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Abstract
Magnetic resonance imaging (MRI) of small animals is routinely performed in research centers. But,
despite its many advantages, MR still suffers from limited spatial resolution which makes the
interpretation and quantitative analysis of the images difficult, particularly for small structures of
interest within areas of significant heterogeneity. One possibility to address this issue is to
complement the MR images with histological data, which requires reconstructing 3D volumes from
a series of 2D images. A number of methods have been proposed recently in the literature to address
this issue, but deformation or tearing during the slicing process often produces reconstructed volumes
with visible artifacts and imperfections. In this paper, we show that a possible solution to this problem
is to work with several histological volumes, reconstruct each of these separately, and then compute
an average. The resulting histological atlas shows structures and substructures more clearly than any
individual volume. We also propose an original approach to normalize intensity values across slices,
a required pre-processing step when reconstructing histological volumes. We show that the
histological atlas we have created can be used to localize structures and substructures, which cannot
be seen easily in MR images. We also create an MR atlas which is associated with the histological
atlas. We show that using the histological volumes to create the MR atlas is better than using the MR
volumes only. Finally, we validate our approach quantitatively on MR image volumes by comparing
volumetric measurements obtained manually and obtained automatically with our atlases.
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I. Introduction
Magnetic resonance imaging (MRI) of small animals is routinely performed in research centers
to investigate not only the anatomical and morphological manifestations of disease, but also
the underlying functional and molecular mechanisms [1-2]. These measures include, for
example, metrics of lesion size and shape, blood flow and vascularity, and even molecular and
cellular data [3-5]. But, despite its many advantages, MR still suffers from limited spatial
resolution which makes the interpretation and quantitative analysis of the images difficult,
particularly for small structures of interest in areas of significant heterogeneity. One possibility
to address this issue is to complement the MR images with histological data. Typical
histological data have a much higher spatial resolution than typical MR images (by several
orders of magnitude) and can be obtained with a number of histology stains (commons stains
include, for example, H&E for cell nuclei staining, CD31 for endothelial cells, or cresyl violet
for visualization of brain structures as employed in these investigations) that can be used to
manifest structures not easily visible in MR images. While acquiring one histological volume
for each MR volume would be an ideal scenario, it is impractical because of the cost and the
time it takes to reconstruct a 3D volume from a series of 2D histological images. A more
practical approach is to acquire one MR volume and reconstruct a histological volume of the
same animal. The MR volume and the histological volume are then registered to create a
reference MR-histology data set that is generally called an atlas [6-7]. To analyze a new MR
volume for which histology is not available, the MR volume in the atlas is registered to this
volume. If the registration is accurate, all the information provided by the histological volume
can be projected onto the MR volume for which histological data is not available.

One important issue in this process is the creation 3D histological volumes from a series of 2D
histological slices. Several authors have proposed semi-automatic methods to reconstruct these
histological volumes ([8-12]). In general, the most promising approaches follow a procedure
similar to the one proposed by Ourselin et al. ([13-15]) or Malandain et al. [16]. Sequential 2D
images are first registered to each other using a 2D registration algorithm, intensities are
normalized, and the 3D histological volume is registered to the corresponding tomographic
volume, which is generally an MR volume. Because registering sequential 2D histological
volumes to each other may result in a brain whose shape is different from the true shape, a
series of 2D and 3D registration steps are used to register the histological volume to the
tomographic volume. First, a 3D transformation is computed and the two volumes are
registered to each other. Then, the tomographic volume is resampled to correspond to the
histological slices. Next, each histological slice is registered in 2D to its corresponding MR
image in the resampled volume. A new histological volume is subsequently created and the
process is repeated until convergence. In this paper, we use a similar strategy for the
reconstruction of individual histological volumes with some variations that will be described
in the methods section.

