Wagner 2003).

We model preferential attachment of incoming and

outgoing edges separately. For incoming edges our model

is as follows: new edges arise due to trans-evolution at rate

mCtrans. When such a new edge arises, it may be either

through preferential attachment or through random

attachment (i.e. the new edge attaches to each gene with

equal probability) at the gene that is regulated. In the case

of preferential attachment, the probability that a gene

gains a new incoming edge is proportional to its in-degree.

In the case of random attachment, the probability that a

gene gains a new incoming edge is independent of its

in-degree. We assume that such new edges undergo

preferential attachment to a gene at rate mP
trans, and

undergo random attachment at a rate mR
trans. The rate at

which a gene of in-degree k gains a new edge due to

preferential attachment is kmP
trans, and the rate at which it

gains a new edge due to random attachment is mR
trans. The

total rate at which TFs gain new outgoing edges is then

mCtransZ ðE=NTFÞm
P
transC ðN=NTFÞm

R
trans, where E is the total

number of edges in the network.

Our model of preferential attachment for outgoing

edges is of the same form: new edges arise due to cis-

evolution at rate mCcis. The rate at which a TF of out-degree

k gains new outgoing edges due to preferential attachment

is then kmP
cis, and the rate at which it gains new edges due

to random attachment is mR
cis. The total rate at which genes

gain new incoming edges is then mCcisZ ðE=NÞmP
cisC

ðNTF=NÞmR
cis. Our model of preferential attachment is

illustrated in figure 2a.

The event probabilities for the in- and out-degree

distributions in this model are given in table 2a.

Substituting these into equations (2.4) and (2.5a), the
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in-degree distribution is

ninðkÞfkKl eKak;

where

aZ ln
DCmKcis CmmKtrans

DCmP
trans

� �
;

lZ1K
mCcis CmR

trans

DCmP
trans

:

ð2:10Þ

This distribution will be approximately exponential

unless a is small or l is large and negative. That

is, unless DCmP
trans[mKcisCmKtransm, or DCmP

trans/mCcisC
mR
trans. Therefore, we require mP

transwmKcisCmmKtrans. The

equilibrium out-degree distribution for this model is

noutðkÞfkKg eKbk;

where

bZ ln
mKcis CDCmKtransK ðg;mÞ

DCmP
cisKmKtransK ðg;mÞ

� �
;

gZ1K
mR
cis CmCtrans

DCmP
cisKmKtransK ðg;mÞ

;

ð2:11Þ

and K(g, m) is as in table 2b. This distribution is a power-

law characterized by g only if b is 0. This occurs if

mKcisZmP
cisK2mKtransK ðg;mÞ. Equation (2.11) then gives

gZ1KððmR
cisCmCtransÞ=ðDC ð1=2ÞðmKcisCmP

cisÞÞÞ, and the only

solutions have g!1.
(h) Model 4: degree dependence and

preferential attachment

In the final model, we include degree dependence (as

described in model 2) and preferential attachment

(as described in model 3). The event probabilities for

this model are given in table 2a. Using these with equa-

tions (2.4) and (2.5b), we find for the in-degree distribution

ninðkÞfkKl eKak;

where

aZ ln
DCmKcis Cm 1

k

� �
mKtrans

DCmP
trans

� �
;

lZ1K
mCcis CmR

trans

DCmP
trans

:

ð2:12Þ

This distribution is approximately exponential unless a is

small or l is large and negative. That is, unless

DCmP
trans[mKcisC h1=kimKtransm, or DCmP

trans/mCcisCmR
trans.

Therefore, we require mP
transwmKcisCmh1=kimKtrans. The equili-

brium out-degree distribution for this model is

noutðkÞfkKg eKbk;

where

bZln
DCmK

cis

DCmP
cis

0
@

1
A;

DCmP
cis

� �
ðgK1ÞCmR

cisCmC
transZmK

transKðg;mÞ 1C
DCmP

cis

DCmK
cis

0
@

1
A;

ð2:13Þ

andK(g, m) is as in table 2b. This distribution is a power-law

characterized by g only if b is 0. This requires mKcisZmP
cis.
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Under this condition, the third term in equation (2.13) has

solutions with gO1 provided mmKtransOmR
cisCmCtrans.
3. DISCUSSION
To assess the four models we have presented, we compare

their results to empirical observations from the yeast

transcription network. The out-degree distribution of the

Saccharomyces cerevisiae transcription network is best

described by a power-law distribution with an exponent

gZ1.5, while the in-degree distribution is best described

by an exponential distribution with exponent aZ0.4

(Maslov & Snepen 2005).

