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evolution explains the unusual structure of
transcription networks

Alexander J. Stewart>*, Robert M. Seymour'> and Andrew Pomiankowski'**

'CoMPLEX, University College London, Physics Building, Gower Street, London WCIE 6B1, UK
2The Galton Laboratory, Research Department of Genetics, Evolution and Environment,
University College London, 4 Stephenson Way, London NW1 2HE, UK
3Department of Mathematics, University College London, Gower Street, London WCIE 6BT, UK

Transcription networks have an unusual structure. In both prokaryotes and eukaryotes, the number of
target genes regulated by each transcription factor, its out-degree, follows a broad tailed distribution.
By contrast, the number of transcription factors regulating a target gene, its in-degree, follows a much
narrower distribution, which has no broad tail. We constructed a model of transcription network evolution
through trans- and cis-mutations, gene duplication and deletion. The effects of these different evolutionary
processes on the network structure are enough to produce an asymmetrical in- and our-degree distribution.
However, the parameter values required to replicate known - and ouz-degree distributions are unrealistic.
We then considered variation in the rate of evolution of a gene dependent upon its position in the network.
When transcription factors with many regulatory interactions are constrained to evolve more slowly than
those with few interactions, the details of the - and ouz-degree distributions of transcription networks can
be fully reproduced over a range of plausible parameter values. The networks produced by our model
depend on the relative rates of the different evolutionary processes. By determining the circumstances
under which the networks with the correct degree distributions are produced, we are able to assess the
relative importance of the different evolutionary processes in our model during evolution.
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1. INTRODUCTION

Transcription regulation plays a key role in determining
cellular function, response to external stimuli and
development. Regulatory proteins orchestrate gene
expression through thousands of interactions resulting in
a system too complex to be easily understood in detail.
This makes elucidation of gene regulation from a global
perspective—that of the transcription network as a
whole—an important challenge.

Genes in a transcription network either have outgoing
edges, incoming edges or both. Outgoing edges from a
gene represent the different targets that it regulates, while
incoming edges at a gene represent the different transcrip-
tion factors that regulate it. A number of studies (Thieffry
et al. 1998; Guelzim et al. 2002; Maslov & Snepen 2005)
have established that, in both prokaryotes and eukaryotes,
the degree distributions for outgoing and incoming edges
are very different. The our-degree distribution, #n,,,(k),
follows a broad tailed distribution that is best described
by a power-law:

Mow(R) < B 7. (1.1)

The exponent 7y is observed to be in the range 1<y <2
(Guelzim ez al. 2002; Maslov & Snepen 2005). A power-law
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distribution indicates that there are a small number of hub
transcription factors that regulate a large number of genes
(Barabasi & Oltvai 2004). Interpretation of power-law
degree distributions, and the small world structure they
confer, has been the focus of a great deal of attention
(Barabasi & Albert 1999; Bahn et al. 2002; Pastor-Sorras
et al. 2002; Chung er al. 2003; Wagner 2003; Barabasi &
Oltvai 2004; Pagel ez al. 2007). In particular, it has been
suggested that a power-law distribution may deliver an
evolutionary advantage through increased mutational
robustness and evolvability (Barabasi & Oltvai 2004).

However, the in-degree distribution of transcription
networks is much narrower than a power-law and has no
broad tail (Thieffry er al. 1998; Guelzim er al. 2002;
Maslov & Snepen 2005). It is best described by an
exponential distribution

(k) oc e =k, (1.2)

The exponential in-degree distribution reflects the fact that
only a few transcription factors combinatorially regulate
any one gene. There exist no hub target genes. For
example, in the yeast transcription network, 93 per cent
of target genes are regulated by less than five transcription
factors (Guelzim ez al. 2002).

The extent to which the - and ouz-degree distributions
of transcription networks are different is intriguing, and
the cause unknown. In this paper, we develop a model to
explain the evolution of the asymmetrical transcription
network degree distribution observed in yeast and other
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Figure 1. (a) (i) Duplication of a TF and all its outgoing edges, (ii) duplication of a TG and all its incoming edges. (b) Evolution via
trans-mutation: (i) gain of an interaction through srans-evolution; (ii) loss of interactions through zrans-evolution. (¢) Evolution
via cis-mutation: (i) gain of an interaction through cis-evolution; (ii) loss of an interaction through cis-evolution.

organisms. We focus on the different types of mutation
through which the network evolves. Changes to the outgoing
and incoming edges at a gene may occur as the result of
mutation to a regulatory protein (zrans-mutation) or as the
result of mutation to transcription factor-binding sites
(czs-mutation). These two processes change the network
structure in different ways, but both result in either the loss
or gain of regulatory interactions between existing genes.
In addition, genes themselves may be lost or gained in the
network through deletion and duplication.