Intensity normalization is required because individual slices can absorb more or less of a
particular histological stain during the slice preparation. Because of this, the overall intensity
and contrast of these slices can vary. A number of algorithms of varying complexity have been
proposed to address this problem. For instance, Dauguet et al. [17] rely on a segmentation of
the images into several classes and the mapping of intensities for each class between slices.
Segmentation is performed based on peaks detected in the intensity histograms of each slice
following scale-space analysis. It requires a number of heuristics developed for their
application (baboon brain images). Chakravarty et al. [18] use a two-step process in which
images are first normalized globally using third order polynomials to fit histograms of adjacent
slices. The second step involves the computation of local scaling factors. These are computed
for a preselected number of neighborhoods and subsequently interpolated over the entire image.
Malandain et al. use an approach in which histograms in consecutive slices are matched using
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low order polynomials [16], which requires an iterative optimization step. They comment on
the fact that a standard histogram specification approach was inadequate for their data set (brain
images). In this paper, we propose a modification to the histogram specification method [19],
which is less complex than some of the techniques proposed in the literature for intensity
normalization, is fast, non-iterative, parameter free, and robust for the mouse brain histological
images we have dealt with in this study. But, histological volumes created with the
aforementioned methods suffer from a number of defects such as tearing, deformation, or
disappearance of tissue fragments. To address this issue, we propose a method to create a virtual
histological atlas from several real histological volumes. We also compare two methods to
create an MR atlas that corresponds to the histological atlas. Finally we evaluate our approach
qualitatively and quantitatively by comparing volumetric measurements obtained manually
and obtained automatically with our atlases.

II. Methods
A. Image acquisition

The MR image acquisition protocol we have used is as follows. Four male C57/BL mice (22
g) were fed a standard diet in a controlled environment with a 12/12 h light/dark cycle. Just
prior to imaging, anesthesia was induced via a 5%/95% isofluorane/oxygen mixture and
maintained via a 2%/98% isofluorane/oxygen mixture. The temperature of the animal was
maintained at 37° C via a flow of warm air through the magnet bore. The respiratory rate was
monitored throughout the experiments and remained between 35 and 45 breaths per minute for
all animals. The mice were imaged in a Varian 7.0 T scanner (Varian Inc., Palo Alto, CA.)
equipped with a 38 mm quadrature birdcage coil. Two data sets were acquired for each mouse.
First, 200 μm × 200 μm × 500 μm images were acquired for 30 contiguous (i.e., no gap) slices
with a standard spin echo sequence with TR = 2000 ms, TE = 35 ms, NEX = 8, and a 1282

matrix acquired over a 25.6 mm2 field of view. The second data set was a 200 μm isotropic
data set with the same parameters as above over 20 contiguous slices. All procedures adhered
to our institution's Animal Care and Use Committee's guidelines.

The method used to create the histological images is detailed elsewhere [20]. Here, we only
provide a brief summary of the technique. Generating these images involves five main steps.
First, the brains are dehydrated in ethanol; second, the dehydrated brains are then embedded
in 12% celloidin; third, the brains are removed from the embedding mold and mounted on
embedding blocks; fourth, after being immersed for 24 hours in 80% ethanol, the blocks are
cut on a sliding microtome at 30 μm; fifth, sections are stained with cresyl violet and are
mounted on slides. This procedure leads to approximately eight slides per mouse brain, with
each slide holding approximately 40 contiguous cross-sections.

To create the histological images, which can be processed, we scanned these glass slides using
a HP ScanJet 5470c scanner with a resolution of 2400 × 2400 dpi. This resulted in 800 × 800
pixels images with a pixel resolution of 10 μm × 10 μm. Fig. 1 shows one of the glass slides
with one high resolution histological image.

B. 3D Histological volume reconstruction
To reconstruct 3D volume from the histological cross-sections, four steps are applied to the
digitized images: image segmentation, center alignment, rigid body alignment, and color
normalization. The following sections explain those steps in detail.

1. Image segmentation—The first step in the process is to extract sub-images, which
contain a single cross section from the digitized slides. The connected components on the slides
are detected and labeled first, with one individual component containing a single cross-section.
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Next, sub-images are extracted and ordered, using their position on the slide. Finally, the brain
is extracted from each of the sub-images. To achieve this, we have used a level-set method
with a dynamic speed function we have proposed for the segmentations of images with weak
edges [21]. Initial contours are placed outside the brain area and evolve toward the brain edges.
The left panel of Fig. 2 illustrates a typical histological image with the initial contours (the blue
circles). The middle panel shows the mask extracted with our segmentation algorithm. The
right panel shows the brain extracted from the image.