Since the exponent of the out-degree distribution for

yeast is greater than 1, we conclude that models 1 and 3,

which do not include degree dependence in the rate of

trans-evolution, cannot account for the observed out-

degree distribution of the S. cerevisiae transcription

network. However, models 2 and 4, which include degree

dependence in the rate of transcription factor evolution,

can both produce networks with power-law out-degree

distributions whose exponent is gO1. Therefore, we

conclude that degree dependence in the rate of transcrip-

tion factor evolution is necessary to reproduce the

structure of the yeast transcription network.

(a) Empirical rates of evolution

We can further distinguish between models 2 and 4 by

referring to empirical data on the rates of evolution in the

yeast transcription network. The rate of gene duplication

inyeast is found tobe in the range1!10K5–6!10K5 MyrK1

(Gao & Innan 2004). The rate of evolution (gain or loss) of

regulatory interactions is an order of magnitude higher,

approximately 36!10K5 MyrK1 (Gu et al. 2005).

Evolution of regulatory interactions may occur due to

changes in regulatory proteins (trans-mutations in our

model) or due to changes in cis-regulatory elements.

A trans-mutation in our model refers to a mutation

affecting a transcription factor protein only. It does not

refer to mutations affecting the cis-regulatory regions of

trans-acting genes. In practice, it is difficult to distinguish

between the effects of the trans- and cis-mutations of our

model without much more detailed comparative data.

Studies on the contribution of the evolution of cis-

regulatory elements and of trans-acting proteins to the

evolution of gene expression have mixed findings.

Variation between yeast strains have been found to be

mainly due to variation in trans-acting proteins by

some studies (Yvert et al. 2003; Zhang et al. 2004; Wang

et al. 2007), while this has been contradicted by others

(Ronald et al. 2005).

In model 2, a power-law out-degree distribution is

only produced if D[mKcis. If we consider the case in

which trans-evolution is more rapid than cis-evolution,

then, given a rate of evolution of regulatory interactions of

36!10K5 MyrK1 (Gu et al. 2005) and a rate of gene

duplication of range 1!10K5–6!10K5 MyrK1 (Gao &

Innan 2004), model 2 suggests that the loss of regulatory

interactions must be approximately 99 per cent due to

trans-evolution. Such a disproportionate rate is not

consistent with empirical data on the relative contri-

butions of trans- and cis-change to the evolution of gene

expression in yeast (Yvert et al. 2003; Zhang et al. 2004;

Ronald et al. 2005; Wang et al. 2007). Therefore, we can
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Figure 3. Simulated networks with an expected size of 100
TFs and 100 TGs. Networks have an exponential in-degree
and power-law out-degree with aZ0.4 and gZ1.5.
Simulations consist of ensembles of 1000 networks evolved
for 106 mutations. Plot is on a log–log scale. Simulations were
run for a range of parameter values. A typical example is
shown. Data points show the degree distributions for
simulated networks, solid lines are the predicted distribution.
In-degree is shown in grey. Out-degree is shown in black. The
networks were produced using model 4, including degree
dependence in the rate of trans-evolution and preferential
attachment. Here, the rate of duplication is DZ0.26, the rate
of gain of interactions through trans-evolution is mCtransZ0:04,
and through cis-evolution is mCcisZ0:31. The rate of loss of
interactions through trans-evolution is mmKtransZ0:25 and
through cis-evolution is mKcisZ0:14.
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reject model 2, as inadequate to explain the structure of

the yeast transcription network.
(b) Preferential attachment

Model 4 can produce a power-law out-degree distribution

provided mKcisZmP
cis. This requirement means that the

rate at which transcription factors lose connections to

target genes through cis-mutations must be balanced

by the rate at which they gain new targets through

preferential attachment. From this we also conclude

that preferential attachment for outgoing edges is

necessary to produce the observed yeast transcription

network. The condition mKcisZmP
cis is identical to a model in

which transcription factors undergo rewiring (figure 2b),

and suggests that transcription factors undergo a constant

turnover of targets, without net gain or loss.