The rates at which a gene evolves may vary according to
its connectivity in the transcription network (Maslov ez al.
2004; Wagner & Wright 2007). We investigate two types of
connectivity-dependent evolution. It is often argued
(Barabasi & Oltvai 2004) that hub genes, which partici-
pate in many regulatory interactions, are particularly
important for the proper functioning of the network, and
are therefore constrained to evolve more slowly. This leads
to the expectation of a slower rate of evolution among
genes that regulate many downstream targets and a faster
rate of evolution among genes that regulate only a few
targets. It has also been suggested that a process of
preferential attachment may occur in biological networks
(Barabasi & Oltvai 2004). Under preferential attachment,
new interactions are gained in proportion to the number of
interactions a node already participates in. Such a process
has been shown to occur in protein—protein interactions
networks (Wagner 2003; Pagel ez al. 2007).

We construct a model incorporating evolution through
trans- and cis-mutations, gene duplication and deletion
along with variation in evolutionary rates depending
on the connectivity of a gene. We use our model to
unravel the relationship between the rates of evolution of
genes through different processes in relation to the
network structure.

2. RESULTS

(a) Model

There are four types of network mutation in out
model—gene deletion and duplication, plus cis- and
trans-mutation. The in- and our-degree distributions of
the network are determined by the rates at which these
different types of mutation become fixed in the transcription
network of a population. Since there is a clear functional
difference between genes that code for transcription factors
and those that code for other types of protein, we separate
genes into two groups. Those with regulatory functions
are labelled transcription factors (TFs) and those that
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are only regulated are labelled target genes (T'Gs). TGs have
only incoming edges, while TFs may have either outgoing
or incoming edges.

We establish the equilibrium @n- and our-degree
distributions for four different versions of our model. In
the first version, the rates of evolution are independent of a
gene’s connectivity. We then consider two types of
connectivity dependence in TF evolution. In the second
version of our model, there is connectivity dependence
such that the TFs with a large number of interactions
undergo rrans-evolution more slowly than those with few
interactions. This is referred to as degree dependence in the
rate of trans-evolution. In the third version of our model,
there is connectivity dependence such that TFs gain
new targets at a rate proportional to the number of
targets they regulate. This is referred to as preferential
artachment. The final version of our model includes both
degree dependence in the rate of rrams-evolution and
preferential attachment.

(b) Gene deletion and duplication

We assume that when genes are duplicated they inherit all
the regulatory interactions of their parent. Evolution
through duplication occurs at rate D" and deletion occurs
atrate D™ per gene (figure 1a). ATF of out-degree & gains
outgoing edges due to duplication of its targets at rate
kD™, and loses outgoing edges due to deletion of its
targets at rate 2D . Similarly, a gene of in-degree j gains
incoming edges due to duplication of TFs at rate /D, and
loses incoming edges due to deletion of TFs at rate jD ™.
If the rates of gene deletion and duplication are different,
this will result in either growth (if the rate of duplication is
greater than the rate of deletion), or decline (if the rate of
deletion is greater than the rate of duplication) in the size
of the network. We assume that the rate of growth
(or decline) of the network is small compared to the rate
of rewiring of regulatory interactions through zrans- and
cis-mutation (Gao & Innan 2004; Doniger & Fay 2007;
Ward & Thornton 2007). Thus, we consider only networks
of constant size, and therefore assume that D™ = D™= D.

(¢) Evolution of regulatory-binding sites and
transcription factors

A rrans-mutation results in a change in the ability of TFs to
bind to the promoter region of a gene. This may occur
through a change in the binding affinity of a TF for a
regulatory site. Alternatively, it may be the result of a TF
gaining or losing an interaction with another TF,
which helps it bind to the promoter region of a target
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Table 1. Model parameters.

k number of regulatory interactions

Ntg expected number of TGs

Nt expected number of TFs

N expected size of the network (N = Ntg + Ntg)

Wrans rate of gain of interactions due to trans-evolution

UL s in preferential attachment model—the rate at which new edges produced by rrans-mutation
undergo preferential attachment based on the in-degree of genes

uR in preferential attachment model—the rate at which new edges produced by zrans-mutation
undergo random attachment to genes

Horans rate of loss of interactions due to trans-evolution

m probability a TF loses an existing target immediately following a zrans-mutation

wh rate of gain of TF-binding sites through cis-evolution

#Z‘: in preferential attachment model—the rate at which new edges produced by cis-mutation
undergo preferential attachment based on the out-degree of TFs

ul in preferential attachment model—the rate at which new edges produced by cis-mutation
undergo random attachment to TFs

Mo rate of loss of TF-binding sites through cis-evolution

D rate of duplication and deletion

Py ar probability that a TF of our-degree k loses Ak edges as a result of a rrans-mutation

(Tuch et al. 2008). Therefore, a trans-mutation in our
model refers to a mutation affecting a transcription factor
protein only. It does not refer to mutations affecting the
cis-regulatory regions of rrans-acting genes.