2. Center alignment—In this step, the segmented histological slices are registered to each
other sequentially, starting from the first image to the last one, by realigning the center of the
slices. This step generates a coarse result and provides a good initialization for the next step.
The left panel of Fig. 3 shows the result after this step.

3. Rigid body alignment—Next, the slices are registered sequentially using a Mutual
Information-based rigid body registration algorithm. A rigid body transformation only includes
three parameters: one rotation angle R and a translation vector t = [tx, ty]. The algorithm
calculates the optimal parameters R and t through maximizing the Normalized Mutual
Information (NMI) using Powell's algorithm [22]:

(1)

where A and B' are the target image and the transformed image, respectively, and H (·) is the
Shannon entropy of the image, which measures the amount of information in this image
viaEq. (2),

(2)

where pi (i) is the probability of an intensity value i in the image I.

Although most of the slices can be registered successfully using this method, failures happen
because the algorithm converges to an erroneous local minimum. For our data sets, we have
observed a 10% error rate. We have also observed that the most critical parameter in our
registration algorithm is the number of bins used to compute the joint histograms from which
MI is evaluated and we have determined that histograms with 32 bins were the most robust
and reliable. Based on this observation we used 32 bins as the default value to compute the
histograms but we have developed an algorithm that modifies the number of bins if it is
determined that the registration is stuck in an erroneous local minimum. To detect whether or
not the algorithm has reached an erroneous local minimum, a threshold on the MI is used.
Through experimentation, we have determined that if the MI between two successive slices is
above this threshold, the registration has converged to a visually acceptable result. If it is below,
the algorithm has generally converged toward the wrong solution. After each slice-to-slice
registration the final MI is checked. If it is below the threshold, which is the same for all slices
and all volumes, the algorithm is restarted with 8, 16, 64, and 128 bins. The registration that
leads to the largest MI is selected as the correct one.

This approach reduced the error rate to 1.5%. The remaining mis-registered cases were
identified visually and realigned manually. The right panel of Fig. 3 shows the reconstructed
volume after this step.
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4. Color normalization—As discussed earlier, not only spatial normalization, but also color
normalization is necessary to reconstruct the histological volumes. This is so because
individual slices can absorb more or less cresyl violet stain during the histological slice
preparation. This, in turn, affects the overall intensity of a slice as well as the contrast between
structures.

In this work, we use a weighted histogram specification method on each of the R (red), G
(green) and B (blue) channels of the histological images. The standard histogram specification
algorithm consists in computing an intensity transformation T that minimizes the difference
between the cumulative histogram of a source image to be corrected and a target histogram:

(3)

where C is the cumulative histogram function, and Is and It are the reference and target images,
respectively.

But, a global optimal intensity histogram (the target histogram) is difficult to find. This is so
because different structures are visible in different slices. These slices thus have different
intensity distributions and one single target histogram is insufficient to capture the
characteristics of all the slices. One solution is to choose a number of target slices spread over
the volume and to normalize the intensities block by block. As will be seen, this leads to results
that are satisfactory locally but it also produces banding artifacts (i.e., variations in image
appearance from one block to the other). Here we propose a method that solves this problem.
We start by selecting a number of target slices across the volume. Typically, we choose one
target slice every 30 slices (this number was chosen experimentally for our data set) and we
normalize slices between these target slices using the intensity histograms of both target slices
as follows. Let St be the target slice. For every slice Si ∈ { St ,St+1 } , we compute the intensity
transformations between Si and St , and between Si and St+1 :

(4)

The final transformation T for Si is then computed as:

(5)

where  , and  , with D the distance between two slices, and v the
distance between the two target slices, which has been set to 30. This technique is simple, non-
iterative, fully automatic, and we found it to be robust.