In order to determine whether preferential attachment

among incoming edges occurs, we must consider the

in-degree distribution of model 4. This is given by

equation (2.12), with an exponential exponent, a, of

approximately 0.4. Given a low rate of duplication,

equation (2.12) suggests that preferential attachment of

incoming edges at target genes is also necessary to

reproduce the structure of the yeast transcription network.

Figure 3 shows the result of simulations using model 4,

which confirm that this model can reproduce the observed

structure of the yeast transcription network.
(c) Evolution via trans-mutation

Our model for loss of interactions through trans-evolution

includes two parameters, mKtrans, the rate at which

trans-mutations are fixed, and m, the probability each

interaction is lost given that a trans-mutation is fixed.
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This means that following a trans-mutation a transcription

factor will retain, on average, a fraction 1Km of its

interactions. As it is difficult to estimate m, we consider

two important cases: m/0 and mZ1. In the first case,

transcription factors evolve by small changes, one

interaction at a time. In the second case, transcription

factors lose all their existing interactions, and subsequently

gain new ones through both cis- and trans-evolution. In

this case, the TF may be seen as completely losing its old

function before acquiring a new function.

When m/0, equation (2.13) for the out-degree distri-

bution in model 4 may be used to obtain the approximation

gZ 1K
mR
cis CmCtrans

DCmP
cis

C
mmKtrans

DCmP
cis

: ð3:1Þ

Similarly, if mZ1, equation (2.12) may be used to obtain
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trans
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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4mKtrans
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@

1
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Therefore, given measurements of the relative rates of cis-

and trans-evolution, it would be possible to distinguish

between these two cases.

Given values for the other parameters, the value of mKtrans
required in equation (3.2) to produce gZ1.5 will be

greater than the value of mmKtrans required in equation (3.1)

to produce the same distribution. The rate at which

interactions are lost through trans-evolution is pro-

portional to mmKtrans. Therefore, the case m/0 is consistent

with a slower rate of loss of interactions though trans-

evolution than the case mZ1. This can be compared with

recent work (Gu 2009), suggesting that gene network

evolution may be characterized by a 2-2-1 pattern (net

gain of two genes and two edges along with loss of one

edge). In our model, the ratio of gain of two edges to loss

of one edge is more consistent with the case m/0 than

with the case mZ1.
(d) Growing and shrinking networks

We have considered networks in which the rates of gene

duplication and deletion balance. However, it is well

known that duplication growth models of networks can

produce power-law distributions (Bahn et al. 2002;

Pastor-Sorras et al. 2002; Chung et al. 2003; Gu 2009).

We have not considered growing networks for two reasons.

First, the observed low rate of gene duplication in yeast

means that genes will undergo rewiring events at a rate

that is 10-fold greater than the rate of duplication events.

Second, the observed rates of gene duplication and

deletion are comparable (Gao & Innan 2004) and suggests

that the yeast transcription network is not undergoing

constant growth. Therefore, any model that relies on

network growth by duplication to reproduce the observed

degree distributions in the yeast transcription network is

not consistent with the data.

We have also investigated the case of shrinking net-

works. Although it is obvious that real networks cannot be

continuously shrinking, the recent whole genome dupli-

cation in yeast (Kellis et al. 2004) means that there have

been a great many redundant genes that have been lost

resulting in an increased rate of gene deletion. Thus, the

network has recently been undergoing a period of
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evolution in which it has been shrinking. We have

considered a model in which a network is shrinking (see

the electronic supplementary material). We show that this

model is not able to reproduce the observed structure

of the yeast transcription network without both

degree dependence in the rate of trans-evolution and

preferential attachment. Therefore, this model does not

alter our conclusions.

(e) Autoregulation

In the analysis above, we neglected autoregulation of

transcription factors. Autoregulation alters the conse-

quences of transcription factor duplication. When an

autoregulating transcription factor with k outgoing edges

is duplicated, it gains an edge and becomes a transcription

factor with kC1 outgoing edges. In our model, we assume

that the transcription factors regulate each of the possible

N targets with equal probability. Therefore, the

probability that a transcription factor of out-degree k

autoregulates is k/N. So the rate at which new transcrip-

tion factors with out-degree k are produced due to

duplication of autoregulators is ðkK1ÞðD=NÞnoutðkK1Þ,

and the rate at which transcription factors with out-degree

k are lost due to duplication of autoregulators is

kðD=NÞnoutðkÞ. Therefore, duplication of autoregulators

provides a mechanism for a form of preferential attach-

ment, since it results in transcription factors gaining new

outgoing edges at a rate proportional to their out-degree.