Following fixation of such a trans-mutation, a TF can
cease to control some of the genes it currently regulates
and can gain control over new genes. We assume that
trans-evolution resulting in a TF potentially losing targets
occurs at a constant rate U;,,,,. In this process, an existing
target is lost with probability m. The probability, P} A,
that a TF with % our-edges loses Ak of its targets following
a rrans-mutation is given by

P, = k=k
kAR = AP e — AR

m) 2.1
Similarly, we assume that trans-evolution resulting in the
gain of new targets by a TF occurs at a constant rate u,,,»
which is independent of the out-degree of the TF. Overall,
trans-evolution results in a gene losing incoming edges at
rate m,,,, (per edge) and gaining a new incoming edge
at rate (1 —(k/N)) (figure 1b). The factor (1 —(k/N))
gives the probability that the gene gaining the new
incoming edge is not one of the %k genes currently regulated
by the mutated TF.

A cis-mutation results in the gain of a new binding site
or the loss of an existing binding site in the promoter
region of a gene. The rate at which binding sites are lost is
U The probability that a gene, which is regulated by &
TFs, loses an interaction through loss of a TF binding site
is ku,,. A gene may also gain a new regulatory binding
site for any TF in the network to which it is not currently
connected, at rate u' (figure 1c). Therefore, a gene
currently regulated by 2 TFs gains an incoming edge
through cis-evolution at a rate /,L:;S(l —(k/N)). Throughout,
we assume that the size of the network N is large compared
to any realistic - or out-degree k, so that the terms k/N
may be neglected. Thus, new incoming edges are gained at
constant rates W, through rans-evolution and puf
through cis-evolution.

We also develop a model in which degree dependence
in the rate of trans-evolution occurs. In this model, a trans-
mutation, which results in TF-losing interactions, is fixed
with a probability that depends on its out-degree. Since a

Proc. R. Soc. B (2009)

trans-mutation affects the functioning of the transcription
factor itself, it potentially alters all of the interactions in
which a TF takes part. We assume that a rrans-mutation
at a TF with % targets has a deleterious effect on the
functioning of the network that is proportional to k.
Therefore, we assume that a trans-mutation resulting in the
loss of edges from the network is fixed with probability
proportional to 1/k. In this way, the rates of evolution of
TFs are degree dependent.

A summary of all the parameters used in the model is
given in table 1.

(d) Network evolution

We allow evolution of the network by updating it at time
intervals Az, taken so that at most one mutation occurs and
goes to fixation within each interval. Hence, the mean field
equation for the expected number of genes with in-degree
k at time ¢, changes in the time interval Az by,

An,, = (T (k— 1) + g, (—1))n,(k—1,1)
+ (Mo (k+ 1) + ITp_(k+ D), (k+ 1,2)

— (g4 (R) + ITig (R) + I (R) + I (R) ) ny, (k. 2)
(2.2)

where I1%, (k) and [T _(k) are the probabilities of a
gene with in-degree k gaining or losing an edge through
mutation at the regulated gene; and IT%g, (k) and IT3:_(k) are
the probabilities of a gene with in-degree & gaining or losing
an edge through mutation at a TF regulating it, in the time
interval Az. Similarly, the expected number of genes with ouz-
degree k at time 7 changes in the time interval Az by

Any, = (46 (k — 1) + 9§ (k — 1)1y (R — 1,7)
+ IFG-(k + Dy (k + 1,0) — (IT36 +(R) + TG (k)

N
T () Moy (B ) > TIFE (s B0 (7, 1)
j=k

k
= IR )R, 1), (2.3)
=0
where N is the number of genes (TFs and TGs) in the
network; I35, (k) and IIF5_(k) are the probabilities of a
gene with our-degree k gaining or losing an edge through
mutation at one of its targets; II9%, (k) is the probability that a
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Table 2a. Incoming edge event probabilities.
model 1 model 2 model 3 model 4
TG+(k) K K K Wi
(k) ket kit kit ket
TF+ (k) kD + ,u';ans kD + :u;;ans kD + M}}ans + k:u}:am kD + ru'gans + k:u'}:“ans
,(k) kD + k:u;"anxm kD + k(llk),u;ansm kD + kruz_ran:m kD + k(l/k)#;ansm
Table 2b. Outgoing edge event probabilities.
model 1 model 2 model 3 model 4

%yéJr(k) kD + :u:ris kD + :u':ris kD + “’5& + krugx kD + ,lLSS + k:u'g's

T&—(R) kD + kg kD + kg kD + kg kD + kg

aut + +

TF+ (k ) Mirans Mirans . Mirans Mirans .