Fig. 4 illustrates results obtained with the various intensity normalization schemes we have
discussed. Panel (a) shows the stacked slices prior to segmentation and registration in the
horizontal orientation. Hence, every column in this panel represents one axial histological slice.
Panel (b) shows the histological volume after registration but before intensity normalization.
Panel (c) shows the intensity normalization results obtained when only one reference histogram
is used. Here, the middle slice has been selected as target and all the other intensity values have
been normalized sequentially moving to the left and to the right of the central slice. Clearly,
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this leads to suboptimal contrast for some of the slices (see for example the reduction in contrast
in the cerebellum's region). Panel (d) shows the results when several target histograms are
selected and the images normalized block by block. This leads to good results within a block
but also to noticeable differences across blocks. Panel (e) shows results obtained with our
method. These results show that we have been able to remove intensity and contrast differences
between nearby slices while preserving good contrast across the entire volume. To show the
robustness of our approach, Fig. 5 illustrates the four histological volumes we have used in
this study before (left column) and after (right column) color normalization with our algorithm.

Theoretically, the continuous or discrete transformation computed through histogram
specification is single-valued and monotonic in an interval. However, in practice, after the
discrete transformation, the transformed intensities in one image need to be quantized into
integers in the range of [0, 255] to generate a new image. Because of this, multiple intensities
in the source image can be mapped into a single intensity in the target image. Moreover,
intensity remapping through histogram specification may move pixels from one bin to the other
in the intensity histogram used to compute the mutual information between slices. We
investigated whether or not intensity normalization has any impact on the registration results.
To do so, color normalization was applied to the images before and after rigid body alignment.
While the registration algorithm did not fail on the same slices when either of the strategy was
used, the rate of failure remained the same at approximately 1.5%. Color normalization was
performed before registration to generate all the results presented in this article.

C. Registration of histological volumes to their corresponding MR volume
The next step in the process involves registering histological volumes to their corresponding
MR volumes. First, brains are extracted from the MR images using the same level-set algorithm
used to separate background and brain regions in the histological images. Next, the two brain
volumes are registered. This requires several steps because of the difficulty mentioned in the
Introduction section. Namely, when we reconstruct the histological volumes, we stack images
consecutively, while maximizing the MI between these slices. This leads to histological
volumes whose overall shape does not match exactly the shape of the MR volume as shown
in the middle panel of Fig. 6. To address this issue, we first register the MR volume to its
histological volume using a rigid-body registration technique. When this is done, we translate
each slice in the histological image such that its center of mass coincides with the center of
mass of the corresponding MR slice. This is similar to what has been done by Yushkevich et
al. [23] and Malandain et al. [16]. We note that these authors added one component to the
process to insure a smooth transition between successive transformations. They also used
transformations with more degrees of freedom. We did not find this necessary with our data
set. This is probably due to the fact that we are dealing with mouse MR images that have a
much lower spatial resolution than the monkey and human brain MR images they are using in
their studies. The result of this operation is shown on the right panel of Fig. 6. Finally, when
the individual slices have been registered to the MR slices, the new histological volume is
registered in 3D to the MR volume using a non-rigid registration algorithm [24], which is
described in Section II.D.

Unfortunately, the individual histological volumes obtained with the aforementioned
techniques suffer from a series of defects such as tearing or missing segments. One approach
is to try to develop more sophisticated reconstruction techniques that can deal with these issues
but these are challenging problems. Automatic, robust, and practical solutions will thus be
difficult to develop. A practical alternative is to try to combine several individual volumes and
generate one synthetic volume that suffers from fewer defects, which is the approach we have
investigated.
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D. Creation of the average histological volume
The method we have used is a technique that has been proposed for the creation of population
averages [26]. In this context, one computes one image volume (e.g., a human brain volume),
which is representative of a population as a whole. These averages can then be used to compare
populations. Even though our immediate objective is not to compare populations, averaging
image volumes can help alleviate defects in individual histological volumes, as these defects
are random and occur at different locations in each volume.

The averaging method we have used is illustrated in Fig. 7. First, one histological volume is
selected as a reference (it has been shown [26] that the selection of the reference does not affect
the average result) and all the other volumes are registered to this reference image, using a
rigid registration algorithm first. A non-rigid registration algorithm is then applied to each
volume and two deformations fields, which are inverses of each other, are produced. The first,
which we call the forward field, permits the registration of a volume to the reference volume.
The second, which we call the reverse field, permits the registration of the reference volume
to one of the other volumes. Once the deformation fields have been computed, an intensity
average is computed. This is done by applying the forward fields to each of the volumes and
averaging the resulting volumes. Next, an average shape volume is computed. This is done by
first averaging the reverse deformation field. The average reverse deformation field is then
applied to the intensity average to produce a new reference. Note that this new reference volume
is a “virtual volume”; i.e., it is different from all the original histological volumes. All the
volumes are again registered to this new reference volume and the process is repeated until
convergence. The experiments we conducted show that after 3 or 4 iterations, both the intensity
and the deformation field of the average model remain constant, and the process converges.