However, the rate at which this preferential attachment

occurs is w(1/N ) times the rate of gene duplication, D.

Since N is large, duplication of autoregulating transcrip-

tion factors is therefore expected to have little impact

on the equilibrium degree distributions produced by our

models. To verify these arguments, we carried out

simulations in which autoregulation was permitted in

each of the four models (data not shown). The results

showed that autoregulation had only a minor quantitative

effect on the outcome of the models provided the rate of

duplication D was not high. We also note empirical

findings in the yeast transcription network, which show

that only 12 out of 131 (9%) of transcription factors admit

autoregulation (Milo et al. 2004). Given this, the rate at

which new edges are produced through duplication of

autoregulating transcription factors is approximately an

order of magnitude less than the rate of gene duplication.

Even at this rate of autoregulation, duplication of auto-

regulating transcription factors will not have a significant

impact on the degree distribution of the network.
4. CONCLUSION
We have compared four simple models for the evolution of

transcription networks. Genes are separated into regulat-

ory transcription factors and non-regulatory target genes,

which evolve through mutation of trans- and cis-elements,

as well as through deletion and duplication. When rates

of evolution are constant across the network, our model

can reproduce the exponential in-degree and power-law

out-degree distributions characteristic of transcription

networks. However, this model cannot produce networks

with the power-law exponent observed in the out-degree of

the yeast transcription network. It is only when the effects

of variation in the rate of protein evolution are taken into

account that the correct degree distributions are fully
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reproduced. This variation takes two forms. First, degree

dependence in the rate of trans-evolution, meaning that

the more regulatory interactions a transcription factor

participates in, the more slowly it undergoes trans-

evolution. Second, preferential attachment, meaning that

genes gain new interactions at a rate proportional to

the number of interactions they already participate in. The

requirement for preferential attachment can be relaxed if

the rate of evolution through gene duplication and

deletion is high compared to the rate of cis-evolution.

We have proposed a model in which the rate of trans-

evolution among transcription factors varies in inverse

proportion to the number of targets they regulate. The

true rate of trans-evolution depends on the rate of

evolution of gene sequence and gene expression (Tirosh &

Barkai 2008). The relationship between the evolution of

gene expression, gene sequence and position in the

transcription network is likely to be complex and is not

fully understood (Wagner 2003). Our model suggests that

variation in the rate of trans-evolution with the position of

a gene in an interaction network significantly affects the

structure of that network. We have considered these effects

in relation to the structure of transcription networks,

although they may also play a role in shaping the structure

of protein interaction networks and metabolic networks.
APPENDIX A. SIMULATIONS OF NETWORK
EVOLUTION
Simulations were carried out using ensembles of 1000

networks, each with an expected size of 100 TFs and 100

TGs. Networks were subject to 106 mutations after which

the average degree distributions were taken over the

ensemble, and the mean degree distributions determined.

The evolutionary algorithm used allowed networks to vary

in size between a lower and upper boundary of 50 and 150

nodes, for both TFs and TGs. Loss of interactions through

trans-mutation was executed by deleting each of a TF’s

outgoing edges with probability m. For gain of new

interactions, random attachment was executed by selecting

a gene and a TF at random and adding an edge between

them. Preferential attachment of incoming edges was

executed by selecting a gene with a probability proportional

to its in-degree and a TF at random. A new edge was then

added between them. Similarly for preferential attachment

of outgoing edges, a TF was selected with probability

proportional to its out-degree, and another gene was selected

at random. An interaction was then added between them.

Simulations were run for a range of parameter values. Data

shown are for mZ0.01, corresponding to the case m/0

(equation (3.1)). The rate of duplication used is DZ0.26,

the rate of gain of interactions through trans-evolution is

mC
transZ0:04, and through cis-evolution is mCcisZ0:31.

The rate of loss of interactions through trans-evolution is

mmK
transZ0:25 and through cis-evolution is mKcisZ0:14.
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