%%—(]7 k) HMirans j;'—k :u';am(l)jjj—k/]) HMrans j;'—k :u';am(l)jjj—k/])
Ky, m) 12(y—1))A—1—-m* ™ 120 =1 —m)") 12(y—1))1 =1 —m)*Yy  (1/27)(1—(1—m)?)

TF with out-degree k gains a target through mutation at the
TF; and II§_(j, k) is the probability that a TF with ouz-
degree j >k loses interactions to become a TF with ouz-degree
k due to mutation at the TF.

The equilibrium in-and our-degree distributions for the
model can be found from equations (2.2) and (2.3), by
setting the left-hand sides of both equations to 0 (see the
electronic supplementary material). The equilibrium
in-degree distribution satisfies

( (k4 1) + 117, —(k + 1)) n,(k + 1)

= (I () + G () niy(R). (2.4)
After making a number of approximations (see the
electronic supplementary material), the equilibrium ouz-
degree distribution satisfies

(TFG—(k 4+ 1) + (B + Dt K(y,m)) 10, (k + 1)

( 9111Cti+(k) + H.011‘12+(k) - k.u;ansK(')’: m))nouz(k)’ (25&)
for the model excluding degree dependence in the rate of
trans-evolution and

( am (k + 1) + :u’mmxI<('Yv m)) ouz(k + 1)

(HOTMé+(k) + H%ylfur(k) - /“L;ansK(’Y’ m)) nout(k)5 (25b)
for the model including degree dependence in the rate of
trans-evolution. The positive parameter v arises from the
approximations used to obtain equations (2.5a) and (2.5b)
(see the electronic supplementary material), and the
functions K(vy, m) are specific to each of the models we
consider and will be described below.

We now solve equations (2.4), (2.5a) and (2.5b) for the
in- and our-degree distributions for four specific models of
transcription network evolution. We start using a simple
model and then investigate different models including
degree dependence in the rate of rranms-evolution and
preferential attachment, to ask what conditions are
required to explain the observed difference between the
in- and our-degree distributions of transcription networks.
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(e) Model 1: no connectivity dependence

In the first model, we assume there is neither any degree
dependence nor any preferential attachment in the rate of
trans-evolution. The event probabilities for the in- and
out-degree distributions in this model are given in table 2a.
Substituting these in equations (2.4) and (2.5a), we find
for the in-degree distribution (see the electronic supple-
mentary material)

M (k) oc k™
where

D 9
(2.6)
— 0D
This is approximately an exponential distribution, charac-
terized by «, unless « is small, which occurs if
D> p; + Wi, or A is large and negative, which occurs
if D<< uh 4 ph o
The equilibrium our-degree distribution for this model
obtained from equation (2.5q) is

No(R) o BT e PF

where

Meis + D + Wy K (v, m)

B =1In -~ ,
D _/“LtransK('Ya m)
N N 2.7)
_ Meis + Mirans
y=1-

D— :U't_ransK(’Ys Wl) ’

and K(v, m) is as in table 2b. This distribution is a power-
law characterized by vy only if 8 is 0. This occurs if
Hgis = —2Upans K (v, m). However, as the rates, u_; and ;g
are both positive constants, and K(y,m)> 0 (table 2b),
this condition cannot be met. Therefore, this model
cannot produce a power-law our-degree distribution.
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Figure 2. (a) Preferential attachment: (i) preferential attachment of incoming edges. A TF choosing between a TG with three
incoming edges and a TG with two incoming edges gains an interaction with the first with probability 0.6 and with the second
with probability 0.4 due to preferential attachment; (ii) preferential attachment of outgoing edges. When choosing between a
TF with three outgoing edges and a TF with one outgoing edge, a TG gains an interaction with the TF with three edges with
probability 0.75 and with the TF with one edge with probability 0.25 due to preferential attachment. (b) Rewiring: (i) network
prior to rewiring; (ii) edge ‘a’ is rewired to edge ‘a’’. This results in a change in the in-degree of two T'Gs but leaves the ouz-degree
of the TF unchanged. Edge ‘b’ is rewired to edge ‘b”’, changing the out-degree of two TFs but leaving the in-degree of the

TG unchanged.