As is the case for inter-slice intensity normalization, we use a histogram specification method
to normalize intensities across volumes. Here, a single target histogram is computed from the
target volume; the intensities in the other reconstructed volumes are normalized to match the
target one.

The algorithm we have used to compute the non-rigid registration is an MI-based algorithm
we have proposed, which we call ABA for adaptive bases algorithm [24]. This algorithm
models the deformation field that registers the two images as a linear combination of radial
basis functions (RBFs) with finite support:

(6)

where x is a coordinate vector in ℜd, with ℜd the d-dimensional real space, and d the
dimensionality of the images. Φ is one of Wu's compactly supported positive radial basis
functions [25], and the ci 's are the coefficients of these basis functions. The coefficients of the
radial basis functions are computed through maximizing the Normalized Mutual Information.
This algorithm implements several improvements over other existing mutual information-
based non-rigid registration algorithms. These include working on an irregular grid, adapting
the stiffness of the transformation locally, decoupling a very large optimization problem into
several smaller ones, and deriving schemes to guarantee the topological correctness of the
transformations.

The algorithm is applied using a multiscale and multi resolution approach. The resolution is
related to the spatial resolution of the images. The scale is related to the region of support and
the number of basis functions. Typically, the algorithm is started on a low-resolution image
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with few basis functions with large support. The image resolution is then increased and the
support of the basis function decreased. Following this approach, the transformations become
more and more local as the algorithm progresses. The algorithm progresses until the highest
image resolution and highest scale are reached.

In this algorithm, the transformation is kept topologically correct through imposing a constraint
on the difference between the coefficients of adjacent basis functions. The concept is simple:
if the coefficients of adjacent basis functions vary widely, the resulting deformation field
changes rapidly. Hence, it is possible to spatially adapt the stiffness characteristics of the
transformation through creating a stiffness map. The stiffness map has the same dimensions
as the original images and associates different stiffness thresholds with different regions. In
previous work [27], we have shown this to be of value for registering brain volumes with large
space-occupying lesions or with extremely large ventricles. We found it to be useful for this
application as well. Looking at Fig. 8, one observes that the images are made of two distinct
regions. The first one is the cerebellum in which layers of white and gray matter are clearly
visible; these create distinct features that can guide a non-rigid, intensity-based, registration
algorithm. The second region encompasses the rest of the brain. In this region, contrast is
weaker and internal structures and substructures do not show clearly defined edges. It is well
known that intensity-based algorithms as the one we use need to be regularized more over
uniform regions than they need to be on regions with a lot of edge information. Hence, we have
used a simple binary stiffness map in this study. Stiffness is smaller over the cerebellum region
than it is over the rest of the brain region. In other words, the deformation field is regularized
more over regions in which edge information is not very reliable (the brain) and less over
regions in which edge information is more reliable (the cerebellum).

The effect of using two stiffness values is shown in Fig. 9. The left panel in this figure shows
one slice in the reference volume. To create the middle panel, another volume was first
registered to the reference volume using one single stiffness value, which produces good results
over the brain region. The reference volume and the registered volume were then averaged.
The middle panel shows one slice in this average volume. The right panel shows the same but
when two stiffness values are used (the transformation is more elastic over the region of
cerebellum). This figure shows that the two volumes are aligned more accurately over the
region of cerebellum when two stiffness values are used, thus suggesting a better registration.