(f) Model 2: degree dependence in the rate of
trans-evolution

In this model, we allow degree dependence in the rate of
trans-evolution. Substituting the event probabilities for
this model (table 2a) into equations (2.4) and (2.5b), we
find for the n-degree distribution

n;, (k) oc k™t e Tk,

where
_ 1\ _
Meis +m Z Mirans
=In|1
o n + D >
(2.8)
+ +
3 = 1 —Heis F Morans

D >

and (1/k)=Z§V=1 1,:(j)j determines the mean rate of
trans-evolution across the network. Following the same
procedure as for model 1, this distribution will be
approximately exponential unless « is small or A is large
and negative, which occurs when D >> uz; + (1/k)u;,,.m OF
D < pt 4 pt o respectively.

The equilibrium out-degree distribution for this
model is

Mo (k) o BT e P,

where
“/_4
=In| 1+,
§=mn1+"
DOy —1) + 1 + s = HinaneKCram) | 14+ 2
C1s trans trans: b D + u;S )

(2.9)

and K(v, m) is as in table 2b. This distribution is a power-
law characterized by v only if § is 0. This occurs if
D> u . Under this condition, equation (2.9) has
solutions with v> 1 provided muyg,; > wh + whans-
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(g) Model 3: preferential attachment

This model includes preferential attachment, but excludes
degree dependence in the rate of rrams-evolution
(considered in model 2). In preferential attachment
models, the rate at which nodes gain new edges is
proportional to the number of edges already attaching to
them. Preferential attachment has been discussed
widely in the study of other biological networks (Wagner
2003; Barabasi & Oltvai 2004; Pagel ez al. 2007), including
in the protein—protein interaction network of yeast
(Wagner 2003).

We model preferential attachment of incoming and
outgoing edges separately. For incoming edges our model
is as follows: new edges arise due to zrans-evolution at rate
Uhrans- When such a new edge arises, it may be either
through preferential attachment or through random
attachment (i.e. the new edge attaches to each gene with
equal probability) at the gene that is regulated. In the case
of preferential attachment, the probability that a gene
gains a new incoming edge is proportional to its in-degree.
In the case of random attachment, the probability that a
gene gains a new incoming edge is independent of its
in-degree. We assume that such new edges undergo
preferential attachment to a gene at rate ul,,, and
undergo random attachment at a rate uX,,.. The rate at
which a gene of in-degree %k gains a new edge due to
preferential attachment is ku’,,., and the rate at which it
gains a new edge due to random attachment is uX,,. The
total rate at which TFs gain new outgoing edges is then
/'L;ans = (E/NTF)IU'gam + (N/NTF):“}}ans! where E is the total
number of edges in the network.

Our model of preferential attachment for outgoing
edges is of the same form: new edges arise due to cis-
evolution at rate w.. The rate at which a TF of our-degree
k gains new outgoing edges due to preferential attachment
is then kul, and the rate at which it gains new edges due
to random attachment is u&.. The total rate at which genes
gain new incoming edges is then wl = (E/N)ul+
(NTF/N),uES. Our model of preferential attachment is
illustrated in figure 2a.

The event probabilities for the in- and our-degree
distributions in this model are given in table 2a.
Substituting these into equations (2.4) and (2.5a), the
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in-degree distribution is

(k) oc bt e Tk,

where
a=In({—"——",
D + l“LtVHVlX
+ R (2.10)
L+
A — 1_ uClS :ulrans

D +.u5ans )
This distribution will be approximately exponential
unless « is small or A is large and negative. That
is, unless D+ ub,, > w4 Woygnsts or D+ ub,, << wh+
uR .. Therefore, we require ul,, ~ u_;+ Mpyy,. The
equilibrium ouz-degree distribution for this model is

Moy (R) ¢ k7 e_ﬁk7

where

6=In (#Zs + D + pransK (v, M)>
D+ ,LL? _:ut_ran:K('Y’ m) '

(A}

2.11
l'L(jRiS-i_N;anS ( )

D+ :uP' _/‘L;'ans1<(7’ WZ) '

and K(vy, m) is as in table 2b. This distribution is a power-
law characterized by vy only if § is 0. This occurs if
o = pF — 2450 K (v, m). Equation (2.11) then gives
¥ = 1= (R + than)/(D + (1/2) (1, + 15,)), and the only
solutions have y <1.

(h) Model 4: degree dependence and

preferential attachment

In the final model, we include degree dependence (as
described in model 2) and preferential attachment
(as described in model 3). The event probabilities for
this model are given in table 2a. Using these with equa-
tions (2.4) and (2.5b), we find for the in-degree distribution

(k) oc b H e Tk,

where
i (P K+ ) e
D + l’l’gllﬂS ’
F LR (2.12)
A1=1— Meis + Mirans

D + phans

This distribution is approximately exponential unless « is
small or A is large and negative. That is, unless
D+ tgrans > pigs + (LU Reyansts OF D+ s <K i + Migans-
Therefore, we require b, ~ s, + m{1/k)ans- The equili-
brium our-degree distribution for this model is

N (R) 5 kT e P,

where
D+u;
B=In Pei
D+
P R+ - D+l
(D+ /“*cis)('Y — D+ g Barans = Rarans K (y,m) | 1 +m ,
(2.13)

and K(vy, m) is as in table 25b. This distribution is a power-law
characterized by v only if 8 is 0. This requires u_; = ,ufﬁ.
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Under this condition, the third term in equation (2.13) has
solutions with > 1 provided #ti s > UX, + ans-

3. DISCUSSION

To assess the four models we have presented, we compare
their results to empirical observations from the yeast
transcription network. The ouz-degree distribution of the
Saccharomyces cerevisiae transcription network is best
described by a power-law distribution with an exponent
v =1.5, while the in-degree distribution is best described
by an exponential distribution with exponent a«=0.4
(Maslov & Snepen 2005).

Since the exponent of the ouz-degree distribution for
yeast is greater than 1, we conclude that models 1 and 3,
which do not include degree dependence in the rate of
trans-evolution, cannot account for the observed oui-
degree distribution of the S. cerevisiae transcription
network. However, models 2 and 4, which include degree
dependence in the rate of transcription factor evolution,
can both produce networks with power-law our-degree
distributions whose exponent is y>1. Therefore, we
conclude that degree dependence in the rate of transcrip-
tion factor evolution is necessary to reproduce the
structure of the yeast transcription network.

(a) Empirical rates of evolution

We can further distinguish between models 2 and 4 by
referring to empirical data on the rates of evolution in the
yeast transcription network. The rate of gene duplication
inyeastisfound tobeintherange 1 X 107°-6 X 10~> Myr !
(Gao & Innan 2004). The rate of evolution (gain or loss) of
regulatory interactions is an order of magnitude higher,
approximately 36X10 > Myr ! (Gu et al. 2005).
Evolution of regulatory interactions may occur due to
changes in regulatory proteins (frans-mutations in our
model) or due to changes in cis-regulatory elements.
A trans-mutation in our model refers to a mutation
affecting a transcription factor protein only. It does not
refer to mutations affecting the cis-regulatory regions of
trans-acting genes. In practice, it is difficult to distinguish
between the effects of the zrans- and cis-mutations of our
model without much more detailed comparative data.
Studies on the contribution of the evolution of cis-
regulatory elements and of trams-acting proteins to the
evolution of gene expression have mixed findings.
Variation between yeast strains have been found to be
mainly due to variation in trams-acting proteins by
some studies (Yvert er al. 2003; Zhang et al. 2004; Wang
et al. 2007), while this has been contradicted by others
(Ronald ez al. 2005).

In model 2, a power-law our-degree distribution is
only produced if D> u_ . If we consider the case in
which rrans-evolution is more rapid than cis-evolution,
then, given a rate of evolution of regulatory interactions of
36X 107> Myr~ ! (Gu er al. 2005) and a rate of gene
duplication of range 1X107°-6X10"> Myr ! (Gao &
Innan 2004), model 2 suggests that the loss of regulatory
interactions must be approximately 99 per cent due to
trans-evolution. Such a disproportionate rate is not
consistent with empirical data on the relative contri-
butions of zrans- and cis-change to the evolution of gene
expression in yeast (Yvert er al. 2003; Zhang et al. 2004;
Ronald er al. 2005; Wang ez al. 2007). Therefore, we can
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Figure 3. Simulated networks with an expected size of 100
TFs and 100 TGs. Networks have an exponential in-degree
and power-law our-degree with «=0.4 and y=1.5.
Simulations consist of ensembles of 1000 networks evolved
for 10 mutations. Plot is on a log—log scale. Simulations were
run for a range of parameter values. A typical example is
shown. Data points show the degree distributions for
simulated networks, solid lines are the predicted distribution.
In-degree is shown in grey. Ouz-degree is shown in black. The
networks were produced using model 4, including degree
dependence in the rate of rrams-evolution and preferential
attachment. Here, the rate of duplication is D=0.26, the rate
of gain of interactions through zrans-evolution is u/,, = 0.04,
and through cis-evolution is uf = 0.31. The rate of loss of
interactions through trans-evolution is mu;.,, = 0.25 and
through cis-evolution is u ;= 0.14.

reject model 2, as inadequate to explain the structure of
the yeast transcription network.