E. Creation of the average MR volume
A single MR volume can be created from the four MR volumes acquired in this study in two
ways. The first one involves repeating the procedure described above for the creation of the
average histological volume. If this approach is used, one of the MR volumes is selected as the
original target. The remaining volumes are registered to this first target, the deformation field
averaged, a new MR target is created, and the process is repeated until convergence. The second
approach relies on the histological volumes to create the MR atlas. First, each MR volume is
registered to its own histological atlas. Then, the average histological atlas is created as
described earlier. Finally, the transformation that registers each individual histological volume
to the average histological atlas is applied to its own registered MR volume to achieve the
average MR volume. Results obtained with the two methods will be compared in the next
section.

F. Algorithms Implementation
The main registration algorithms (rigid and non-rigid) were implemented in the C programming
language. The segmentation algorithm, which was used to extract the mouse brains from the
background, was also implemented in the C language. Other algorithms, such as the one used
for center alignment and color normalization, were implemented in MATLAB (Mathworks
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Inc., Sherborn, MA). To implement the strategy that improves the accuracy of rigid registration
described in Section II.B.3, MATLAB was also employed to call the rigid registration
algorithm, check the values of MI, and modify the number of bins.

III. Results
A. Average histological and MR volumes

Fig. 10 and Fig. 11 illustrate the results we have obtained with our averaging method. In these
figures, the top panel shows one slice in the average. The other panels show the same slice in
the four individual volumes used in this study. These figures show two important things. First,
defects that are apparent in the individual volumes have virtually disappeared from the average
volume. Second, small structures, such as the medial terminal nucleus of the accessory optic
tract, the nigrostriatal fibers, or the lateral geniculate body, are clearly visible in the average
volume despite being barely visible in the individual image volumes.

Fig. 12 shows the improvement one can expect when using several histological volumes. The
left panel shows an average obtained with two histological volumes, the middle panel is the
average obtained with three histological volumes, and the right panel is the average obtained
with all four volumes. Green marks show some defects that appeared in the first two averages,
but disappeared in the third average. The red mark shows one artifact existing in the third
average. Although new defects may be brought into the average, clearly, increasing the number
of volumes used to compute the average generally reduces the defects visible in the average
and increases its overall signal-to-noise ratio (SNR).

Fig. 13 compares average MR volumes obtained with the two approaches described in Section
II.E. The left panel in the image shows one slice in one of the original volumes. The middle
panel shows one slice in the average MR volume obtained when the histological images are
used and the right panel shows a slice in the average MR volume obtained when MR images
alone are used. The right panel is blurrier than the middle one, suggesting that using the
histological image volumes improves the registration process. This finding is not very
surprising. Indeed, contrast and visibility of internal brain structures are substantially lower in
MR images than they are in the histological images. Accurate inter-subject non-rigid
registration is thus more difficult for MR images than it is for histological images. When the
histological images are used for atlas creation, the only non-rigid registration applied to the
MR images is the last step in the intra-subject MR-histological registration process. Typically,
this only requires small displacements that improve the results obtained with the rigid-body
step. This is a much simpler non-rigid registration problem than the inter-subject registration
step required to register MR volumes to each other directly.

B. Validation
The MR-histology atlas pair we have created can be used to facilitate the visual interpretation
of the MR image as well as to perform automatic volumetric measurements on these images.
To validate our approach and demonstrate the usefulness of this atlas we first use a leave-one-
out approach to qualitatively show that the registration of the atlas with an MR volume produces
accurate results. We then use the same approach to quantitatively assess the accuracy of
volumetric measurements for structures that are not easily discernible in the MR images. We
complement this validation study with another one performed on an additional ten MR volumes
in which we segment structures that are discernible in the MR images.

1. Qualitative evaluation—To evaluate our method qualitatively we used the following
approach. First, one MR-histological atlas pair was created with three of the volumes for which
we have both MR and histological data. The MR volume in this pair was registered to the fourth
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MR volume for which we have both MR and histological data. The transformation, which
registers the MR atlas to the fourth MR volume, was then applied to the histological atlas, and
the deformed atlas was compared to the fourth histological volume. This method permits to
judge the quality of the registration between the MR atlas and a new MR volume on structures
that are not visible on the MR images. Fig. 14 shows results on a few slices. In this figure, the
left panels are slices in the fourth MR volume. The middle panels are the histological slices in
the histological volume associated with the fourth MR volume. The right panels are the
corresponding slices in the histological atlas registered to the fourth MR volumes using the
MR atlas. Contours have been drawn manually on the right panels and copied on the
corresponding middle panels. These contours show a very good agreement between the
histological volumes, thus demonstrating that accurate registration between MR volumes is
achievable. It also shows that information such as the position of anatomic structure not visible
in the MR can be inferred automatically from a histological atlas.

2. Quantitative validation on structures not visible in the MR images—To evaluate
the usefulness of our MR-histology atlas for the quantitative analysis of MR images we first
used the same leave-one-out strategy described in the previous section, i.e., we have created
four pairs of MR-histology atlases. Each of these was created using only three of the four MR-
histological volume pairs and tested on the fourth one. To test our approach for volumetric
measurements, the hippocampus was first delineated manually in each of the histological
atlases. Next, the MR atlases (created with three volumes) were registered to the fourth MR
volume, which was already registered to its own histological volume. The deformation field
computed using this method was then used to project the hippocampus contours from the
histological atlas onto the fourth histological volume. Manual and automatic contours for the
fourth histological volumes were then compared. This approach permits evaluating the
accuracy of our atlas-based segmentation method in four volumes. Fig. 15 shows hippocampus
contours we have obtained automatically and contours obtained manually superimposed on
the MR volume not used to create the atlas (left panels) and on the corresponding histological
volume (right panels). To validate the results quantitatively, manual and automatic contours
were compared using the Dice similarity index [28] defined as follows:

(7)

where n{.} indicates the number of voxels within a region and A and M are the automatic and
manual contours. Fig. 16 shows this Dice similarity result. Dice values above 0.7 are
customarily considered indicative of a good agreement between contours [29].

3. Quantitative validation on structures visible in the MR images—In the previous
section we have validated our approach on structures that are not visible in the MR images.
This is possible because we have an associated histological volume for each of the MR volumes.
But this validation was limited to the four data sets for which we had both MR and histological
information. To further evaluate the atlases we tested the accuracy of automatic volumetric
measurements on additional MR volumes acquired with the same imaging protocol described
in Section II.A. Because we did not have associated histological volumes, we limited our
analysis to structures, which could be visually identified and manually delineated in the MR
images. Three structures were manually contoured in each of the ten volumes: the left lobe,
the right lobe, and the cerebellum. These structures were also delineated in the atlas (here we
use an MR-histology atlas created with the four data sets). The atlas was registered to all the
other volumes and 3D structures delineated in the atlas were deformed with the computed
deformation field. Contours obtained automatically were compared to the manual contours
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using the Dice similarity index. Table 1 shows the Dice values for all ten mice. The mean
values for all three structures are above 0.9, which indicates an excellent agreement between
the automatic contours and the manually segmented contours. Those mean values are larger
than the Dice values obtained for the hippocampus contours in the previous validation
experiment. The reason is that, compared with the regions of hippocampus, these three
structures have clearer edges in the MR images, which improves the accuracy of intensity-
based methods such as the one used in this work.