(b) Preferential attachment

Model 4 can produce a power-law out-degree distribution
provided u; = uF. This requirement means that the
rate at which transcription factors lose connections to
target genes through cis-mutations must be balanced
by the rate at which they gain new targets through
preferential attachment. From this we also conclude
that preferential attachment for outgoing edges is
necessary to produce the observed yeast transcription
network. The condition u; = uF; is identical to a model in
which transcription factors undergo rewiring (figure 25),
and suggests that transcription factors undergo a constant
turnover of targets, without net gain or loss.

In order to determine whether preferential attachment
among incoming edges occurs, we must consider the
in-degree distribution of model 4. This is given by
equation (2.12), with an exponential exponent, «, of
approximately 0.4. Given a low rate of duplication,
equation (2.12) suggests that preferential attachment of
incoming edges at target genes is also necessary to
reproduce the structure of the yeast transcription network.
Figure 3 shows the result of simulations using model 4,
which confirm that this model can reproduce the observed
structure of the yeast transcription network.

(¢) Evolution via trans-mutation

Our model for loss of interactions through zrans-evolution
includes two parameters, (;,,, the rate at which
trans-mutations are fixed, and m, the probability each
interaction is lost given that a trams-mutation is fixed.
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This means that following a trans-mutation a transcription
factor will retain, on average, a fraction 1—m of its
interactions. As it is difficult to estimate m, we consider
two important cases: m— 0 and m=1. In the first case,
transcription factors evolve by small changes, one
interaction at a time. In the second case, transcription
factors lose all their existing interactions, and subsequently
gain new ones through both cis- and trans-evolution. In
this case, the TF may be seen as completely losing its old
function before acquiring a new function.

When m— 0, equation (2.13) for the our-degree distri-
bution in model 4 may be used to obtain the approximation

_ ,LLE'S + ru'tJrFan: m:u’;ans
y=1- s 5 3.1)
D + Meis D + Heis

Similarly, if m= 1, equation (2.12) may be used to obtain

2 _
v = l 1— /"LES + :u;—ans + (1 _ /4‘5: + M;—ans) 4/"mes
2 D+puP D+ puP D+puP
(3.2)

Therefore, given measurements of the relative rates of cis-
and rrans-evolution, it would be possible to distinguish
between these two cases.

Given values for the other parameters, the value of
required in equation (3.2) to produce y=1.5 will be
greater than the value of mu,,,,, required in equation (3.1)
to produce the same distribution. The rate at which
interactions are lost through rrams-evolution is pro-
portional to m;,,,,. Therefore, the case m— 0 is consistent
with a slower rate of loss of interactions though trans-
evolution than the case m= 1. This can be compared with
recent work (Gu 2009), suggesting that gene network
evolution may be characterized by a 2-2-1 pattern (net
gain of two genes and two edges along with loss of one
edge). In our model, the ratio of gain of two edges to loss
of one edge is more consistent with the case m— 0 than
with the case m=1.

(d) Growing and shrinking networks

We have considered networks in which the rates of gene
duplication and deletion balance. However, it is well
known that duplication growth models of networks can
produce power-law distributions (Bahn ez al. 2002;
Pastor-Sorras et al. 2002; Chung ez al. 2003; Gu 2009).
We have not considered growing networks for two reasons.
First, the observed low rate of gene duplication in yeast
means that genes will undergo rewiring events at a rate
that is 10-fold greater than the rate of duplication events.
Second, the observed rates of gene duplication and
deletion are comparable (Gao & Innan 2004) and suggests
that the yeast transcription network is not undergoing
constant growth. Therefore, any model that relies on
network growth by duplication to reproduce the observed
degree distributions in the yeast transcription network is
not consistent with the data.

We have also investigated the case of shrinking net-
works. Although it is obvious that real networks cannot be
continuously shrinking, the recent whole genome dupli-
cation in yeast (Kellis ez al. 2004) means that there have
been a great many redundant genes that have been lost
resulting in an increased rate of gene deletion. Thus, the
network has recently been undergoing a period of
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evolution in which it has been shrinking. We have
considered a model in which a network is shrinking (see
the electronic supplementary material). We show that this
model is not able to reproduce the observed structure
of the yeast transcription network without both
degree dependence in the rate of rrams-evolution and
preferential attachment. Therefore, this model does not
alter our conclusions.