IV. Discussion
Defects in individual histological slices are unavoidable and difficult to correct because they
involve tearing, missing parts, or folding. The study we have conducted has shown that a very
practical solution to reconstruct 3D histological volumes of high quality is to use more than
one reconstructed histological volume and to create one single volume from these through non-
rigid registration. The accuracy of our non-rigid registration is such that the average it produces
has a higher signal-to-noise ratio than any of the individual volumes used for its creation. This
permits the clear visualization of structures that are not easily discernable in the individual
volumes. Also, defects in individual volumes become less apparent in the average one because
of the intensity averaging we perform. Some defects remain in the atlas we have created with
our four MR-histology data sets, which makes it less than a gold standard, but these are such
that it is unlikely that they substantially affect the volumetric measurement we have made.
Adding more MR-histology data sets would further improve the quality of the atlas. As noted
in the introduction, intensity normalization is an important component for the reconstruction
of histological volumes. Others have proposed methods that are somewhat complex, often
requiring iterative optimization steps and parameter adjustments. The new method we propose
is based on a standard histogram specification technique. With the modification we have
developed it leads to satisfactory results while being simple, fast, and parameter free (except
for the selection of the number of target histograms, which is not critical). The method we use
to realign histological slices to each other is largely automatic albeit we have observed a failure
rate around 1.5%. One possible way to address the issue would be to restart the rigid body
registration algorithm from different starting points to steer it away from erroneous local
minima and to select the solution that produces the largest MI. Using our histological atlases,
we have shown that atlas-based segmentation methods permit accurate volumetric
measurements of mice MR images both on structures that are visible in these images and on
structures that are difficult to discern. An immediate, and promising, application of this
technique involves the segmentation of brain structures in mouse populations that have been,
for example, genetically manipulated—an area of active investigation to understand the adult
and developing mammalian central nervous system [30-32]. Others have developed digital MR
atlases [6][7][33]. These are built directly from 3D tomographic volumes that are acquired with
very long acquisition sequences. While results obtained with these approaches are excellent,
there remains a place for histological atlases. Indeed, histology can still provide a spatial
resolution that is far superior to what is achievable with MR and various histology stains can
be used to visualize nuclei or cell surface receptors that cannot be seen in MR images. It is thus
likely that histology will remain the standard for many years to come. But, the creation of good
quality histological cross-sections is a difficult task that requires experience and skills. The
method proposed herein permits the reconstruction of high quality volumes even if the raw
data is less than perfect.
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Fig. 1.
An example of a scanned mouse brain histological glass slide, with one high resolution
histological image.
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Fig. 2.
A histological image with the initial contours (left), the mask extracted with the level-set
method (middle), and the extracted image (right). This segmentation procedure is the first step
used in the reconstruction of 3D histological volumes.
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Fig. 3.
The reconstructed histological volume before registration (left) and after rigid body registration
(right). The internal structures are reconstructed accurately after rigid body registration.
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Fig. 4.
One slice in the 3D reconstructed histological volume after stacking the original histological
images (a), after segmentation and registration (b), after color normalization using one single
target histogram for the whole volume (c), one target histogram per interval (d), and the method
we propose (e).
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Fig. 5.
Four reconstructed histological volumes before (left column) and after (right column) color
normalization. Inter-slice intensity variations are eliminated in all these four volumes after the
color normalization.

Li et al. Page 18

Magn Reson Imaging. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
One sagittal slice in one MR volume (left), histological volume after rigid body registration
(middle), and histological volume after rigid body registration and realignment of each slice
to the corresponding one in the MR volume (right).
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Fig. 7.
Flow chart of the algorithm used to generate the average volume. The individual reconstructed
volumes are averaged using this algorithm and a virtual volume with high SNR is generated
(adapted from [26]).
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Fig. 8.
One slice in a histological volume. This image shows that the cerebellum area contains more
edge information than the rest of the image.
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Fig. 9.
One slice in the reference volume (left), in the average of two volumes registered with one
single stiffness value (middle), and in the average of two volumes registered with two stiffness
values (right).
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Fig. 10.
One axial slice from the averaged histological volume (1st row) with labeled structures, and
individual volumes (2nd – 3rd rows). Green circles mark some defects in the individual volumes.
Defects are eliminated and small structures are more visible in the averaged volume.
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Fig. 11.
One coronal slice in the averaged histological volume (1st row) with labeled structures, and
individual volumes (2nd – 3rd rows). Green circles mark some defects in the individual volumes.
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Fig. 12.
Slices in the average volumes generated using two (left), three (middle) and four (right)
individual volumes. Comparing the atlases obtained by different numbers of volumes, we find
the SNR of the averaged volume is improved with more individual volumes.
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Fig. 13.
One slice in the original MR volume (left), in the average MR volume obtained using the
histological volumes (middle), and the average MR volume obtained by registering MR
volumes directly (right).
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Fig. 14.
Slices in the 4th MR volume (left column), the 4th histological volume (middle column), and
the histological atlas (right column) obtained using a leave-one-out method. The contours were
drawn manually on the images shown on the right and copied on the images shown in the
middle.
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Fig. 15.
Hippocampus contours obtained automatically (green) and manually (red) are superimposed
on the MR volume (left column) and on the corresponding histological volume (right column).
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Fig. 16.
The Dice similarity index for hippocampus structures (N: the number of slices). The Dice
values are around 0.8, which indicates the accuracy of the atlas-based segmentation.
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