(e) Autoregulation

In the analysis above, we neglected autoregulation of
transcription factors. Autoregulation alters the conse-
quences of transcription factor duplication. When an
autoregulating transcription factor with %k outgoing edges
is duplicated, it gains an edge and becomes a transcription
factor with £+ 1 outgoing edges. In our model, we assume
that the transcription factors regulate each of the possible
N targets with equal probability. Therefore, the
probability that a transcription factor of out-degree k&
autoregulates is 2/N. So the rate at which new transcrip-
tion factors with our-degree k are produced due to
duplication of autoregulators is (¢ — 1)(D/N)n,,,(k — 1),
and the rate at which transcription factors with ouz-degree
k are lost due to duplication of autoregulators is
k(D/N)n,,, (k). Therefore, duplication of autoregulators
provides a mechanism for a form of preferential attach-
ment, since it results in transcription factors gaining new
outgoing edges at a rate proportional to their our-degree.
However, the rate at which this preferential attachment
occurs is ~(1/N) times the rate of gene duplication, D.
Since N is large, duplication of autoregulating transcrip-
tion factors is therefore expected to have little impact
on the equilibrium degree distributions produced by our
models. To verify these arguments, we carried out
simulations in which autoregulation was permitted in
each of the four models (data not shown). The results
showed that autoregulation had only a minor quantitative
effect on the outcome of the models provided the rate of
duplication D was not high. We also note empirical
findings in the yeast transcription network, which show
that only 12 out of 131 (9%) of transcription factors admit
autoregulation (Milo er al. 2004). Given this, the rate at
which new edges are produced through duplication of
autoregulating transcription factors is approximately an
order of magnitude less than the rate of gene duplication.
Even at this rate of autoregulation, duplication of auto-
regulating transcription factors will not have a significant
impact on the degree distribution of the network.

4. CONCLUSION

We have compared four simple models for the evolution of
transcription networks. Genes are separated into regulat-
ory transcription factors and non-regulatory target genes,
which evolve through mutation of zrans- and cis-elements,
as well as through deletion and duplication. When rates
of evolution are constant across the network, our model
can reproduce the exponential m-degree and power-law
out-degree distributions characteristic of transcription
networks. However, this model cannot produce networks
with the power-law exponent observed in the our-degree of
the yeast transcription network. It is only when the effects
of variation in the rate of protein evolution are taken into
account that the correct degree distributions are fully
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reproduced. This variation takes two forms. First, degree
dependence in the rate of trans-evolution, meaning that
the more regulatory interactions a transcription factor
participates in, the more slowly it undergoes trans-
evolution. Second, preferential attachment, meaning that
genes gain new interactions at a rate proportional to
the number of interactions they already participate in. The
requirement for preferential attachment can be relaxed if
the rate of evolution through gene duplication and
deletion is high compared to the rate of czs-evolution.

We have proposed a model in which the rate of trans-
evolution among transcription factors varies in inverse
proportion to the number of targets they regulate. The
true rate of trams-evolution depends on the rate of
evolution of gene sequence and gene expression (Tirosh &
Barkai 2008). The relationship between the evolution of
gene expression, gene sequence and position in the
transcription network is likely to be complex and is not
fully understood (Wagner 2003). Our model suggests that
variation in the rate of rrans-evolution with the position of
a gene in an interaction network significantly affects the
structure of that network. We have considered these effects
in relation to the structure of transcription networks,
although they may also play a role in shaping the structure
of protein interaction networks and metabolic networks.

APPENDIX A. SIMULATIONS OF NETWORK
EVOLUTION

Simulations were carried out using ensembles of 1000
networks, each with an expected size of 100 TFs and 100
TGs. Networks were subject to 10° mutations after which
the average degree distributions were taken over the
ensemble, and the mean degree distributions determined.
The evolutionary algorithm used allowed networks to vary
in size between a lower and upper boundary of 50 and 150
nodes, for both TFs and TGs. Loss of interactions through
trans-mutation was executed by deleting each of a TF’s
outgoing edges with probability m. For gain of new
interactions, random attachment was executed by selecting
a gene and a TF at random and adding an edge between
them. Preferential attachment of incoming edges was
executed by selecting a gene with a probability proportional
to its in-degree and a TF at random. A new edge was then
added between them. Similarly for preferential attachment
of outgoing edges, a TF was selected with probability
proportional to its ouz-degree, and another gene was selected
at random. An interaction was then added between them.
Simulations were run for a range of parameter values. Data
shown are for m=0.01, corresponding to the case m—0
(equation (3.1)). The rate of duplication used is D=0.26,
the rate of gain of interactions through zrans-evolution is
Ui =0.04, and through cis-evolution is u/ =0.31.
The rate of loss of interactions through zrans-evolution is
MU s = 0.25 and through cis-evolution is = 0.14.

This work was supported by an EPSRC Studentship (A.].S.)
awarded as part of the CoOMPLEX Doctoral Training Centre.
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